Skip to main content

3D Reconstruction from 2D Cerebral Angiograms as a Volumetric Denoising Problem

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14361))

Included in the following conference series:

  • 488 Accesses

Abstract

Accurately capturing the 3D geometry of the brain’s blood vessels is critical in helping neuro-interventionalists to identify and treat neurovascular disorders, such as stroke and aneurysms. Currently, the gold standard for obtaining a 3D representation of angiograms is through the process of 3D rotational angiography, a timely process requiring expensive machinery, which is also associated with high radiation exposure to the patient. In this research, we propose a new technique for reconstructing 3D volumes from 2D angiographic images, thereby reducing harmful X-ray radiation exposure. Our approach involves parameterizing the input data as a back-projected noisy volume from the images, which is then fed into a 3D denoising autoencoder. Through this method, we have achieved clinically relevant reconstructions with varying amounts of 2D projections from 49 patients. Additionally, our 3D denoising autoencoder outperformed previous generative models in biplane reconstruction by 15.51% for intersection over union (IOU) and 3.5% in pixel accuracy due to keeping a semi-accurate input with back projection. This research highlights the significant role of back-projection in achieving relative visual correspondence in the input space to reconstruct 3D volumes from 2D angiograms. This approach has the potential to be deployed in future neurovascular surgery, where 3D volumes of the patient’s brain blood vessels can be visualized with less X-ray radiation exposure time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scalzo, F., Liebeskind, D.S., et al.: Perfusion angiography in acute ischemic stroke. Comput. Math. Methods Med. 2016 (2016)

    Google Scholar 

  2. Cieściński, J., Serafin, Z., Strześniewski, P., Lasek, W., Beuth, W.: DSA volumetric 3D reconstructions of intracranial aneurysms: a pictorial essay. Pol. J. Radiol. 77, 47 (2012)

    Article  Google Scholar 

  3. van Rooij, W.J., Sprengers, M., de Gast, A.N., Peluso, J., Sluzewski, M.: 3D rotational angiography: the new gold standard in the detection of additional intracranial aneurysms. Am. J. Neuroradiol. 29, 976–979 (2008)

    Article  Google Scholar 

  4. Ishihara, S., Ross, I., Piotin, M., Weill, A., Aerts, H., Moret, J.: 3D rotational angiography: recent experience in the evaluation of cerebral aneurysms for treatment. Interv. Neuroradiol. 6, 85–94 (2000)

    Article  Google Scholar 

  5. Frenz, M., Mee, A.: Diagnostic radiation exposure and cancer risk. Gut 54, 889–890 (2005)

    Article  Google Scholar 

  6. Chang, A.X., et al.: Shapenet: An information-rich 3D model repository. arXiv preprint arXiv:1512.03012 (2015)

  7. Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H.: PIFu: pixel-aligned implicit function for high-resolution clothed human digitization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2304–2314 (2019)

    Google Scholar 

  8. Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.G.: Pixel2mesh: generating 3d mesh models from single RGB images. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 52–67 (2018)

    Google Scholar 

  9. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65, 99–106 (2021)

    Article  Google Scholar 

  10. Kato, H., Ushiku, Y., Harada, T.: Neural 3D mesh renderer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3707–3916 (2018)

    Google Scholar 

  11. Galassi, F., et al.: 3D reconstruction of coronary arteries from 2D angiographic projections using non-uniform rational basis splines (NURBS) for accurate modelling of coronary stenoses. PLoS ONE 13, e0190650 (2018)

    Article  Google Scholar 

  12. Zhao, H., et al.: Self-supervised learning enables 3D digital subtraction angiography reconstruction from ultra-sparse 2D projection views: a multicenter study. Cell Rep. Med. 3, 100775 (2022)

    Article  Google Scholar 

  13. Zuo, J.: 2D to 3D neurovascular reconstruction from biplane view via deep learning. In: 2021 2nd International Conference on Computing and Data Science (CDS), pp. 383–387. IEEE (2021)

    Google Scholar 

  14. Goodfellow, I.J., et al.: Generative adversarial networks (2014)

    Google Scholar 

  15. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5939–5948 (2019)

    Google Scholar 

  16. Pontes, J.K., Kong, C., Eriksson, A., Fookes, C., Sridharan, S., Lucey, S.: Compact model representation for 3D reconstruction. arXiv preprint arXiv:1707.07360 (2017)

  17. Venkataraman, P.: Image denoising using convolutional autoencoder. arXiv preprint arXiv:2207.11771 (2022)

  18. Mason, D.: SU-E-T-33: pydicom: an open source DICOM library. Med. Phys. 38, 3493–3493 (2011)

    Article  Google Scholar 

  19. Harris, C.R., et al.: Array programming with NumPy. Nature 585, 357–362 (2020)

    Article  Google Scholar 

  20. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  21. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Paszke, A., et al.: Automatic differentiation in pytorch (2017)

    Google Scholar 

  23. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  24. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  25. Micikevicius, P., et al.: Mixed precision training. arXiv preprint arXiv:1710.03740 (2017)

  26. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019)

    Google Scholar 

  27. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. In: Seminal Graphics: Pioneering Efforts that Shaped the Field, pp. 347–353 (1998)

    Google Scholar 

Download references

Acknowledgements

We would like to thank the Keck Foundation for their grant to Pepperdine University to support our Data Science program and this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, S., Kaneko, N., Mendoza, S., Liebeskind, D.S., Scalzo, F. (2023). 3D Reconstruction from 2D Cerebral Angiograms as a Volumetric Denoising Problem. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2023. Lecture Notes in Computer Science, vol 14361. Springer, Cham. https://doi.org/10.1007/978-3-031-47969-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47969-4_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47968-7

  • Online ISBN: 978-3-031-47969-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics