Skip to main content

Two-Stage Algorithm for Bi-objective Black-Box Traffic Engineering

  • Conference paper
  • First Online:
Optimization and Applications (OPTIMA 2023)

Abstract

We have a directed graph describing a network and an origin-destination matrix for customer internet traffic demands. Our aim is to optimize the routing of the traffic by adjusting the weights of the graph links. Though the internal design of the routing protocol is unavailable, we have access to the simulator to model it. Given the link weights, the simulator provides the values for traffic flow on each link. If the flow on a link exceeds its capacity, this link is considered overloaded. The objectives of the problem are to minimize the total number of overloaded links and the distance from the initial weight vector. We have developed a scheme based on a novel integer linear programming model. It uses values of the traffic flow changes depending on the link weights modifications. In the two-stage approach, this scheme is used to provide the initial Pareto set approximation. The approach outperforms the state-of-the-art multi-objective evolutionary algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbasi, M., Guleria, A., Devi, M.: Traffic engineering in software defined networks: a survey. J. Telecommun. Inf. Technol. 4, 3–14 (2016)

    Google Scholar 

  2. Altın, A., Fortz, B., Thorup, M., Ümit, H.: Intra-domain traffic engineering with shortest path routing protocols. Ann. Oper. Res. 204(1), 65–95 (2013). https://doi.org/10.1007/s10479-012-1270-7

    Article  MathSciNet  MATH  Google Scholar 

  3. Athanasiou, G., Tsagkaris, K., Vlacheas, P., Karvounas, D., Demestichas, P.: Multi-objective traffic engineering for future networks. IEEE Commun. Lett. 16(1), 101–103 (2012). https://doi.org/10.1109/LCOMM.2011.110711.112071

    Article  Google Scholar 

  4. Audet, C., Bigeon, J., Cartier, D., Le Digabel, S., Salomon, L.: Performance indicators in multiobjective optimization. Eur. J. Oper. Res. 292(2), 397–422 (2021). https://doi.org/10.1016/j.ejor.2020.11.016

    Article  MathSciNet  MATH  Google Scholar 

  5. Audet, C., Hare, W.: Derivative-Free and Blackbox Optimization. SSORFE, Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68913-5

    Book  MATH  Google Scholar 

  6. Balon, S., Skivée, F., Leduc, G.: How well do traffic engineering objective functions meet TE requirements? In: Boavida, F., Plagemann, T., Stiller, B., Westphal, C., Monteiro, E. (eds.) NETWORKING 2006. LNCS, vol. 3976, pp. 75–86. Springer, Heidelberg (2006). https://doi.org/10.1007/11753810_7

    Chapter  Google Scholar 

  7. Bhatia, R., Hao, F., Kodialam, M., Lakshman, T.: Optimized network traffic engineering using segment routing. In: Proceedings IEEE INFOCOM 2015, pp. 657–665 (2015). https://doi.org/10.1109/INFOCOM.2015.7218434

  8. Blanchy, F., Melon, L., Leduc, G.: Routing in a MPLS network featuring preemption mechanisms. In: ICT 2003: 10th International Conference on Telecommunications, vol. 1, pp. 253–260 (2003). https://doi.org/10.1109/ICTEL.2003.1191228

  9. Cisco Systems, I.: Internetworking Technologies Handbook, 3rd edn. Cisco Press (2000)

    Google Scholar 

  10. Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: PESA-II: region-based selection in evolutionary multiobjective optimization. In: Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation (GECCO 2001), pp. 283–290 (2001)

    Google Scholar 

  11. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  12. El-Alfy, E.S.: Flow-based path selection for internet traffic engineering with NSGA-II. In: ICT 2010: 17th International Conference on Telecommunications (2010). https://doi.org/10.1109/ICTEL.2010.5478839

  13. Elwalid, A., Jin, C., Low, S., Widjaja, I.: MATE: MPLS adaptive traffic engineering. In: Proceedings IEEE INFOCOM 2001, vol. 3, pp. 1300–1309 (2001). https://doi.org/10.1109/INFCOM.2001.916625

