Skip to main content

Accelerated Zero-Order SGD Method for Solving the Black Box Optimization Problem Under “Overparametrization” Condition

  • Conference paper
  • First Online:
Optimization and Applications (OPTIMA 2023)

Abstract

This paper is devoted to solving a convex stochastic optimization problem in a overparameterization setup for the case where the original gradient computation is not available, but an objective function value can be computed. For this class of problems we provide a novel gradient-free algorithm, whose creation approach is based on applying a gradient approximation with \(l_2\) randomization instead of a gradient oracle in the biased Accelerated SGD algorithm, which generalizes the convergence results of the AC-SA algorithm to the case where the gradient oracle returns a noisy (inexact) objective function value. We also perform a detailed analysis to find the maximum admissible level of adversarial noise at which we can guarantee to achieve the desired accuracy. We verify the theoretical results of convergence using a model example.

The research was supported by Russian Science Foundation (project No. 21-71- 30005), https://rscf.ru/en/project/21-71-30005/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The full version of this article, which includes the Appendix can be found by the article title in the arXiv at the following link: https://arxiv.org/abs/2307.12725.

References

  1. Ajalloeian, A., Stich, S.U.: On the convergence of sgd with biased gradients. arXiv preprint arXiv:2008.00051 (2020)

  2. Akhavan, A., Chzhen, E., Pontil, M., Tsybakov, A.: A gradient estimator via l1-randomization for online zero-order optimization with two point feedback. Adv. Neural. Inf. Process. Syst. 35, 7685–7696 (2022)

    Google Scholar 

  3. Allen-Zhu, Z., Li, Y., Liang, Y.: Learning and generalization in overparameterized neural networks, going beyond two layers. Advances in neural information processing systems 32 (2019)

    Google Scholar 

  4. Audet, C., Hare, W.: Derivative-free and blackbox optimization (2017)

    Google Scholar 

  5. Bach, F., Perchet, V.: Highly-smooth zero-th order online optimization. In: Conference on Learning Theory, pp. 257–283. PMLR (2016)

    Google Scholar 

  6. Bartlett, P., Dani, V., Hayes, T., Kakade, S., Rakhlin, A., Tewari, A.: High-probability regret bounds for bandit online linear optimization. In: Proceedings of the 21st Annual Conference on Learning Theory-COLT 2008, pp. 335–342. Omnipress (2008)

    Google Scholar 

  7. Belkin, M., Hsu, D., Ma, S., Mandal, S.: Reconciling modern machine-learning practice and the classical bias-variance trade-off. Proc. Natl. Acad. Sci. 116(32), 15849–15854 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bertsekas, D., Tsitsiklis, J.N.: Neuro-dynamic programming. Athena Scientific (1996)

    Google Scholar 

  9. Bogolubsky, L., et al.: Learning supervised pagerank with gradient-based and gradient-free optimization methods. Advances in neural information processing systems 29 (2016)

    Google Scholar 

  10. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. SIAM Rev. 60(2), 223–311 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bubeck, S., Cesa-Bianchi, N., et al.: Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Found. Trends Mach. Learn. 5(1), 1–122 (2012)

    Google Scholar 

  12. Chen, P.Y., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.J.: Zoo: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 15–26 (2017)

    Google Scholar 

  13. Choromanski, K., Rowland, M., Sindhwani, V., Turner, R., Weller, A.: Structured evolution with compact architectures for scalable policy optimization. In: International Conference on Machine Learning, pp. 970–978. PMLR (2018)

    Google Scholar 

  14. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to derivative-free optimization. SIAM (2009)

    Google Scholar 

  15. Cotter, A., Shamir, O., Srebro, N., Sridharan, K.: Better mini-batch algorithms via accelerated gradient methods. Advances in neural information processing systems 24 (2011)

    Google Scholar 

  16. Devolder, O.: Exactness, inexactness and stochasticity in first-order methods for large-scale convex optimization. Ph.D. thesis, CORE UCLouvain Louvain-la-Neuve, Belgium (2013)

    Google Scholar 

  17. Duchi, J.C., Jordan, M.I., Wainwright, M.J., Wibisono, A.: Optimal rates for zero-order convex optimization: the power of two function evaluations. IEEE Trans. Inf. Theory 61(5), 2788–2806 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dvinskikh, D., Gasnikov, A.: Decentralized and parallel primal and dual accelerated methods for stochastic convex programming problems. J. Inverse Ill-posed Problems 29(3), 385–405 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dvinskikh, D., Tominin, V., Tominin, I., Gasnikov, A.: Noisy zeroth-order optimization for non-smooth saddle point problems. In: International Conference on Mathematical Optimization Theory and Operations Research, pp. 18–33. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09607-5_2

  20. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach. Learn. Res. 20(1), 1997–2017 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Fatkhullin, I., Etesami, J., He, N., Kiyavash, N.: Sharp analysis of stochastic optimization under global kurdyka-lojasiewicz inequality. Adv. Neural. Inf. Process. Syst. 35, 15836–15848 (2022)

    Google Scholar 

  22. Gao, J., Lanchantin, J., Soffa, M.L., Qi, Y.: Black-box generation of adversarial text sequences to evade deep learning classifiers. In: 2018 IEEE Security and Privacy Workshops (SPW), pp. 50–56. IEEE (2018)

    Google Scholar 

  23. Gasnikov, A., Dvinskikh, D., Dvurechensky, P., Gorbunov, E., Beznosikov, A., Lobanov, A.: Randomized gradient-free methods in convex optimization. arXiv preprint arXiv:2211.13566 (2022)

  24. Gasnikov, A., Nesterov, Y.: Universal fast gradient method for stochastic composit optimization problems. arXiv preprint arXiv:1604.05275 (2016)

  25. Gasnikov, A., et al.: The power of first-order smooth optimization for black-box non-smooth problems. In: International Conference on Machine Learning, pp. 7241–7265. PMLR (2022)

    Google Scholar 

  26. Gorbunov, E., Danilova, M., Gasnikov, A.: Stochastic optimization with heavy-tailed noise via accelerated gradient clipping. Adv. Neural. Inf. Process. Syst. 33, 15042–15053 (2020)

    Google Scholar 

  27. Hazan, E., Kale, S.: Beyond the regret minimization barrier: optimal algorithms for stochastic strongly-convex optimization. J. Mach. Learn. Res. 15(1), 2489–2512 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Hazan, E., Klivans, A., Yuan, Y.: Hyperparameter optimization: a spectral approach. arXiv preprint arXiv:1706.00764 (2017)

  29. Ilandarideva, S., Juditsky, A., Lan, G., Li, T.: Accelerated stochastic approximation with state-dependent noise. arXiv preprint arXiv:2307.01497 (2023)

  30. Jacot, A., Gabriel, F., Hongler, C.: Neural tangent kernel: Convergence and generalization in neural networks. Advances in neural information processing systems 31 (2018)

    Google Scholar 

  31. Kornilov, N., Gasnikov, A., Dvurechensky, P., Dvinskikh, D.: Gradient free methods for non-smooth convex optimization with heavy tails on convex compact. arXiv preprint arXiv:2304.02442 (2023)

  32. Lan, G.: An optimal method for stochastic composite optimization. Math. Program. 133(1–2), 365–397 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lobanov, A.: Stochastic adversarial noise in the “black box” optimization problem. arXiv preprint arXiv:2304.07861 (2023)

  34. Lobanov, A., Alashqar, B., Dvinskikh, D., Gasnikov, A.: Gradient-free federated learning methods with \( l\)_1 and \( l\)_2 -randomization for non-smooth convex stochastic optimization problems. arXiv preprint arXiv:2211.10783 (2022)

  35. Lobanov, A., Gasnikov, A., Stonyakin, F.: Highly smoothness zero-order methods for solving optimization problems under pl condition. arXiv preprint arXiv:2305.15828 (2023)

  36. Lobanov, A., Konin, G., Gasnikov, A., Kovalev, D.: Non-smooth setting of stochastic decentralized convex optimization problem over time-varying graphs. arXiv preprint arXiv:2307.00392 (2023)

  37. Lojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels. Les équations aux dérivées partielles 117, 87–89 (1963)

    MATH  Google Scholar 

  38. Mania, H., Guy, A., Recht, B.: Simple random search of static linear policies is competitive for reinforcement learning. Advances in Neural Information Processing Systems 31 (2018)

    Google Scholar 

  39. Papernot, N., McDaniel, P., Goodfellow, I.: Transferability in machine learning: from phenomena to black-box attacks using adversarial samples. arXiv preprint arXiv:1605.07277 (2016)

  40. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017)

    Google Scholar 

  41. Pardalos, P.M., Rasskazova, V., Vrahatis, M.N., et al.: Black Box Optimization, Machine Learning, and No-Free Lunch Theorems. Springer (2021)

    Google Scholar 

  42. Patel, K.K., Saha, A., Wang, L., Srebro, N.: Distributed online and bandit convex optimization. In: OPT 2022: Optimization for Machine Learning (NeurIPS 2022 Workshop) (2022)

    Google Scholar 

  43. Polyak, B.T.: Gradient methods for the minimisation of functionals. USSR Comput. Math. Math. Phys. 3(4), 864–878 (1963)

    Article  MATH  Google Scholar 

  44. Rakhlin, A., Shamir, O., Sridharan, K.: Making gradient descent optimal for strongly convex stochastic optimization. In: Proceedings of the 29th International Conference on International Conference on Machine Learning, pp. 1571–1578 (2012)

    Google Scholar 

  45. Robbins, H., Monro, S.: A stochastic approximation method. In: The Annals of Mathematical Statistics, pp. 400–407 (1951)

    Google Scholar 

  46. Rosenbrock, H.: An automatic method for finding the greatest or least value of a function. Comput. J. 3(3), 175–184 (1960)

    Article  MathSciNet  Google Scholar 

  47. Scaman, K., Bach, F., Bubeck, S., Lee, Y.T., Massoulié, L.: Optimal convergence rates for convex distributed optimization in networks. J. Mach. Learn. Res. 20, 1–31 (2019)

    MathSciNet  MATH  Google Scholar 

  48. Schmidt, M., Roux, N.L.: Fast convergence of stochastic gradient descent under a strong growth condition. arXiv preprint arXiv:1308.6370 (2013)

  49. Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. J. Mach. Learn. Res. 18(1), 1703–1713 (2017)

    MathSciNet  MATH  Google Scholar 

  50. Shibaev, I., Dvurechensky, P., Gasnikov, A.: Zeroth-order methods for noisy hölder-gradient functions. Optim. Lett. 16(7), 2123–2143 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  51. Srebro, N., Sridharan, K., Tewari, A.: Optimistic rates for learning with a smooth loss. arXiv preprint arXiv:1009.3896 (2010)

  52. Stich, S.U.: Unified optimal analysis of the (stochastic) gradient method. arXiv preprint arXiv:1907.04232 (2019)

  53. Tran, T.H., Scheinberg, K., Nguyen, L.M.: Nesterov accelerated shuffling gradient method for convex optimization. In: International Conference on Machine Learning, pp. 21703–21732. PMLR (2022)

    Google Scholar 

  54. Vasin, A., Gasnikov, A., Dvurechensky, P., Spokoiny, V.: Accelerated gradient methods with absolute and relative noise in the gradient. Optimization Methods and Software, pp. 1–50 (2023)

    Google Scholar 

  55. Vaswani, S., Bach, F., Schmidt, M.: Fast and faster convergence of sgd for over-parameterized models and an accelerated perceptron. In: The 22nd International Conference on Artificial Intelligence and Statistics, pp. 1195–1204. PMLR (2019)

    Google Scholar 

  56. Woodworth, B.E., Bullins, B., Shamir, O., Srebro, N.: The min-max complexity of distributed stochastic convex optimization with intermittent communication. In: Conference on Learning Theory, pp. 4386–4437. PMLR (2021)

    Google Scholar 

  57. Woodworth, B.E., Srebro, N.: An even more optimal stochastic optimization algorithm: minibatching and interpolation learning. Adv. Neural. Inf. Process. Syst. 34, 7333–7345 (2021)

    Google Scholar 

  58. Yue, P., Fang, C., Lin, Z.: On the lower bound of minimizing polyak-\(\{\)\(\backslash \)L\(\}\) ojasiewicz functions. arXiv preprint arXiv:2212.13551 (2022)

  59. Zhang, Y., Chen, C., Shi, N., Sun, R., Luo, Z.Q.: Adam can converge without any modification on update rules. Adv. Neural. Inf. Process. Syst. 35, 28386–28399 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Lobanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lobanov, A., Gasnikov, A. (2023). Accelerated Zero-Order SGD Method for Solving the Black Box Optimization Problem Under “Overparametrization” Condition. In: Olenev, N., Evtushenko, Y., Jaćimović, M., Khachay, M., Malkova, V. (eds) Optimization and Applications. OPTIMA 2023. Lecture Notes in Computer Science, vol 14395. Springer, Cham. https://doi.org/10.1007/978-3-031-47859-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47859-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47858-1

  • Online ISBN: 978-3-031-47859-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics