Abstract
In the cluster editing problem, one has to partition the set of vertices of a graph into disjoint subsets (called clusters) minimizing the number of edges between clusters and the number of missing edges within clusters. We consider a version of the problem in which cluster sizes are bounded from above by a positive integer s. This problem is NP-hard for any fixed \(s \geqslant 3\). We propose polynomial-time approximation algorithms for this version of the problem. Their performance guarantees are equal to 5/3 and 5/2 for the cases \(s = 3\) and \(s = 4\), respectively.
We also show that the cluster editing problem is APX-complete for the case \(s = 3\) even if the maximum degree of the graphs is bounded by 4.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ageev, A.A., Il’ev, V.P., Kononov, A.V., Talevnin, A.S.: Computational complexity of the graph approximation problem. Diskretnyi Analiz i Issledovanie Operatsii. Ser. 1. 13(1), 3–11 (2006) (in Russian). English transl. in: J. of Applied and Industrial Math. 1(1), 1–8 (2007). https://doi.org/10.1134/s1990478907010012
Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. J. ACM. 55(5), 1–27 (2008). https://doi.org/10.1145/1411509.1411513
Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56, 89–113 (2004). https://doi.org/10.1023/B:MACH.0000033116.57574.95
Ben-Dor, A., Shamir, R., Yakhimi, Z.: Clustering gene expression patterns. J. Comput. Biol. 6(3–4), 281–297 (1999). https://doi.org/10.1089/106652799318274
Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. J. Comput. Syst. Sci. 71(3), 360–383 (2005). https://doi.org/10.1016/j.jcss.2004.10.012
Chataigner, F., Manić, G., Wakabayashi, Y., Yuster, R.: Approximation algorithms and hardness results for the clique packing problem. Discrete Appl. Math. 157(7), 1396–1406 (2009). https://doi.org/10.1016/j.dam.2008.10.017
Chawla, S., Makarychev, K., Schramm, T., Yaroslavtsev, G.: Near optimal LP algorithm for correlation clustering on complete and complete k-partite graphs. STOC ’15 Symposium on Theory of Computing: ACM New York, pp. 219–228 (2015). https://doi.org/10.1145/2746539.2746604
Coleman, T., Saunderson, J., Wirth, A.: A local-search 2-approximation for 2-correlation-clustering. Lecture Notes in Computer Science. 5193, 308–319 (2008). https://doi.org/10.1007/978-3-540-87744-826
Demaine, E.D., Emanuel, D., Fiat, A, Immorlica, N.: Correlation clustering in general weighted graphs. Theor. Comput. Sci. 361(2–3), 172–187 (2006). https://doi.org/10.1016/j.tcs.2006.05.008
Fridman, G.Š.: A graph approximation problem. Upravlyaemye Sistemy. Izd. Inst. Mat., Novosibirsk 8, 73–75 (1971) (in Russian)
Fridman, G.Š.: Investigation of a classifying problem on graphs. Methods of Modelling and Data Processing (Nauka, Novosibirsk). 147–177 (1976). (in Russian)
Giotis, I., Guruswami, V.: Correlation clustering with a fixed number of clusters. Theory Comput. 2(1), 249–266 (2006)
Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every \(t\) of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems. SIAM J. Disc. Math. 2(1), 66–72, (1989). https://doi.org/10.1137/0402008
Il’ev, V.P., Fridman, G.Š.: On the problem of approximation by graphs with a fixed number of components. Dokl. Akad. Nauk SSSR. 264(3), 533–538 (1982) (in Russian). English transl. in: Sov. Math. Dokl. 25(3), 666–670 (1982)
Il’ev, V.P., Navrotskaya, A.A.: Computational complexity of the problem of approximation by graphs with connected components of bounded size. Prikl. Diskretn. Mat. 3(13), 80–84 (2011) (in Russian)
Il’ev, V.P., Il’eva, S.D., Navrotskaya, A.A.: Graph clustering with a constraint on cluster sizes. Diskretn. Anal. Issled. Oper. 23(3), 50–20 (2016) (in Russian). English transl. in: J. Appl. Indust. Math. 10(3), 341–348 (2016). https://doi.org/10.1134/S1990478916030042
Il’ev, V., Il’eva, S., Morshinin, A.: A 2-approximation algorithm for the graph 2-clustering problem. Lecture Notes in Comput. Sci. 11548, 295–308 (2019). https://doi.org/10.1007/978-3-030-22629-9 21
Křivánek, M., Morávek, J.: NP-hard problems in hierarchical-tree clustering. Acta informatica. 23, 311–323 (1986). https://doi.org/10.1007/BF00289116
Puleo, G.J., Milenkovic, O.: Correlation clustering with constrained cluster sizes and extended weights bounds. SIAM J. Optim. 25(3), 1857–1872 (2015). https://doi.org/10.1137/140994198
Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2005). https://doi.org/10.1016/j.cosrev.2007.05.001
Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Appl. Math. 144(1–2), 173–182 (2004). https://doi.org/10.1016/j.dam.2004.01.007
Tomescu, I.: La reduction minimale d’un graphe à une reunion de cliques. Discrete Math. 10(1–2), 173–179 (1974)
Wahid, D.F., Hassini, E.: A literature review on correlation clustering: cross-disciplinary taxonomy with bibliometric analysis. Oper. Res. Forum 3, 47, 1–42 (2020). https://doi.org/10.1007/s43069-022-00156-6
Zahn, C.T.: Approximating symmetric relations by equivalence relations. J. Soc. Industrial Appl. Math. 12(4), 840–847 (1964)
Acknowledgements
The research of the first author was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project FWNF-2022-0019). The research of the second author was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project FWNF-2022-0020).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kononov, A., Il’ev, V. (2023). On Cluster Editing Problem with Clusters of Small Sizes. In: Olenev, N., Evtushenko, Y., Jaćimović, M., Khachay, M., Malkova, V. (eds) Optimization and Applications. OPTIMA 2023. Lecture Notes in Computer Science, vol 14395. Springer, Cham. https://doi.org/10.1007/978-3-031-47859-8_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-47859-8_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47858-1
Online ISBN: 978-3-031-47859-8
eBook Packages: Computer ScienceComputer Science (R0)