  14. Ericsson, M., Resende, M., Pardalos, P.: A genetic algorithm for the weight setting problem in OSPF routing. J. Comb. Optim. 6, 299–333 (2002). https://doi.org/10.1023/A:1014852026591

    Article  MathSciNet  MATH  Google Scholar 

  15. Fortz, B., Rexford, J., Thorup, M.: Traffic engineering with traditional IP routing protocols. IEEE Commun. Mag. 40, 118–124 (2002). https://doi.org/10.1109/MCOM.2002.1039866

    Article  Google Scholar 

  16. Fortz, B., Thorup, M.: Internet traffic engineering by optimizing OSPF weights. In: Proceedings IEEE INFOCOM 2000, vol. 2, pp. 519–528 (2000). https://doi.org/10.1109/INFCOM.2000.832225

  17. Fortz, B., Thorup, M.: Optimizing OSPF/IS-IS weights in a changing world. IEEE J. Sel. Areas Commun. 20, 756–767 (2002). https://doi.org/10.1109/JSAC.2002.1003042

    Article  Google Scholar 

  18. Hadka, D.: MOEA framework (2023). https://moeaframework.org

  19. Hansen, P., Mladenović, N., Todosijević, R., Hanafi, S.: Variable neighborhood search: basics and variants. EURO J. Comput. Optim. 5(3), 423–454 (2016). https://doi.org/10.1007/s13675-016-0075-x

    Article  MathSciNet  MATH  Google Scholar 

  20. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000). https://doi.org/10.1162/106365600568167

    Article  Google Scholar 

  21. Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic algorithms: a tutorial. Reliab. Eng. Syst. Saf. 91(9), 992–1007 (2006). https://doi.org/10.1016/j.ress.2005.11.018

    Article  Google Scholar 

  22. Lindauer, M., et al.: SMAC3: a versatile Bayesian optimization package for hyperparameter optimization. J. Mach. Learn. Res. 23(54), 1–9 (2022)

    MathSciNet  MATH  Google Scholar 

  23. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18(1), 50–60 (1947). https://doi.org/10.1214/aoms/1177730491

    Article  MathSciNet  MATH  Google Scholar 

  24. Pereira, V., Sousa, P., Rocha, M.: A comparison of multi-objective optimization algorithms for weight setting problems in traffic engineering. Nat. Comput. 21, 507–522 (2022). https://doi.org/10.1007/s11047-020-09807-1

    Article  MathSciNet  Google Scholar 

  25. Piòro, M., Szentesi, Á., Harmatos, J., Jüttner, A., Gajowniczek, P., Kozdrowski, S.: On open shortest path first related network optimisation problems. Perform. Eval. 48(1), 201–223 (2002). https://doi.org/10.1016/S0166-5316(02)00036-6

    Article  MATH  Google Scholar 

  26. Sousa, P., Cortez, P., Rio, M., Rocha, M.: Traffic engineering approaches using multicriteria optimization techniques. In: Masip-Bruin, X., Verchere, D., Tsaoussidis, V., Yannuzzi, M. (eds.) WWIC 2011. LNCS, vol. 6649, pp. 104–115. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21560-5_9

    Chapter  Google Scholar 

  27. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bull. 1(6), 80–83 (1945)

    Article  Google Scholar 

  28. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm. Tech. rep., Inst. f. Technische Informatik und Komm./Computer Eng. and Networks Lab. (2001)

    Google Scholar 

Download references

Acknowledgements

The study was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project FWNF-2022-0019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Yuskov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuskov, A., Kulachenko, I., Melnikov, A., Kochetov, Y. (2023). Two-Stage Algorithm for Bi-objective Black-Box Traffic Engineering. In: Olenev, N., Evtushenko, Y., Jaćimović, M., Khachay, M., Malkova, V. (eds) Optimization and Applications. OPTIMA 2023. Lecture Notes in Computer Science, vol 14395. Springer, Cham. https://doi.org/10.1007/978-3-031-47859-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47859-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47858-1

  • Online ISBN: 978-3-031-47859-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics