Skip to main content

Stochastic Adversarial Noise in the “Black Box” Optimization Problem

  • Conference paper
  • First Online:
Optimization and Applications (OPTIMA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14395))

Included in the following conference series:

Abstract

This paper is devoted to the study of the solution of a stochastic convex black box optimization problem. Where the black box problem means that the gradient-free oracle only returns the value of objective function, not its gradient. We consider non-smooth and smooth setting of the solution to the black box problem under adversarial stochastic noise. For two techniques creating gradient-free methods: smoothing schemes via \(L_1\) and \(L_2\) randomizations, we find the maximum allowable level of adversarial stochastic noise that guarantees convergence. Finally, we analyze the convergence behavior of the algorithms under the condition of a large value of noise level.

The research was supported by Russian Science Foundation (project No. 21-71- 30005), https://rscf.ru/en/project/21-71-30005/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akhavan, A., Chzhen, E., Pontil, M., Tsybakov, A.: A gradient estimator via l1-randomization for online zero-order optimization with two point feedback. Adv. Neural. Inf. Process. Syst. 35, 7685–7696 (2022)

    Google Scholar 

  2. Akhavan, A., Pontil, M., Tsybakov, A.: Exploiting higher order smoothness in derivative-free optimization and continuous bandits. Adv. Neural. Inf. Process. Syst. 33, 9017–9027 (2020)

    Google Scholar 

  3. Akhavan, A., Pontil, M., Tsybakov, A.: Distributed zero-order optimization under adversarial noise. Adv. Neural. Inf. Process. Syst. 34, 10209–10220 (2021)

    Google Scholar 

  4. Audet, C., Hare, W.: Derivative-free and blackbox optimization (2017)

    Google Scholar 

  5. Bach, F., Perchet, V.: Highly-smooth zero-th order online optimization. In: Conference on Learning Theory, pp. 257–283. PMLR (2016)

    Google Scholar 

  6. Bartlett, P., Dani, V., Hayes, T., Kakade, S., Rakhlin, A., Tewari, A.: High-probability regret bounds for bandit online linear optimization. In: Proceedings of the 21st Annual Conference on Learning Theory-COLT 2008, pp. 335–342. Omnipress (2008)

    Google Scholar 

  7. Bayandina, A.S., Gasnikov, A.V., Lagunovskaya, A.A.: Gradient-free two-point methods for solving stochastic nonsmooth convex optimization problems with small non-random noises. Autom. Remote. Control. 79, 1399–1408 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berahas, A.S., Cao, L., Choromanski, K., Scheinberg, K.: A theoretical and empirical comparison of gradient approximations in derivative-free optimization. Found. Comput. Math. 22(2), 507–560 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beznosikov, A., Sadiev, A., Gasnikov, A.: Gradient-free methods with inexact oracle for convex-concave stochastic saddle-point problem. In: International Conference on Mathematical Optimization Theory and Operations Research, pp. 105–119. Springer (2020)

    Google Scholar 

  10. Bubeck, S., Cesa-Bianchi, N., et al.: Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Found. Trends Mach. Learn. 5(1), 1–122 (2012)

    Google Scholar 

  11. Chen, P.Y., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.J.: Zoo: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 15–26 (2017)

    Google Scholar 

  12. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to derivative-free optimization. SIAM (2009)

    Google Scholar 

  13. Duchi, J.C., Jordan, M.I., Wainwright, M.J., Wibisono, A.: Optimal rates for zero-order convex optimization: the power of two function evaluations. IEEE Trans. Inf. Theory 61(5), 2788–2806 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dvinskikh, D., Tominin, V., Tominin, I., Gasnikov, A.: Noisy zeroth-order optimization for non-smooth saddle point problems. In: International Conference on Mathematical Optimization Theory and Operations Research, pp. 18–33. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09607-5_2

  15. Dvurechensky, P., Gorbunov, E., Gasnikov, A.: An accelerated directional derivative method for smooth stochastic convex optimization. Eur. J. Oper. Res. 290(2), 601–621 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach. Learn. Res. 20(1), 1997–2017 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Ermoliev, Y.: Stochastic programming methods (1976)

    Google Scholar 

  18. Flaxman, A.D., Kalai, A.T., McMahan, H.B.: Online convex optimization in the bandit setting: gradient descent without a gradient. arXiv preprint cs/0408007 (2004)

    Google Scholar 

  19. Gasnikov, A., Dvinskikh, D., Dvurechensky, P., Gorbunov, E., Beznosikov, A., Lobanov, A.: Randomized gradient-free methods in convex optimization. arXiv preprint arXiv:2211.13566 (2022)

  20. Gasnikov, A., et al.: The power of first-order smooth optimization for black-box non-smooth problems. In: International Conference on Machine Learning, pp. 7241–7265. PMLR (2022)

    Google Scholar 

  21. Gasnikov, A.V., Krymova, E.A., Lagunovskaya, A.A., Usmanova, I.N., Fedorenko, F.A.: Stochastic online optimization. single-point and multi-point non-linear multi-armed bandits. convex and strongly-convex case. Autom. Remote Control 78, 224–234 (2017)

    Google Scholar 

  22. Gorbunov, E., Dvurechensky, P., Gasnikov, A.: An accelerated method for derivative-free smooth stochastic convex optimization. arXiv preprint arXiv:1802.09022 (2018)

  23. Hanzely, F., Kovalev, D., Richtarik, P.: Variance reduced coordinate descent with acceleration: New method with a surprising application to finite-sum problems. In: International Conference on Machine Learning, pp. 4039–4048. PMLR (2020)

    Google Scholar 

  24. Hazan, E., Klivans, A., Yuan, Y.: Hyperparameter optimization: a spectral approach. arXiv preprint arXiv:1706.00764 (2017)

  25. Kiefer, J., Wolfowitz, J.: Stochastic estimation of the maximum of a regression function. The Annals of Mathematical Statistics, pp. 462–466 (1952)

    Google Scholar 

  26. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: a novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res. 18(1), 6765–6816 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Lobanov, A., Alashqar, B., Dvinskikh, D., Gasnikov, A.: Gradient-free federated learning methods with \( l_1 \) and \( l_2 \)-randomization for non-smooth convex stochastic optimization problems. arXiv preprint arXiv:2211.10783 (2022)

  28. Lobanov, A., Anikin, A., Gasnikov, A., Gornov, A., Chukanov, S.: Zero-order stochastic conditional gradient sliding method for non-smooth convex optimization. arXiv preprint arXiv:2303.02778 (2023)

  29. Nemirovskij, A.S., Yudin, D.B.: Problem complexity and method efficiency in optimization (1983)

    Google Scholar 

  30. Papernot, N., McDaniel, P., Goodfellow, I.: Transferability in machine learning: from phenomena to black-box attacks using adversarial samples. arXiv preprint arXiv:1605.07277 (2016)

  31. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017)

    Google Scholar 

  32. Patel, K.K., Saha, A., Wang, L., Srebro, N.: Distributed online and bandit convex optimization. In: OPT 2022: Optimization for Machine Learning (NeurIPS 2022 Workshop) (2022)

    Google Scholar 

  33. Polyak, B.T.: Introduction to optimization. optimization software. Inc., Publications Division, New York 1, 32 (1987)

    Google Scholar 

  34. Polyak, B.T., Tsybakov, A.B.: Optimal order of accuracy of search algorithms in stochastic optimization. Problemy Peredachi Informatsii 26(2), 45–53 (1990)

    MathSciNet  MATH  Google Scholar 

  35. Risteski, A., Li, Y.: Algorithms and matching lower bounds for approximately-convex optimization. Advances in Neural Information Processing Systems 29 (2016)

    Google Scholar 

  36. Rosenbrock, H.: An automatic method for finding the greatest or least value of a function. Comput. J. 3(3), 175–184 (1960)

    Article  MathSciNet  Google Scholar 

  37. Scaman, K., Bach, F., Bubeck, S., Lee, Y.T., Massoulié, L.: Optimal convergence rates for convex distributed optimization in networks. J. Mach. Learn. Res. 20, 1–31 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. J. Mach. Learn. Res. 18(1), 1703–1713 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Shibaev, I., Dvurechensky, P., Gasnikov, A.: Zeroth-order methods for noisy hölder-gradient functions. Optim. Lett. 16(7), 2123–2143 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vasin, A., Gasnikov, A., Spokoiny, V.: Stopping rules for accelerated gradient methods with additive noise in gradient. Technical report, Berlin: Weierstraß-Institut für Angewandte Analysis und Stochastik (2021)

    Google Scholar 

  41. Vaswani, S., Bach, F., Schmidt, M.: Fast and faster convergence of sgd for over-parameterized models and an accelerated perceptron. In: The 22nd International Conference on Artificial Intelligence and Statistics, pp. 1195–1204. PMLR (2019)

    Google Scholar 

  42. Yu, Z., Ho, D.W., Yuan, D.: Distributed randomized gradient-free mirror descent algorithm for constrained optimization. IEEE Trans. Autom. Control 67(2), 957–964 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Lobanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lobanov, A. (2023). Stochastic Adversarial Noise in the “Black Box” Optimization Problem. In: Olenev, N., Evtushenko, Y., Jaćimović, M., Khachay, M., Malkova, V. (eds) Optimization and Applications. OPTIMA 2023. Lecture Notes in Computer Science, vol 14395. Springer, Cham. https://doi.org/10.1007/978-3-031-47859-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47859-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47858-1

  • Online ISBN: 978-3-031-47859-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics