Skip to main content

Algorithms for Euclidean-Regularised Optimal Transport

  • Conference paper
  • First Online:
Optimization and Applications (OPTIMA 2023)

Abstract

This paper addresses the Optimal Transport problem, which is regularized by the square of Euclidean \(\ell _2\)-norm. It offers theoretical guarantees regarding the iteration complexities of the Sinkhorn–Knopp algorithm, Accelerated Gradient Descent, Accelerated Alternating Minimisation, and Coordinate Linear Variance Reduction algorithms. Furthermore, the paper compares the practical efficiency of these methods and their counterparts when applied to the entropy-regularized Optimal Transport problem. This comparison is conducted through numerical experiments carried out on the MNIST dataset.

The research was supported by Russian Science Foundation (project No. 23-11-00229), https://rscf.ru/en/project/23-11-00229/, and by the grant of support for leading scientific schools NSh775.2022.1.1.

D. A. Pasechnyuk and M. Persiianov—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Repository is available at https://github.com/MuXauJl11110/Euclidean-Regularised-Optimal-Transport.

References

  1. Altschuler, J., Niles-Weed, J., Rigollet, P.: Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration. Adv. Neural Inf. Process. 30 (2017)

    Google Scholar 

  2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)

    Google Scholar 

  3. Blondel, M., Seguy, V., Rolet, A.: Smooth and sparse optimal transport. In: International Conference on Artificial Intelligence and Statistics, pp. 880–889. PMLR (2018)

    Google Scholar 

  4. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. Adv. Neural Inf. Process. Syst. 26 (2013)

    Google Scholar 

  5. Deng, L.: The MNIST database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

    Article  Google Scholar 

  6. Dvurechensky, P., Gasnikov, A., Kroshnin, A.: Computational optimal transport: complexity by accelerated gradient descent is better than by Sinkhorn’s algorithm. In: International Conference on Machine Learning, pp. 1367–1376. PMLR (2018)

    Google Scholar 

  7. Essid, M., Solomon, J.: Quadratically regularized optimal transport on graphs. SIAM J. Sci. Comput. 40(4), A1961–A1986 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guminov, S., Dvurechensky, P., Tupitsa, N., Gasnikov, A.: On a combination of alternating minimization and Nesterov’s momentum. In: International Conference on Machine Learning, pp. 3886–3898. PMLR (2021)

    Google Scholar 

  9. Kantorovich, L.V.: On the translocation of masses. Dokl. Akad. Nauk. USSR (NS) 37, 199–201 (1942)

    MathSciNet  MATH  Google Scholar 

  10. Kolouri, S., Park, S.R., Thorpe, M., Slepcev, D., Rohde, G.K.: Optimal mass transport: signal processing and machine-learning applications. IEEE Signal Process. Mag. 34(4), 43–59 (2017)

    Article  Google Scholar 

  11. Li, L., Genevay, A., Yurochkin, M., Solomon, J.M.: Continuous regularized wasserstein barycenters. Adv. Neural. Inf. Process. Syst. 33, 17755–17765 (2020)

    Google Scholar 

  12. Lin, T., Ho, N., Jordan, M.: On efficient optimal transport: an analysis of greedy and accelerated mirror descent algorithms. In: International Conference on Machine Learning, pp. 3982–3991. PMLR (2019)

    Google Scholar 

  13. Lindbäck, J., Wang, Z., Johansson, M.: Bringing regularized optimal transport to lightspeed: a splitting method adapted for GPUs. arXiv preprint arXiv:2305.18483 (2023)

  14. Lorenz, D.A., Manns, P., Meyer, C.: Quadratically regularized optimal transport. Appl. Math. Optim. 83(3), 1919–1949 (2019). https://doi.org/10.1007/s00245-019-09614-w

    Article  MathSciNet  MATH  Google Scholar 

  15. Monge, G.: Mémoire sur la théorie des déblais et des remblais. Mem. Math. Phys. Acad. Royale Sci., pp. 666–704 (1781)

    Google Scholar 

  16. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course, vol. 87. Springer, New York (2003). https://doi.org/10.1007/978-1-4419-8853-9

  17. Peyré, G., Cuturi, M., et al.: Computational optimal transport. In: Foundations and Trends® in Machine Learning (2019)

    Google Scholar 

  18. Sinkhorn, R.: Diagonal equivalence to matrices with prescribed row and column sums. Am. Math. Mon. 74(4), 402–405 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  19. Song, C., Lin, C.Y., Wright, S., Diakonikolas, J.: Coordinate linear variance reduction for generalized linear programming. Adv. Neural. Inf. Process. Syst. 35, 22049–22063 (2022)

    Google Scholar 

  20. Villani, C., et al.: Optimal Transport: Old and New, vol. 338. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-71050-9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry A. Pasechnyuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pasechnyuk, D.A., Persiianov, M., Dvurechensky, P., Gasnikov, A. (2023). Algorithms for Euclidean-Regularised Optimal Transport. In: Olenev, N., Evtushenko, Y., Jaćimović, M., Khachay, M., Malkova, V. (eds) Optimization and Applications. OPTIMA 2023. Lecture Notes in Computer Science, vol 14395. Springer, Cham. https://doi.org/10.1007/978-3-031-47859-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47859-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47858-1

  • Online ISBN: 978-3-031-47859-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics