Skip to main content

Video-Based Recognition of Aquatic Invasive Species Larvae Using Attention-LSTM Transformer

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14361))

Included in the following conference series:

Abstract

Aquatic species like zebra and quagga mussels are invasive in United States waterways and cause ecological and economic damage. Due to the time-consuming nature of conventional early detection methods, there is a need for automated systems to detect and classify invasive and non-invasive species using a video-based system without any human supervision. We present a video classification model for rapidly recognizing invasive and non-invasive mussel larvae from plankton or water sample videos.

Many recent video recognition models are transformer-based and use a combination of spatial and temporal attention, often with large-scale pre-training. We present a model with a CNN-based patch encoder and transformer blocks consisting of temporal attention with LSTM that is end-to-end trainable and effective without pre-training. Based on detailed experiments, the Attention-LSTM model significantly improves over state-of-the-art video classification models, classifying invasive and non-invasive larvae with \(99\%\) balanced accuracy. Our code is available at https://anonymous.4open.science/r/AttLSTM-10CF/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: Vivit: a video vision transformer. In: CVPR, pp. 6836–6846 (2021)

    Google Scholar 

  2. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  3. Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for video understanding? In: ICML, vol. 2, p. 4 (2021)

    Google Scholar 

  4. Chen, J., et al.: Transunet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  5. Chen, Z., et al.: Vision transformer adapter for dense predictions. arXiv preprint arXiv:2205.08534 (2022)

  6. Chowdhury, S., Hamerly, G.: Recognition of aquatic invasive species larvae using autoencoder-based feature averaging. In: Bebis, G., et al. (eds.) ISVC 2022. LNCS, vol. 13598, pp. 145–161. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20713-6_11

    Chapter  Google Scholar 

  7. Churchill, C.J., Baldys, S.: USGS zebra mussel monitoring program for north Texas. US Department of the Interior, US Geological Survey (2012)

    Google Scholar 

  8. Connelly, N.A., ONeill, C.R., Knuth, B.A., Brown, T.L.: Economic impacts of zebra mussels on drinking water treatment and electric power generation facilities. Environ. Manag. 40(1), 105–112 (2007)

    Google Scholar 

  9. Donahue, J., et al.: Long-term recurrent convolutional networks for visual recognition and description. In: CVPR, pp. 2625–2634 (2015)

    Google Scholar 

  10. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2020)

    Google Scholar 

  11. Gao, Z., Tan, C., Wu, L., Li, S.Z.: Simvp: simpler yet better video prediction. In: CVPR, pp. 3170–3180 (2022)

    Google Scholar 

  12. Guo, M., et al.: Longt5: efficient text-to-text transformer for long sequences. arXiv preprint arXiv:2112.07916 (2021)

  13. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  16. Jiang, Z., Zhao, C., Wang, H.: Classification of underwater target based on S-ResNet and modified DCGAN models. Sensors 22(6), 2293 (2022)

    Article  Google Scholar 

  17. Johnson, L.E.: Enhanced early detection and enumeration of zebra mussel (dreissena spp.) veligers using cross-polarized light microscopy. Hydrobiologia 312, 139–146 (1995)

    Google Scholar 

  18. Kay, W., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)

  19. Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Transformers in vision: a survey. ACM Comput. Surv. (CSUR) 54(10s), 1–41 (2022)

    Article  Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  21. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: CVPR, pp. 10012–10022 (2021)

    Google Scholar 

  22. Lucy, F., Muckle-Jeffs, E.: History of the zebra mussel/ICAIS conference series. Aquatic Invasions (2010)

    Google Scholar 

  23. Monfort, M., et al.: Moments in time dataset: one million videos for event understanding. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 502–508 (2019)

    Article  Google Scholar 

  24. Nalepa, T.F., Schloesser, D.W.: Quagga and Zebra Mussels: Biology, Impacts, and Control. CRC Press, Boca Raton (2013)

    Book  Google Scholar 

  25. Nichols, S.J., Black, M.: Identification of larvae: the zebra mussel (dreissena polymorpha), quagga mussel (dreissena rosteriformis bugensis), and Asian clam (corbicula fluminea). Can. J. Zool. 72(3), 406–417 (1994)

    Article  Google Scholar 

  26. Schloesser, D.W., Metcalfe-Smith, J.L., Kovalak, W.P., Longton, G.D., Smithee, R.D.: Extirpation of freshwater mussels (bivalvia: Unionidae) following the invasion of dreissenid mussels in an interconnecting river of the laurentian great lakes. Am. Midl. Nat. 155(2), 307–320 (2006)

    Article  Google Scholar 

  27. Sepulveda, A.J., Amberg, J.J., Hanson, E.: Using environmental DNA to extend the window of early detection for dreissenid mussels. Manag. Biol. Invasions 10(2) (2019)

    Google Scholar 

  28. Stokstad, E.: Feared quagga mussel turns up in western united states (2007)

    Google Scholar 

  29. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  30. Tatsunami, Y., Taki, M.: Sequencer: deep LSTM for image classification. arXiv preprint arXiv:2205.01972 (2022)

  31. Turner, K., Wong, W.H., Gerstenberger, S., Miller, J.M.: Interagency monitoring action plan (I-MAP) for quagga mussels in lake mead, Nevada-Arizona, USA. Aquat. Invasions 6(2), 195 (2011)

    Article  Google Scholar 

  32. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  33. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature learning: speed-accuracy trade-offs in video classification. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 305–321 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaif Chowdhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chowdhury, S., Tisha, S.N., McGarrity, M.E., Hamerly, G. (2023). Video-Based Recognition of Aquatic Invasive Species Larvae Using Attention-LSTM Transformer. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2023. Lecture Notes in Computer Science, vol 14361. Springer, Cham. https://doi.org/10.1007/978-3-031-47969-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47969-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47968-7

  • Online ISBN: 978-3-031-47969-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics