Skip to main content

Space Weather Effects on Critical Infrastructure

  • Conference paper
  • First Online:
Critical Infrastructure Protection in the Light of the Armed Conflicts (HCC 2022)

Abstract

Gas pipelines, transmission lines, overhead wires, transformers, GNSS navigation, and telecommunication systems are part of critical infrastructure. Industry, transportation, service operations, farming, and everyday life highly depend on this infrastructure. However, these systems are very sensitive to solar activity. Therefore, all activities above are vulnerable and defenseless against the catastrophic changes in Earth’s cosmic environment. The Solar System is dominated by the influence of our star. In the Solar System, all objects are gravitationally bound and the radiation of the Sun provides the energy for example for the terrestrial biosphere. A small fraction of the energy produced in the core of our star turns into a magnetic field and emits the constant high-velocity flow, the solar wind. Solar magnetic activity produces radiation and ejects matter from the upper atmosphere of our star. The magnetic field of the solar wind interacts with the planetary magnetic fields and atmospheres. These phenomena, called Space Weather have a serious influence on the radiation environment of Earth where telecommunication, Global Navigation Satellite System, meteorological, and other purpose satellites are located. The conductivity and transparency of the higher partly ionized atmospheric layer, the ionosphere also depend on solar radiation and activity. This fact makes the navigation and communication systems dependent on solar activity. Finally, the solar magnetic activity creates magnetic variations in the terrestrial magnetic field and induces currents in gas pipelines, transmission lines, overhead wires, and transformers. In this short briefing, we introduce the solar activity phenomena, and their influence on our planet’s cosmic neighborhood and pro- vide a detailed description of the Space Weather effects on critical infrastructure. We describe the Hungarian national and global space weather forecast centres and capabilities. Finally, we share some guidelines on how to prepare for extreme space weather events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scherer K et al (2005) Space weather: the physics behind a slogan, lecture notes in physics, vol 10. Springer, Berlin

    Book  Google Scholar 

  2. Stix M (2004) The sun: an introduction, astronomy and astrophysics library, 2nd edn. Springer, Berlin

    Google Scholar 

  3. Brueckner GE et al (1995) The large angle spectroscopic coronagraph (LASCO). Solar Phys 162(1–2):357–402. https://doi.org/10.1007/BF00733434

    Article  Google Scholar 

  4. Domingo V et al (1995) Soho: the solar and heliospheric observatory. Space Sci Rev 72(1–2):81–84. https://doi.org/10.1007/BF00768758

    Article  Google Scholar 

  5. Pesnell WD et al (2012) The solar dynamics observatory (sdo). Solar Phys 275(1–2):3–15. https://doi.org/10.1007/s11207-011-9841-3

    Article  Google Scholar 

  6. Mccomas D et al (1998) Ulysses’ return to the slow solar wind. GRL 25:1–4. https://doi.org/10.1029/97GL03444

    Article  Google Scholar 

  7. Vörös Z et al (2014) Windsock memory conditioned RAM (CO-RAM) pressure effect: forced reconnection in the Earth’s magnetotail. JGR 119(8):6273–6293. https://doi.org/10.1002/2014JA019857

    Article  Google Scholar 

  8. Shang WS et al (2020) Unusual location of the geotail magnetopause near lunar orbit: a case study. JGR 125(4):e27401. https://doi.org/10.1029/2019JA027401

    Article  Google Scholar 

  9. Juusola L et al (2014) Statistical comparison of seasonal variations in the GUMICS-4 global MHD model ionosphere and measurements. Space Weather 12(10):582–600. https://doi.org/10.1002/2014SW001082

    Article  Google Scholar 

  10. Facskó G et al (2016) One year in the Earth’s magnetosphere: a global MHD simulation and spacecraft measurements. Space Weather 14(5):351–367. https://doi.org/10.1002/2015SW001355

    Article  Google Scholar 

  11. Tsurutani BT et al (2003) The extreme magnetic storm of 1–2 September 1859. JGR 108(A7):1268. https://doi.org/10.1029/2002JA009504

    Article  Google Scholar 

  12. Odenwald SF et al (2008) Bracing for a solar superstorm. Sci Am 299(2):80–87

    Article  Google Scholar 

  13. Kimball DS (1960) A study of the aurora of 1859. Scientific Report 6, Geophysical Institute at the University of Alaska

    Google Scholar 

  14. Hayakawa H et al (2018) Low-latitude aurorae during the extreme space weather events in 1859. Astrophys J 869(1):57. https://doi.org/10.3847/1538-4357/aae47c

    Article  Google Scholar 

  15. Gonzalez-Esparza JA et al (2018) Observations of low-latitude red aurora in mexico during the 1859 carrington geomagnetic storm. Space Weather 16(6):593–600. https://doi.org/10.1029/2017SW001789

    Article  Google Scholar 

  16. Green JL et al (2006) Duration and extent of the great auroral storm of 1859. Adv Space Res 38(2):130–135. https://doi.org/10.1016/j.asr.2005.08.054

    Article  Google Scholar 

  17. Hayakawa H et al (2016) East Asian observations of low-latitude aurora during the Carrington magnetic storm. Publ Astron Soc Jpn 68(6):99. https://doi.org/10.1093/pasj/psw097

    Article  Google Scholar 

  18. Moreno Cardenas F et al (2016) The grand aurorae borealis seen in Colombia in 1859. Adv Space Res 57(1):257–267. https://doi.org/10.1016/j.asr.2015.08.026

    Article  Google Scholar 

  19. Committee On The Societal (2008) Economic impacts of severe space weather events. National Academies Press, New York

    Google Scholar 

  20. Odenwald SF (2002) The 23rd cycle. Columbia University Press, Columbia

    Book  Google Scholar 

  21. Carlowicz MJ et al (2002) Storms from the sun. National Academies Press, New York

    Google Scholar 

  22. Lloyd’s of London (2013) Atmospheric and environmental research, Inc., Solar storm risk to the North American electric grid. Technical report, Lloyd’s of London

    Google Scholar 

  23. Stone EC et al (1998) The advanced composition explorer. Space Sci Rev 86:1–22. https://doi.org/10.1023/A:1005082526237

    Article  Google Scholar 

  24. Lotoaniu PTM et al (2022) Validation of the DSCOVR spacecraft mission space weather solar wind products. Space Weather 20(10):e2022SW003085. https://doi.org/10.1029/2022SW003085

    Article  Google Scholar 

  25. Odstrcil D (2003) Modeling 3-D solar wind structure. JASR 32(4):497–506. https://doi.org/10.1016/S0273-1177(03)00332-6

    Article  Google Scholar 

  26. Baumjohann W et al (1996) Basic space plasma physics. Imperial College Press, London

    Book  Google Scholar 

  27. Pomoell J et al (2018) EUHFORIA: European heliospheric forecasting information asset. J Space Weather Space Clim 8:A35. https://doi.org/10.1051/swsc/2018020

    Article  Google Scholar 

  28. Espaciais INP (2018) Galileo solar space telescope, mission study report. In: Technical report 101, Instituto Nacional de Pesquisas Espaciais. CPRIME-GER-RTE-01/2018 v01

    Google Scholar 

  29. Apáthy I et al (2002) Dose measurements in space by the Hungarian Pille TLD system. Radiat Measur 35(5):381–391. https://doi.org/10.1016/S1350-4487(02)00071-9

    Article  Google Scholar 

  30. Hirn A et al (2022) In 44th COSPAR Scientific Assembly. Held 16–24 July

    Google Scholar 

  31. Korsós MB et al (2014) Pre-flare dynamics of sunspot groups. Astrophys J 789(2):107. https://doi.org/10.1088/0004-637X/789/2/107

    Article  Google Scholar 

  32. Korsós MB et al (2015) Dynamic precursors of flares in active region NOAA 10486. J Astro-phys Astron 36(1):111–121. https://doi.org/10.1007/s12036-015-9329-x

    Article  Google Scholar 

  33. Lichtenberger J et al (2008) Automatic whistler detector and analyzer system: automatic whistler detector. JGR 113(A12):A12201. https://doi.org/10.1029/2008JA013467

    Article  Google Scholar 

  34. Lichtenberger J et al (2013) The plasmasphere during a space weather event: first results from the PLASMON project. J Space Weather Space Clim 3:A23. https://doi.org/10.1051/swsc/2013045

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially financed by the National Research, Development, and Innovation Office (NKFIH) FK128548 grant. ML was supported by the Stipendium Hungaricum Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Facskó .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Facskó, G., Koban, G., Biró, N., Lkhagvadorj, M. (2024). Space Weather Effects on Critical Infrastructure. In: Kovács, T.A., Nyikes, Z., Berek, T., Daruka, N., Tóth, L. (eds) Critical Infrastructure Protection in the Light of the Armed Conflicts. HCC 2022. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-47990-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47990-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47989-2

  • Online ISBN: 978-3-031-47990-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics