Skip to main content

Overview of Anterior Lumbar Spine Access Surgery

  • Chapter
  • First Online:
Lumbar Spine Access Surgery

Abstract

Surgical access to the anterior lumbar spine was first described in the 1700s and became technically feasible and more widespread in the 1900s. Initially utilized for spinal tuberculosis, the approach was adapted and developed to address spondylolisthesis and lumbar disc herniation. Modern anterior lumbar access can be employed to address trauma, infection, deformity, nonunion, neurologic compression from traumatic or degenerative conditions, and tumors. The goal of this chapter is to help familiarize those involved in the care of spine surgery patients with an overview of anterior lumbar spine access surgery including relevant history, anatomy, pathophysiology, surgical indications and contraindications, risks, contemporary uses, and future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reid PC, Morr S, Kaiser MG. State of the union: a review of lumbar fusion indications and techniques for degenerative spine disease. J Neurosurg Spine. 2019;31:1–14.

    Article  PubMed  Google Scholar 

  2. Makanji H, Schoenfeld AJ, Bhalla A, et al. Critical analysis of trends in lumbar fusion for degenerative disorders revisited: influence of technique on fusion rate and clinical outcomes. Eur Spine J. 2018;27:1868–76.

    Article  PubMed  Google Scholar 

  3. Brox JI, Sørensen R, Friis A, et al. Randomized clinical trial of lumbar instrumented fusion and cognitive intervention and exercises in patients with chronic low back pain and disc degeneration. Spine (Phila Pa 1976). 2003;28:1913–21.

    Article  PubMed  Google Scholar 

  4. Fritzell P, Hägg O, Wessberg P, et al. 2001 Volvo Award Winner in Clinical Studies: lumbar fusion versus nonsurgical treatment for chronic low back pain: a multicenter randomized controlled trial from the Swedish Lumbar Spine Study Group. Spine (Phila Pa 1976). 2001;26:2521–32; discussion 2532–4.

    Article  CAS  PubMed  Google Scholar 

  5. Teng I, Han J, Phan K, et al. A meta-analysis comparing ALIF, PLIF, TLIF and LLIF. J Clin Neurosci. 2017;44:11–7.

    Article  PubMed  Google Scholar 

  6. Matur AV, Mejia-Munne JC, Plummer ZJ, et al. The history of anterior and lateral approaches to the lumbar spine. World Neurosurg. 2020;144:213–21.

    Article  PubMed  Google Scholar 

  7. Pott P. Farther remarks on the useless state of the lower limbs, in consequence of a curvature of the spine: being a supplement to a former treatise on that subject. 1782. Clin Orthop Relat Res. 2007;460:4–9.

    Article  PubMed  Google Scholar 

  8. Muller W. Transperitoneale freilegung der wirbelsaule bei tuberkuloser spondylitis. Dtsch Z Chir. 1906;85:128–35.

    Article  Google Scholar 

  9. Ito H, Tsuchiya J, Asami G. A new radical operation for Pott’s disease: report of ten cases. JBJS. 1934;16:499.

    Google Scholar 

  10. Burns BH. An operation for spondylolisthesis. Lancet. 1933;221:1233.

    Article  Google Scholar 

  11. Mercer W. Spondylolisthesis: with a description of a new method of operative treatment and notes of ten cases. Edinb Med J. 1936;43:545–72.

    PubMed  PubMed Central  Google Scholar 

  12. Lane JD, Moore ES. Transperitoneal approach to the intervertebral disc in the lumbar area. Ann Surg. 1948;127:537–51.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Southwick WO, Robinson RA. Surgical approaches to the vertebral bodies in the cervical and lumbar regions. JBJS. 1957;39:631–44.

    Article  Google Scholar 

  14. Capener N. Spondylolisthesis. Br J Surg. 1932;19:374–86.

    Article  Google Scholar 

  15. Harmon PH. Anterior extraperitoneal lumbar disk excision and vertebral body fusion. Clin Orthop Relat Res. 1960;18:169–98.

    Google Scholar 

  16. Obenchain TG. Laparoscopic lumbar discectomy: case report. J Laparoendosc Surg. 1991;1:145–9.

    Article  CAS  PubMed  Google Scholar 

  17. Fraser RD, Gogan WJ. A modified muscle-splitting approach to the lumbosacral spine. Spine (Phila Pa 1976). 1992;17:943–8.

    Article  CAS  PubMed  Google Scholar 

  18. Regan JJ, Aronoff RJ, Ohnmeiss DD, et al. Laparoscopic approach to L4–L5 for interbody fusion using BAK cages: experience in the first 58 cases. Spine (Phila Pa 1976). 1999;24:2171–4.

    Article  CAS  PubMed  Google Scholar 

  19. Bassani R, Gregori F, Peretti G. Evolution of the anterior approach in lumbar spine fusion. World Neurosurg. 2019;131:391–8.

    Article  PubMed  Google Scholar 

  20. Mayer HM. A new microsurgical technique for minimally invasive anterior lumbar interbody fusion. Spine (Phila Pa 1976). 1997;22:691–9; discussion 700.

    Article  CAS  PubMed  Google Scholar 

  21. Brau SA. Mini-open approach to the spine for anterior lumbar interbody fusion. Spine J. 2002;2:216–23.

    Article  PubMed  Google Scholar 

  22. Richardon AM, Manzano G, Levi AD. Relevant surgical anatomy of the lateral and anterior lumbar spine. In: Lumbar interbody fusions. London: Elsevier; 2019. p. 27–35.

    Chapter  Google Scholar 

  23. Bečulić H, Sladojević I, Jusić A, et al. Morphometric study of the anatomic relationship between large retroperitoneal blood vessels and intervertebral discs of the distal segment of the lumbar spine: a clinical significance. Med Glas (Zenica). 2019;16:260–4. https://doi.org/10.17392/1011-19.

    Article  Google Scholar 

  24. Malham GM, Wagner TP, Claydon MH. Anterior lumbar interbody fusion in a lateral decubitus position: technique and outcomes in obese patients. J Spine Surg. 2019;5:433–42.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jin C, Jaiswal MS, Jeun S-S, et al. Outcomes of oblique lateral interbody fusion for degenerative lumbar disease in patients under or over 65 years of age. J Orthop Surg Res. 2018;13:38.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xi Z, Burch S, Mummaneni PV, et al. Supine anterior lumbar interbody fusion versus lateral position oblique lumbar interbody fusion at L5–S1: a comparison of two approaches to the lumbosacral junction. J Clin Neurosci. 2020;82:134–40.

    Article  PubMed  Google Scholar 

  27. Humzah MD, Soames RW. Human intervertebral disc: structure and function. Anat Rec. 1988;220:337–56.

    Article  CAS  PubMed  Google Scholar 

  28. Adams MA, Roughley PJ. What is intervertebral disc degeneration, and what causes it? Spine. 2006;31:2151–61.

    Article  PubMed  Google Scholar 

  29. Videman T, Battié MC, Gill K, et al. Magnetic resonance imaging findings and their relationships in the thoracic and lumbar spine. Insights into the etiopathogenesis of spinal degeneration. Spine (Phila Pa 1976). 1995;20:928–35.

    Article  CAS  PubMed  Google Scholar 

  30. Adams MA. Biomechanics of back pain. Acupunct Med. 2004;22:178–88.

    Article  PubMed  Google Scholar 

  31. Riley GP, Curry V, DeGroot J, et al. Matrix metalloproteinase activities and their relationship with collagen remodelling in tendon pathology. Matrix Biol. 2002;21:185–95.

    Article  CAS  PubMed  Google Scholar 

  32. Kang JD, Georgescu HI, McIntyre-Larkin L, et al. Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2. Spine (Phila Pa 1976). 1996;21:271–7.

    Article  CAS  PubMed  Google Scholar 

  33. Roberts S, Evans H, Trivedi J, et al. Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am. 2006;88(Suppl 2):10–4.

    PubMed  Google Scholar 

  34. Sambrook PN, MacGregor AJ, Spector TD. Genetic influences on cervical and lumbar disc degeneration: a magnetic resonance imaging study in twins. Arthritis Rheum. 1999;42:366–72.

    Article  CAS  PubMed  Google Scholar 

  35. Paassilta P, Lohiniva J, Göring HH, et al. Identification of a novel common genetic risk factor for lumbar disk disease. JAMA. 2001;285:1843–9.

    Article  CAS  PubMed  Google Scholar 

  36. Kawaguchi Y, Osada R, Kanamori M, et al. Association between an aggrecan gene polymorphism and lumbar disc degeneration. Spine (Phila Pa 1976). 1999;24:2456–60.

    Article  CAS  PubMed  Google Scholar 

  37. Seki S, Kawaguchi Y, Chiba K, et al. A functional SNP in CILP, encoding cartilage intermediate layer protein, is associated with susceptibility to lumbar disc disease. Nat Genet. 2005;37:607–12.

    Article  CAS  PubMed  Google Scholar 

  38. Videman T, Gibbons LE, Battié MC, et al. The relative roles of intragenic polymorphisms of the vitamin d receptor gene in lumbar spine degeneration and bone density. Spine (Phila Pa 1976). 2001;26:E7–12.

    Article  CAS  PubMed  Google Scholar 

  39. Takahashi M, Haro H, Wakabayashi Y, et al. The association of degeneration of the intervertebral disc with 5a/6a polymorphism in the promoter of the human matrix metalloproteinase-3 gene. J Bone Joint Surg Br. 2001;83:491–5.

    Article  CAS  PubMed  Google Scholar 

  40. Venner RM, Crock HV. Clinical studies of isolated disc resorption in the lumbar spine. J Bone Joint Surg Br. 1981;63B:491–4.

    Article  CAS  PubMed  Google Scholar 

  41. Jaffray D, O’Brien JP. Isolated intervertebral disc resorption. A source of mechanical and inflammatory back pain? Spine (Phila Pa 1976). 1986;11:397–401.

    Article  CAS  PubMed  Google Scholar 

  42. Garfin SR, Eismont FJ, Bell GR, et al., editors. Rothman-Simeone and Herkowitz’s the spine. 7th ed. Philadelphia: Elsevier; 2018.

    Google Scholar 

  43. Seichi A. [Lumbar spondylosis]. Nihon Rinsho 2014;72:1750–4.

    Google Scholar 

  44. Dupuis PR, Yong-Hing K, Cassidy JD, et al. Radiologic diagnosis of degenerative lumbar spinal instability. Spine (Phila Pa 1976). 1985;10:262–76.

    Article  CAS  PubMed  Google Scholar 

  45. Bogduk N, Bogduk N. Clinical and radiological anatomy of the lumbar spine. 5th ed. New York: Churchill Livingstone; 2012.

    Google Scholar 

  46. Panjabi MM. The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J Spinal Disord. 1992;5:383–9; discussion 397.

    Article  CAS  PubMed  Google Scholar 

  47. Phillips S, Mercer S, Bogduk N. Anatomy and biomechanics of quadratus lumborum. Proc Inst Mech Eng H. 2008;222:151–9.

    Article  CAS  PubMed  Google Scholar 

  48. Russo M, Deckers K, Eldabe S, et al. Muscle control and non-specific chronic low back pain. Neuromodulation. 2018;21:1–9.

    Article  PubMed  Google Scholar 

  49. Fujiwara A, Lim TH, An HS, et al. The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of the lumbar spine. Spine (Phila Pa 1976). 2000;25:3036–44.

    Article  CAS  PubMed  Google Scholar 

  50. Hasegewa K, Kitahara K, Hara T, et al. Biomechanical evaluation of segmental instability in degenerative lumbar spondylolisthesis. Eur Spine J. 2009;18:465–70.

    Article  PubMed  Google Scholar 

  51. Aebi M. The adult scoliosis. Eur Spine J. 2005;14:925–48.

    Article  PubMed  Google Scholar 

  52. Mobbs RJ, Loganathan A, Yeung V, et al. Indications for anterior lumbar interbody fusion. Orthop Surg. 2013;5:153–63.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang JC, Mummaneni PV, Haid RW. Current treatment strategies for the painful lumbar motion segment: posterolateral fusion versus interbody fusion. Spine (Phila Pa 1976). 2005;30:S33–43.

    Article  PubMed  Google Scholar 

  54. Burkus JK, Schuler TC, Gornet MF, et al. Anterior lumbar interbody fusion for the management of chronic lower back pain: current strategies and concepts. Orthop Clin North Am. 2004;35:25–32.

    Article  PubMed  Google Scholar 

  55. Takahashi K, Kitahara H, Yamagata M, et al. Long-term results of anterior interbody fusion for treatment of degenerative spondylolisthesis. Spine (Phila Pa 1976). 1990;15:1211–5.

    Article  CAS  PubMed  Google Scholar 

  56. Ishihara H, Osada R, Kanamori M, et al. Minimum 10-year follow-up study of anterior lumbar interbody fusion for isthmic spondylolisthesis. J Spinal Disord. 2001;14:91–9.

    Article  CAS  PubMed  Google Scholar 

  57. Johnson LP, Nasca RJ, Dunham WK. Surgical management of isthmic spondylolisthesis. Spine (Phila Pa 1976). 1988;13:93–7.

    Article  CAS  PubMed  Google Scholar 

  58. Hsieh PC, Koski TR, O’Shaughnessy BA, et al. Anterior lumbar interbody fusion in comparison with transforaminal lumbar interbody fusion: implications for the restoration of foraminal height, local disc angle, lumbar lordosis, and sagittal balance. J Neurosurg Spine. 2007;7:379–86.

    Article  PubMed  Google Scholar 

  59. Gumbs AA, Hanan S, Yue JJ, et al. Revision open anterior approaches for spine procedures. Spine J. 2007;7:280–5.

    Article  PubMed  Google Scholar 

  60. Fisher CG, Vaccaro AR, Whang PG, et al. Evidence-based recommendations for spine surgery. Spine (Phila Pa 1976). 2013;38:E30–7.

    Article  PubMed  Google Scholar 

  61. Gertzbein SD, Hollopeter MR, Hall S. Pseudarthrosis of the lumbar spine. Outcome after circumferential fusion. Spine (Phila Pa 1976). 1998;23:2352–6; discussion 2356–7.

    Article  CAS  PubMed  Google Scholar 

  62. Etminan M, Girardi FP, Khan SN, et al. Revision strategies for lumbar pseudarthrosis. Orthop Clin North Am. 2002;33:381–92.

    Article  PubMed  Google Scholar 

  63. Barrick WT, Schofferman JA, Reynolds JB, et al. Anterior lumbar fusion improves discogenic pain at levels of prior posterolateral fusion. Spine (Phila Pa 1976). 2000;25:853–7.

    Article  CAS  PubMed  Google Scholar 

  64. Hlubek RJ, Mundis GM. Treatment for recurrent lumbar disc herniation. Curr Rev Musculoskelet Med. 2017;10:517–20.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mayer HM. The ALIF concept. Eur Spine J. 2000;9(Suppl 1):S35–43.

    Article  PubMed  Google Scholar 

  66. Mummaneni PV, Haid RW, Rodts GE. Lumbar interbody fusion: state-of-the-art technical advances. Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2004. J Neurosurg Spine. 2004;1:24–30.

    Article  PubMed  Google Scholar 

  67. Mobbs RJ, Phan K, Malham G, et al. Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg. 2015;1:2–18.

    PubMed  PubMed Central  Google Scholar 

  68. Phan K, Thayaparan GK, Mobbs RJ. Anterior lumbar interbody fusion versus transforaminal lumbar interbody fusion--systematic review and meta-analysis. Br J Neurosurg. 2015;29:705–11.

    Article  PubMed  Google Scholar 

  69. Gennari A, Yuh S-J, Le Petit L, et al. Anterior Longitudinal Ligament Flap technique: description of anterior longitudinal ligament opening during anterior lumbar spine surgery and review of vascular complications in 189 patients. World Neurosurg. 2022;165:e743–9.

    Article  PubMed  Google Scholar 

  70. Bassani R, Morselli C, Baschiera R, et al. New trends in spinal surgery: less invasive anatomical approach to the spine. The advantages of the anterior approach in lumbar spinal fusion. Turk Neurosurg. 2021;31:484–92.

    PubMed  Google Scholar 

  71. Brau SA, Delamarter RB, Schiffman ML, et al. Vascular injury during anterior lumbar surgery. Spine J. 2004;4:409–12.

    Article  PubMed  Google Scholar 

  72. Burkus JK, Dryer RF, Peloza JH. Retrograde ejaculation following single-level anterior lumbar surgery with or without recombinant human bone morphogenetic protein-2 in 5 randomized controlled trials: clinical article. J Neurosurg Spine. 2013;18:112–21.

    Article  PubMed  Google Scholar 

  73. Phan K, Xu J, Scherman DB, et al. Anterior lumbar interbody fusion with and without an “access surgeon”: a systematic review and meta-analysis. Spine (Phila Pa 1976). 2017;42:E592–601.

    Article  PubMed  Google Scholar 

  74. Quraishi NA, Konig M, Booker SJ, et al. Access related complications in anterior lumbar surgery performed by spinal surgeons. Eur Spine J. 2013;22(Suppl 1):S16–20.

    Article  PubMed  Google Scholar 

  75. Zahradnik V, Lubelski D, Abdullah KG, et al. Vascular injuries during anterior exposure of the thoracolumbar spine. Ann Vasc Surg. 2013;27:306–13.

    Article  PubMed  Google Scholar 

  76. Wood KB, Devine J, Fischer D, et al. Vascular injury in elective anterior lumbosacral surgery. Spine (Phila Pa 1976). 2010;35:S66–75.

    Article  PubMed  Google Scholar 

  77. Rao PJ, Loganathan A, Yeung V, et al. Outcomes of anterior lumbar interbody fusion surgery based on indication: a prospective study. Neurosurgery. 2015;76:7–23; discussion 23–4.

    Article  PubMed  Google Scholar 

  78. Garg J, Woo K, Hirsch J, et al. Vascular complications of exposure for anterior lumbar interbody fusion. J Vasc Surg. 2010;51:946–50; discussion 950.

    Article  PubMed  Google Scholar 

  79. Mobbs RJ, Phan K, Daly D, et al. Approach-related complications of anterior lumbar interbody fusion: results of a combined spine and vascular surgical team. Global Spine J. 2016;6:147–54.

    Article  PubMed  Google Scholar 

  80. Wert WG, Sellers W, Mariner D, et al. Identifying risk factors for complications during exposure for anterior lumbar interbody fusion. Cureus. 2021;13:e16792.

    PubMed  PubMed Central  Google Scholar 

  81. Fantini GA, Pawar AY. Access related complications during anterior exposure of the lumbar spine. World J Orthop. 2013;4:19–23.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Bateman DK, Millhouse PW, Shahi N, et al. Anterior lumbar spine surgery: a systematic review and meta-analysis of associated complications. Spine J. 2015;15:1118–32.

    Article  PubMed  Google Scholar 

  83. Nourian AA, Cunningham CM, Bagheri A, et al. Effect of anatomic variability and level of approach on perioperative vascular complications with anterior lumbar interbody fusion. Spine (Phila Pa 1976). 2016;41:E73–7.

    Article  PubMed  Google Scholar 

  84. Ho VT, Martinez-Singh K, Colvard B, et al. Increased vertebral exposure in anterior lumbar interbody fusion associated with venous injury and deep venous thrombosis. J Vasc Surg Venous Lymphat Disord. 2021;9:423–7.

    Article  PubMed  Google Scholar 

  85. Elia CJ, Arvind V, Brazdzionis J, et al. 90-day readmission rates for single level anterior lumbosacral interbody fusion: a nationwide readmissions database analysis. Spine (Phila Pa 1976). 2020;45:E864–70.

    Article  PubMed  Google Scholar 

  86. Body AM, Plummer ZJ, Krueger BM, et al. Retrograde ejaculation following anterior lumbar surgery: a systematic review and pooled analysis. J Neurosurg Spine. 2021;35:427–36.

    Article  PubMed  Google Scholar 

  87. Comer GC, Smith MW, Hurwitz EL, et al. Retrograde ejaculation after anterior lumbar interbody fusion with and without bone morphogenetic protein-2 augmentation: a 10-year cohort controlled study. Spine J. 2012;12:881–90.

    Article  PubMed  Google Scholar 

  88. Brickman B, Tanios M, Patel D, et al. Clinical presentation and surgical anatomy of sympathetic nerve injury during lumbar spine surgery: a narrative review. J Spine Surg. 2022;8:276–87.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Gornet MF, Burkus JK, Dryer RF, et al. Lumbar disc arthroplasty with Maverick disc versus stand-alone interbody fusion: a prospective, randomized, controlled, multicenter investigational device exemption trial. Spine (Phila Pa 1976). 2011;36:E1600–11.

    Article  PubMed  Google Scholar 

  90. Lindley EM, McBeth ZL, Henry SE, et al. Retrograde ejaculation after anterior lumbar spine surgery. Spine (Phila Pa 1976). 2012;37:1785–9.

    Article  PubMed  Google Scholar 

  91. Singh K, Ahmadinia K, Park DK, et al. Complications of spinal fusion with utilization of bone morphogenetic protein: a systematic review of the literature. Spine (Phila Pa 1976). 2014;39:91–101.

    Article  PubMed  Google Scholar 

  92. Oezel L, Okano I, Hughes AP, et al. Longitudinal trends of patient demographics and morbidity of different approaches in lumbar interbody fusion: an analysis using the American College of Surgeons National Surgical Quality Improvement Program Database. World Neurosurg. 2022;164:e183–93.

    Article  PubMed  Google Scholar 

  93. Katz AD, Mancini N, Karukonda T, et al. Approach-based comparative and predictor analysis of 30-day readmission, reoperation, and morbidity in patients undergoing lumbar interbody fusion using the ACS-NSQIP Dataset. Spine. 2019;44:432–41.

    Article  PubMed  Google Scholar 

  94. Franchini M, Mannucci PM. The never ending success story of tranexamic acid in acquired bleeding. Haematologica. 2020;105:1201–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yoo JS, Ahn J, Karmarkar SS, et al. The use of tranexamic acid in spine surgery. Ann Transl Med. 2019;2019:S172.

    Article  Google Scholar 

  96. Cheriyan T, Maier SP, Bianco K, et al. Efficacy of tranexamic acid on surgical bleeding in spine surgery: a meta-analysis. Spine J. 2015;15:752–61.

    Article  PubMed  Google Scholar 

  97. Soffin EM, Beckman JD, Tseng A, et al. Enhanced recovery after lumbar spine fusion. Anesthesiology. 2020;133:350–63.

    Article  CAS  PubMed  Google Scholar 

  98. Soffin EM, Okano I, Oezel L, et al. Impact of ultrasound-guided erector spinae plane block on outcomes after lumbar spinal fusion: a retrospective propensity score matched study of 242 patients. Reg Anesth Pain Med. 2022;47:79.

    Article  PubMed  Google Scholar 

  99. Owen RJ, Quinlan N, Poduska A, et al. Preoperative fluoroscopically guided regional erector spinae plane blocks reduce opioid use, increase mobilization, and reduce length of stay following lumbar spine fusion. Global Spine J. 2023;13(4):954–60.

    Article  PubMed  Google Scholar 

  100. Gabriel RA, Swisher MW, Sztain JF, et al. State of the art opioid-sparing strategies for post-operative pain in adult surgical patients. Expert Opin Pharmacother. 2019;20:949–61.

    Article  CAS  PubMed  Google Scholar 

  101. Reisener M-J, Hughes AP, Okano I, et al. The association of transversus abdominis plane block with length of stay, pain and opioid consumption after anterior or lateral lumbar fusion: a retrospective study. Eur Spine J. 2021;30:3738–45.

    Article  PubMed  Google Scholar 

  102. Katsuura Y, Wright-Chisem J, Wright-Chisem A, et al. The importance of surface technology in spinal fusion. HSS J. 2020;16:113–6.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Allain J, Dufour T. Anterior lumbar fusion techniques: ALIF, OLIF, DLIF, LLIF, IXLIF. Orthop Traumatol Surg Res. 2020;106:S149–57.

    Article  PubMed  Google Scholar 

  104. Barkay G, Wellington I, Mallozzi S, et al. The prone lateral approach for lumbar fusion-a review of the literature and case series. Medicina (Kaunas). 2023;59:251.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuyl, EV., Hong, T., Pease, T., Weinreb, J.B. (2023). Overview of Anterior Lumbar Spine Access Surgery. In: O'Brien, J.R., Weinreb, J.B., Babrowicz, J.C. (eds) Lumbar Spine Access Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-48034-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48034-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48033-1

  • Online ISBN: 978-3-031-48034-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics