Skip to main content

On Cluster Editing Problem with Clusters of Small Sizes

  • Conference paper
  • First Online:
Optimization and Applications (OPTIMA 2023)

Abstract

In the cluster editing problem, one has to partition the set of vertices of a graph into disjoint subsets (called clusters) minimizing the number of edges between clusters and the number of missing edges within clusters. We consider a version of the problem in which cluster sizes are bounded from above by a positive integer s. This problem is NP-hard for any fixed \(s \geqslant 3\). We propose polynomial-time approximation algorithms for this version of the problem. Their performance guarantees are equal to 5/3 and 5/2 for the cases \(s = 3\) and \(s = 4\), respectively.

We also show that the cluster editing problem is APX-complete for the case \(s = 3\) even if the maximum degree of the graphs is bounded by 4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ageev, A.A., Il’ev, V.P., Kononov, A.V., Talevnin, A.S.: Computational complexity of the graph approximation problem. Diskretnyi Analiz i Issledovanie Operatsii. Ser. 1. 13(1), 3–11 (2006) (in Russian). English transl. in: J. of Applied and Industrial Math. 1(1), 1–8 (2007). https://doi.org/10.1134/s1990478907010012

  2. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. J. ACM. 55(5), 1–27 (2008). https://doi.org/10.1145/1411509.1411513

  3. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56, 89–113 (2004). https://doi.org/10.1023/B:MACH.0000033116.57574.95

  4. Ben-Dor, A., Shamir, R., Yakhimi, Z.: Clustering gene expression patterns. J. Comput. Biol. 6(3–4), 281–297 (1999). https://doi.org/10.1089/106652799318274

  5. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. J. Comput. Syst. Sci. 71(3), 360–383 (2005). https://doi.org/10.1016/j.jcss.2004.10.012

  6. Chataigner, F., Manić, G., Wakabayashi, Y., Yuster, R.: Approximation algorithms and hardness results for the clique packing problem. Discrete Appl. Math. 157(7), 1396–1406 (2009). https://doi.org/10.1016/j.dam.2008.10.017

  7. Chawla, S., Makarychev, K., Schramm, T., Yaroslavtsev, G.: Near optimal LP algorithm for correlation clustering on complete and complete k-partite graphs. STOC ’15 Symposium on Theory of Computing: ACM New York, pp. 219–228 (2015). https://doi.org/10.1145/2746539.2746604

  8. Coleman, T., Saunderson, J., Wirth, A.: A local-search 2-approximation for 2-correlation-clustering. Lecture Notes in Computer Science. 5193, 308–319 (2008). https://doi.org/10.1007/978-3-540-87744-826

  9. Demaine, E.D., Emanuel, D., Fiat, A, Immorlica, N.: Correlation clustering in general weighted graphs. Theor. Comput. Sci. 361(2–3), 172–187 (2006). https://doi.org/10.1016/j.tcs.2006.05.008

  10. Fridman, G.Š.: A graph approximation problem. Upravlyaemye Sistemy. Izd. Inst. Mat., Novosibirsk 8, 73–75 (1971) (in Russian)

    Google Scholar 

  11. Fridman, G.Š.: Investigation of a classifying problem on graphs. Methods of Modelling and Data Processing (Nauka, Novosibirsk). 147–177 (1976). (in Russian)

    Google Scholar 

  12. Giotis, I., Guruswami, V.: Correlation clustering with a fixed number of clusters. Theory Comput. 2(1), 249–266 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every \(t\) of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems. SIAM J. Disc. Math. 2(1), 66–72, (1989). https://doi.org/10.1137/0402008

  14. Il’ev, V.P., Fridman, G.Š.: On the problem of approximation by graphs with a fixed number of components. Dokl. Akad. Nauk SSSR. 264(3), 533–538 (1982) (in Russian). English transl. in: Sov. Math. Dokl. 25(3), 666–670 (1982)

    Google Scholar 

  15. Il’ev, V.P., Navrotskaya, A.A.: Computational complexity of the problem of approximation by graphs with connected components of bounded size. Prikl. Diskretn. Mat. 3(13), 80–84 (2011) (in Russian)

    Google Scholar 

  16. Il’ev, V.P., Il’eva, S.D., Navrotskaya, A.A.: Graph clustering with a constraint on cluster sizes. Diskretn. Anal. Issled. Oper. 23(3), 50–20 (2016) (in Russian). English transl. in: J. Appl. Indust. Math. 10(3), 341–348 (2016). https://doi.org/10.1134/S1990478916030042

  17. Il’ev, V., Il’eva, S., Morshinin, A.: A 2-approximation algorithm for the graph 2-clustering problem. Lecture Notes in Comput. Sci. 11548, 295–308 (2019). https://doi.org/10.1007/978-3-030-22629-9 21

  18. Křivánek, M., Morávek, J.: NP-hard problems in hierarchical-tree clustering. Acta informatica. 23, 311–323 (1986). https://doi.org/10.1007/BF00289116

  19. Puleo, G.J., Milenkovic, O.: Correlation clustering with constrained cluster sizes and extended weights bounds. SIAM J. Optim. 25(3), 1857–1872 (2015). https://doi.org/10.1137/140994198

  20. Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2005). https://doi.org/10.1016/j.cosrev.2007.05.001

  21. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Appl. Math. 144(1–2), 173–182 (2004). https://doi.org/10.1016/j.dam.2004.01.007

  22. Tomescu, I.: La reduction minimale d’un graphe à une reunion de cliques. Discrete Math. 10(1–2), 173–179 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wahid, D.F., Hassini, E.: A literature review on correlation clustering: cross-disciplinary taxonomy with bibliometric analysis. Oper. Res. Forum 3, 47, 1–42 (2020). https://doi.org/10.1007/s43069-022-00156-6

  24. Zahn, C.T.: Approximating symmetric relations by equivalence relations. J. Soc. Industrial Appl. Math. 12(4), 840–847 (1964)

    Google Scholar 

Download references

Acknowledgements

The research of the first author was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project FWNF-2022-0019). The research of the second author was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project FWNF-2022-0020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kononov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kononov, A., Il’ev, V. (2023). On Cluster Editing Problem with Clusters of Small Sizes. In: Olenev, N., Evtushenko, Y., Jaćimović, M., Khachay, M., Malkova, V. (eds) Optimization and Applications. OPTIMA 2023. Lecture Notes in Computer Science, vol 14395. Springer, Cham. https://doi.org/10.1007/978-3-031-47859-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47859-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47858-1

  • Online ISBN: 978-3-031-47859-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics