Skip to main content

The Big Data Value Chain for the Provision of AI-Enabled Energy Analytics Services

  • Chapter
  • First Online:
Machine Learning Applications for Intelligent Energy Management

Abstract

In order to support decision-making problems on the energy sector, like energy forecasting and demand prediction, analytics services are developed that assist users in extracting useful inferences on energy related data. Such analytics services use AI techniques to extract useful knowledge on collected data from energy infrastructure like smart meters and sensors. The big data value chain describes the steps of big data life cycle from collecting, pre-processing, storing and querying energy consumption data for high-level user-driven services. With the exponential growth of networking capabilities and the Internet of Things (IoT), data from the energy sector is arriving with a high throughput taking the problem of calculating big data analytics to a new level. This research will review existing approaches for big data energy analytics services and will further propose a framework for facilitating AI-enabled energy analytics taking into consideration all the requirements of analytics services through the entire big data value chain from data acquisition and batch and stream data ingestion, to creating proper querying mechanisms. Those query mechanisms will in turn enable the execution of queries on huge volumes of energy consumption data with low latency, and establishing high-level data visualizations. The proposed framework will also address privacy and security concerns regarding the big data value chain and allow easy applicability and adjustment on various use cases on energy analytics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Term:

Abbreviation

Internet of things:

IoT

Machine learning:

ML

Neural network:

NN

Support vector machine:

SVM

Online analytical processing:

OLAP

Deep learning:

DL

Online transactional processing:

OLTP

Atomicity, consistency, isolation and durability:

ACID

Hadoop distributed file system:

HDFS

International dataspaces:

IDS

Artificial neural network:

ANN

Multiple linear regression:

MLR

Multiple layer perceptron:

MLP

Building management system:

BMS

Building information management:

BIM

Infrastructure as a service:

IaaS

Platform as a service:

PaaS

Software as a service:

SaaS

Identity access management:

IAM

Generic enabler:

GE

Context broker:

CB

Machine to machine:

M2M

Linear model:

LM

K-nearest neighbour:

KNN

References

  1. D. Koh, COVID-19 lockdowns throughout the world. Occup. Med. (Chic Ill) 70(5), 322–322 (2020)

    Article  Google Scholar 

  2. P. Jiang, Y. Van Fan, J.J. Klemeš, Impacts of covid-19 on energy demand and consumption: challenges, lessons and emerging opportunities. Appl. Energy 285, 116441 (2021)

    Google Scholar 

  3. K. Ahmed Ali, M.I. Ahmad, Y. Yusup, Issues, impacts, and mitigations of carbon dioxide emissions in the building sector. Sustainability 12(18), 7427 (2020)

    Article  Google Scholar 

  4. C.A. Horowitz, Paris agreement. Int. Leg. Mater. 55(4), 740–755 (2016)

    Article  Google Scholar 

  5. E. Karakolis, K. Alexakis, P. Kapsalis, S. Mouzakitis, J. Psarras: An end-to-end approach for scalable real time anomaly detection in smart buildings, in 2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA) (IEEE, Corfu, Greece, 2022), pp. 1–7

    Google Scholar 

  6. S. Pelekis et al, In search of deep learning architectures for load forecasting: a comparative analysis and the impact of the covid-19 pandemic on model performance, in 2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA) (IEEE, Corfu, Greece, 2022), pp. 1–8

    Google Scholar 

  7. P. Skaloumpakas, E. Sarmas, Z. Mylona, A. Cavadenti, F. Santori, V. Marinakis, Predicting thermal comfort in buildings with machine learning and occupant feedback, in 2023 IEEE International Workshop on Metrology for Living Environment (MetroLivEnv) (IEEE, 2023), pp. 34–39

    Google Scholar 

  8. E. Sarmas, N. Dimitropoulos, S. Strompolas, Z. Mylona, V. Marinakis, A. Giannadakis, H. Doukas et al., A web-based building automation and control service, in 2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA) (IEEE, 2022), pp. 1–6

    Google Scholar 

  9. E. Sarmas, S. Strompolas, V. Marinakis, F. Santori, M.A. Bucarelli, H. Doukas, An incremental learning framework for photovoltaic production and load forecasting in energy microgrids. Electronics 11(23), 3962 (2022)

    Article  Google Scholar 

  10. J. Anuradha, A brief introduction on big data 5Vs characteristics and hadoop technology. Proc. Comput. Sci. 48, 319–324 (2015)

    Article  Google Scholar 

  11. B.W. Wirtz, J.C. Weyerer, C. Geyer, Artificial intelligence and the public sector—applications and challenges. Int. J. Public Adm. 42(7), 596–615 (2019)

    Article  Google Scholar 

  12. D.E. O’Leary, Artificial intelligence and big data. IEEE Intell. Syst. 28(2), 96–99 (2013)

    Article  Google Scholar 

  13. R. Mayer, H.A. Jacobsen, Scalable deep learning on distributed infrastructures. ACM Comput. Surv.Comput. Surv. 53(1), 1–37 (2021)

    Article  Google Scholar 

  14. S. Dilmaghani, M.R. Brust, G. Danoy, N. Cassagnes, J. Pecero, P. Bouvry, Privacy and security of big data in AI systems: a research and standards perspective, in 2019 IEEE International Conference on Big Data (Big Data) (IEEE, Los Angeles, CA, USA, 2019), pp. 5737–5743

    Google Scholar 

  15. J. Hu, A.V. Vasilakos, Energy big data analytics and security: challenges and opportunities. IEEE Trans. Smart Grid 7(5), 2423–2436 (2016)

    Article  Google Scholar 

  16. E. Sarmas, E. Spiliotis, V. Marinakis, G. Tzanes, J.K. Kaldellis, H. Doukas, ML-based energy management of water pumping systems for the application of peak shaving in small-scale islands. Sustain. Cities Soc. 82, 103873 (2022)

    Article  Google Scholar 

  17. E. Sarmas, E. Spiliotis, E. Stamatopoulos, V. Marinakis, H. Doukas, Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent Long Short-Term Memory models. Renew. Energy 216, 118997 (2023)

    Article  Google Scholar 

  18. H. Plattner, The impact of columnar in-memory databases on enterprise systems. Proc. VLDB Endow. 7(13), 1722–1729 (2014)

    Article  Google Scholar 

  19. S. Singh, A. Yassine, Big data mining of energy time series for behavioral analytics and energy consumption forecasting. Energies (Basel) 11(2), 452 (2018)

    Article  Google Scholar 

  20. G. Hernández-Moral et al., Big data value chain: multiple perspectives for the built environment. Energies (Basel) 14(15), 4624 (2021)

    Article  Google Scholar 

  21. E. Sarmas, N. Dimitropoulos, V. Marinakis, Z. Mylona, H. Doukas, Transfer learning strategies for solar power forecasting under data scarcity. Sci. Rep. 12(1), 14643 (2022)

    Article  Google Scholar 

  22. A. Kongkanand, M.F. Mathias, The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J. Phys. Chem. Lett. 7(7), 1127–1137 (2016)

    Article  Google Scholar 

  23. A.Z. Faroukhi, I. El Alaoui, Y. Gahi, A. Amine, Big data monetization throughout big data value chain: a comprehensive review. J. Big Data 7(1), 3 (2020)

    Article  Google Scholar 

  24. N. Naik, Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP, in 2017 IEEE International Systems Engineering Symposium (ISSE) (IEEE, Vienna, Austria, 2017), pp. 1–7

    Google Scholar 

  25. E. Curry, The big data value chain: definitions, concepts, and theoretical approaches, in New Horizons for a Data-Driven Economy (Springer International Publishing, Cham, 2016), pp. 29–37

    Google Scholar 

  26. Y. Li, S. Manoharan, A performance comparison of SQL and NoSQL databases, in 2013 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM) (IEEE, Victoria, British Columbia, Canada 2013), pp. 15–19

    Google Scholar 

  27. Neo4j, https://neo4j.com/. Accessed 29 May 2023

  28. MongoDB, https://www.mongodb.com/. Accessed 29 May 2023

  29. Apache Handoop, https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html. Accessed 29 May 2023

  30. Presto, https://prestodb.io/. Accessed 29 May 2023

  31. Trino, https://trino.io/. Accessed 29 May 2023

  32. K. Alexakis et al, Intelligent querying for implementing building aggregation pipelines, in 2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA) (IEEE, Corfu, Greece, 2022), pp. 1–6

    Google Scholar 

  33. K. Touloumis, E. Karakolis, P. Kapsalis, V. Marinakis, J. Psarras, BD4NRG query engine–intuitive, efficient and federated querying on big data, in e-Society (Iadis, Lisbon, Portugal, 2023)

    Google Scholar 

  34. Grafana, https://grafana.com/. Accessed 29 May 2023

  35. G. Kormpakis, P. Kapsalis, K. Alexakis, S. Pelekis, E. Karakolis, H. Doukas, An advanced visualisation engine with role-based access control for building energy visual analytics, in 2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA) (IEEE, Corfu, Greece, 2022), pp. 1–8

    Google Scholar 

  36. P. Kapsalis, G. Kormpakis, K. Alexakis, D. Askounis, Leveraging graph analytics for energy efficiency certificates. Energies (Basel) 15(4), 1500 (2022)

    Article  Google Scholar 

  37. P. Kapsalis, G. Kormpakis, K. Alexakis, E. Karakolis, S. Mouzakitis, D. Askounis, A reasoning engine architecture for building energy metadata management, in 2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA) (IEEE, Corfu, Greece, 2022), pp. 1–7

    Google Scholar 

  38. N. Dimitropoulos, E. Sarmas, M. Lampkowski, V. Marinakis, A quantitative methodology to support local governments in climate change adaptation and mitigation actions, in International Symposium on Distributed Computing and Artificial Intelligence (Springer Nature Switzerland, Cham, 2023), pp. 99–108

    Google Scholar 

  39. European Dataspaces, https://dataspaces.info/common-european-data-spaces/#page-content. Accessed 29 May 2023

  40. IDS Connector, https://www.isst.fraunhofer.de/en/business-units/data-business/technologies/Dataspace-Connector.html. Accessed 29 May 2023

  41. True Connector, https://fiware-true-connector.readthedocs.io/en/latest/. Accessed 29 May 2023

  42. L. Xuemei, D. Lixing, L. Jinhu, X. Gang, L. Jibin, A novel hybrid approach of KPCA and SVM for building cooling load prediction, in 2010 Third International Conference on Knowledge Discovery and Data Mining (IEEE, Washington DC, USA, 2010), pp. 522–526

    Google Scholar 

  43. J.P. Zhang, Z.W. Li, J. Yang, A parallel SVM training algorithm on large-scale classification problems, in 2005 International Conference on Machine Learning and Cybernetics (IEEE, 2005), pp. 1637–1641

    Google Scholar 

  44. R. Mena, F. Rodríguez, M. Castilla, M.R. Arahal, A prediction model based on neural networks for the energy consumption of a bioclimatic building. Energy Build. 82, 142–155 (2014)

    Article  Google Scholar 

  45. C. Tsolkas, E. Spiliotis, E. Sarmas, V. Marinakis, H. Doukas, Dynamic energy management with thermal comfort forecasting. Build. Environ. 237, 110341 (2023)

    Article  Google Scholar 

  46. V. Marinakis, H. Doukas, An advanced IoT-based system for intelligent energy management in buildings. Sensors 18(2), 610 (2018)

    Article  Google Scholar 

  47. S.S.K. Kwok, R.K.K. Yuen, E.W.M. Lee, An intelligent approach to assessing the effect of building occupancy on building cooling load prediction. Build. Environ. 46(8), 1681–1690 (2011)

    Article  Google Scholar 

  48. S. Pelekis et al, A comparative assessment of deep learning models for day-ahead load forecasting: investigating key accuracy drivers (2023)

    Google Scholar 

  49. E. Sarmas, E. Spiliotis, N. Dimitropoulos, V. Marinakis, H. Doukas, Estimating the energy savings of energy efficiency actions with ensemble machine learning models. Appl. Sci. 13(4), 2749 (2023)

    Article  Google Scholar 

  50. E. Sarmas, E. Spiliotis, V. Marinakis, T. Koutselis, H. Doukas, A meta-learning classification model for supporting decisions on energy efficiency investments. Energy Build. 258, 111836 (2022)

    Article  Google Scholar 

  51. S. Pelekis et al, Targeted demand response for flexible energy communities using clustering techniques (2023)

    Google Scholar 

  52. R. Ahmadiahangar, T. Haring, A. Rosin, T. Korotko, J. Martins, Residential load forecasting for flexibility prediction using machine learning-based regression model, in 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (IEEE, Genova, Italy, 2019), pp. 1–4

    Google Scholar 

  53. E. Karakolis, K. Alexakis, P. Kapsalis, S. Mouzakitis, S. Psarras, An end-to-end approach for scalable real time anomaly detection in smart buildings, in 2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA) (IEEE, Corfu, Greece, 2022), pp. 1–7

    Google Scholar 

  54. M. Yamauchi, Y. Ohsita, M. Murata, K. Ueda, Y. Kato, Anomaly detection in smart home operation from user behaviors and home conditions. IEEE Trans. Consum. Electron. 66(2), 183–192 (2020)

    Article  Google Scholar 

  55. J. Xu, H. Wu, J. Wang, M. Long, Anomaly transformer: time series anomaly detection with association discrepancy (2021)

    Google Scholar 

  56. M. Panthi, Anomaly detection in smart grids using machine learning techniques, in 2020 First International Conference on Power, Control and Computing Technologies (ICPC2T) (IEEE, Raipur, India, 2020), pp. 220–222

    Google Scholar 

  57. E. Karakolis et al, Artificial intelligence for next generation energy services across Europe–the I-Nergy project, in International Conferences e-Society 2022 and Mobile Learning 2022 (IADIS, Lisbon, Portugal, 2022)

    Google Scholar 

  58. E. Karakolis, S. Pelekis, S. Mouzakitis, G. Kormpakis, V. Michalakopoulos, J. Psarras, The I-Nergy reference architecture for the provision of next generation energy services through artificial intelligence, in e-Society (IADIS, Lisbon, Portugal, 2022)

    Google Scholar 

  59. M. Pau, P. Kapsalis, Z. Pan, G. Korbakis, D. Pellegrino, A. Monti, MATRYCS—a big data architecture for advanced services in the building domain. Energies (Basel) 15(7), 2568 (2022)

    Article  Google Scholar 

  60. European Energy Data Exchange, https://energy.ec.europa.eu/system/files/2021-06/bridge_wg_data_management_eu_reference_architcture_report_2020-2021_0.pdf/. Accessed 29 May 2023

  61. K.A. Wehrmeister, The BD4NRG reference architecture for big data driven energy applications, in 2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA) (IEEE, Corfu, Greece, 2022), pp. 1–8

    Google Scholar 

  62. F. Gao, Frameworks for big data integration, warehousing, and analytics, in Big Data Application in Power Systems (Elsevier, 2018), pp. 57–73

    Google Scholar 

  63. L. Cai, Y. Zhu, The challenges of data quality and data quality assessment in the big data era. Data Sci. J. 14, 2 (2015)

    Article  Google Scholar 

  64. B. Balaji et al, Brick, in Proceedings of the 3rd ACM International Conference on Systems for Energy-Efficient Built Environments (ACM, New York, NY, USA, 2016), pp. 41–50

    Google Scholar 

  65. M. Muniswamaiah, T. Agerwala, C.C. Tappert, Federated query processing for big data in data science, in 2019 IEEE International Conference on Big Data (Big Data) (IEEE, Los Angeles, CA, USA, 2019), pp. 6145–6147

    Google Scholar 

  66. A. Gandomi, M. Haider, Beyond the hype: big data concepts, methods, and analytics. Int. J. Inf. Manage. 35(2), 137–144 (2015)

    Article  Google Scholar 

  67. D. Cheng, P. Schretlen, N. Kronenfeld, N. Bozowsky, W. Wright, Tile based visual analytics for Twitter big data exploratory analysis, in 2013 IEEE International Conference on Big Data (IEEE, Santa Clara, CA, USA, 2013), pp. 2–4

    Google Scholar 

  68. M. Tavana, A. Shaabani, F. Javier Santos-Arteaga, I. Raeesi Vanani, A review of uncertain decision-making methods in energy management using text mining and data analytics. Energies (Basel) 13(15), 3947 (2020)

    Google Scholar 

  69. V. Cevher, S. Becker, M. Schmidt, Convex Optimization for Big Data: Scalable, randomized, and parallel algorithms for big data analytics. IEEE Signal Process. Mag. 31(5), 32–43 (2014)

    Article  Google Scholar 

  70. J. Kampars, J. Grabis, Near real-time big-data processing for data driven applications, in 2017 International Conference on Big Data Innovations and Applications (Innovate-Data) (IEEE, Prague, Czech Republic, 2017), pp. 35–42

    Google Scholar 

  71. ENTSO-E, https://www.entsoe.eu/. Accessed 29 May 2023

  72. V. Araujo, K. Mitra, S. Saguna, C. Åhlund, Performance evaluation of FIWARE: a cloud-based IoT platform for smart cities. J. Parallel Distr. Comput. 132, 250–261 (2019)

    Article  Google Scholar 

  73. M.A. da Cruz, J.J. Rodrigues, P. Lorenz, P. Solic, J. Al-Muhtadi, V.H.C. Albuquerque, A proposal for bridging application layer protocols to HTTP on IoT solutions. Futur. Gener. Comput. Syst. 97, 145–152 (2019)

    Article  Google Scholar 

  74. A. Braud, G. Fromentoux, B. Radier, O. Le Grand, The road to European digital sovereignty with Gaia-X and IDSA. IEEE Netw. 35(2), 4–5 (2021)

    Article  Google Scholar 

  75. M. Mohammadi, A. Al-Fuqaha, S. Sorour, M. Guizani, Deep learning for IoT big data and streaming analytics: a survey. IEEE Commun. Surv. Tutor., 2923–2960 (2018)

    Google Scholar 

  76. K.M.M. Thein, Apache kafka: next generation distributed messaging system. Int. J. Sci. Eng. Technol. Res. 3(47), 9478–9483 (2014)

    Google Scholar 

  77. J.E. Luzuriaga, M. Perez, P. Boronat, J.C. Cano, C. Calafate, P. Manzoni, A comparative evaluation of AMQP and MQTT protocols over unstable and mobile networks, in 2015 12th Annual IEEE Consumer Communications and Networking Conference (CCNC) (IEEE, Las Vegas, Nevada, USA, 2015), pp. 931–936

    Google Scholar 

  78. SAREF, https://saref.etsi.org/. Accessed 29 May 2023

  79. DataHub, https://datahub.io/. Accessed 29 May 2023

  80. M. Brümmer, C. Baron, I. Ermilov, M. Freudenberg, D. Kontokostas, S. Hellmann, DataID: towards semantically rich metadata for complex datasets, in Proceedings of the 10th International Conference on Semantic Systems (ACM, New York, NY, USA, 2014), pp. 84–91

    Google Scholar 

  81. PostgreSQL, https://www.postgresql.org/. Accessed 29 May 2023

  82. SQLite, https://www.sqlite.org/index.html. Accessed 29 May 2023

  83. Jupyter, https://jupyter.org/. Accessed 29 May 2023

  84. Scikit-Learn, https://scikit-learn.org/stable/. Accessed 29 May 2023

  85. TensorFlow, https://www.tensorflow.org/. Accessed 29 May 2023

  86. Mlflow, https://mlflow.org/. Accessed 29 May 2023

  87. Apache Spark, https://spark.apache.org/. Accessed 29 May 2023

  88. W. Wu, W. Lin, C.H. Hsu, L. He, Energy-efficient hadoop for big data analytics and computing: a systematic review and research insights. Futur. Gener. Comput. Syst. 86, 1351–1367 (2018)

    Article  Google Scholar 

  89. Apache Flink, https://flink.apache.org/. Accessed 29 May 2023

  90. S. Chintapalli et al.: Benchmarking streaming computation engines: storm, flink and spark streaming, in 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) (IEEE, Chicago, IL, USA, 2016), pp. 1789–1792

    Google Scholar 

  91. Fiware Keyrock, https://fiware-idm.readthedocs.io/en/latest/. Accessed 29 May 2023

  92. Keycloack, https://www.keycloak.org/. Accessed 29 May 2023

  93. M. Muthuprasanna, K. Wei, S. Kothari, Eliminating SQL injection attacks—a transparent defense mechanism, in 2006 Eighth IEEE International Symposium on Web Site Evolution (WSE’06) (IEEE, Philadelphia, PA, USA, 2006), pp. 22–32

    Google Scholar 

  94. S. Biswas, T. Carley, M. Simpson, B. Middha, R. Barua, Memory overflow protection for embedded systems using run-time checks, reuse, and compression. ACM Trans. Embed. Comput. Syst. 5(4), 719–752 (2006)

    Article  Google Scholar 

  95. B. Biggio, B. Nelson, P. Laskov, Poisoning attacks against support vector machines (2012)

    Google Scholar 

  96. T. Nagata, H. Sasaki, A multi-agent approach to power system restoration. IEEE Trans. Power Syst. 17(2), 457–462 (2002)

    Article  Google Scholar 

  97. V. Vasilyev, R. Shamsutdinov, Security analysis of wireless sensor networks using SIEM and multi-agent approach, in 2020 Global Smart Industry Conference (GloSIC) (IEEE, Chelyabinsk, Russia, 2020), pp. 291–296

    Google Scholar 

  98. K. Touloumis, A. Michalitsi-Psarrou, P. Kapsalis, A. Georgiadou, D. Askounis, Vulnerabilities manager, a platform for linking vulnerability data sources, in 2021 IEEE International Conference on Big Data (Big Data) (IEEE, Orlando, FL, USA, 2021), pp. 2178–2184

    Google Scholar 

  99. K. Touloumis, A. Michalitsi-Psarrou, A. Georgiadou, D. Askounis, A tool for assisting in the forensic investigation of cyber-security incidents, in 2022 IEEE International Conference on Big Data (Big Data) (IEEE, Osaka, Japan, 2022), pp. 2630–2636

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Karakolis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Touloumis, K., Karakolis, E., Kapsalis, P., Pelekis, S., Askounis, D. (2024). The Big Data Value Chain for the Provision of AI-Enabled Energy Analytics Services. In: Doukas, H., Marinakis, V., Sarmas, E. (eds) Machine Learning Applications for Intelligent Energy Management. Learning and Analytics in Intelligent Systems, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-031-47909-0_2

Download citation

Publish with us

Policies and ethics