Skip to main content

Reciprocal Import Tariffs in the Monopolistic Competition Open Economy

  • Conference paper
  • First Online:
Optimization and Applications (OPTIMA 2023)

Abstract

We use the standard Krugman’s one-sector trade model, with unspecified variable-elasticity preferences. We study the impact of reciprocal import tariffs on welfare among symmetric countries (a free-trade agreement). We show that, without transport costs, any ad valorem tariffs or subsidies are always harmful. This is also true under “flatter” demands, satisfying the realistic assumptions of increasingly elastic demand (IED) and decreasingly-elastic utility (DEU).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It seems that these boundary conditions are necessary for equilibria existence. But the questions of the equilibria existence (and uniqueness) are separate problems (often not quite simple), which is not the subject of this study. Let us note that in propositions below, we assume that market equilibrium exists (and, moreover, are unique).

References

  1. Krugman, P.R.: Increasing returns, monopolistic competition, and international trade. J. Int. Econ. 9, 469–479 (1979)

    Article  Google Scholar 

  2. Dixit, A.K., Stiglitz, J.E.: Monopolistic competition and optimum product diversity. Am. Econ. Rev. 67, 297–308 (1977)

    Google Scholar 

  3. Krugman, P.R., Obstfeld, M.: International Economics: Theory and Policy. Harper Collins College Publishers (1994)

    Google Scholar 

  4. Helpman, E.: Trade Understanding Global Trade. Harvard University Press, Cambridge (2011)

    Book  Google Scholar 

  5. Gros, D.: A note on the optimal tariff, retaliation and the welfare loss from tariff wars in a framework with intra-industry trade. J. Int. Econ. 23(3–4), 357–367 (1987)

    Article  Google Scholar 

  6. Ossa, R.: A new trade theory of GATT/WTO negotiations. J. Polit. Econ. 119(1), 122–152 (2011)

    Article  Google Scholar 

  7. Pfluger, M., Suedekum, J.: Subsidizing firm entry in open economies. IZA Discussion Paper No. 4384, 41 p. (2012)

    Google Scholar 

  8. Bagwell, K., Lee, S.H.: Trade policy under monopolistic competition with firm selection. J. Int. Econ. 127, Article no. 103379 (2020)

    Google Scholar 

  9. Jorgensen, J.G., Schreder, P.J.: Effects of tariffication: tariffs and quotas under monopolistic competition. Open Econ. Rev. 18, 479–498 (2007)

    Article  MATH  Google Scholar 

  10. Arkolakis, C., Costinot, A., Rodríguez-Clare, A.: New trade models, same old gains? Am. Econ. Rev. 102(1), 94–130 (2012)

    Article  Google Scholar 

  11. Arkolakis, C., Costinot, A., Donaldson, D., Rodríguez-Clare, A.: The elusive pro-competitive effects of trade. Rev. Econ. Stud. 86(1), 46–80 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Anderson, J.E., Van Wincoop, E.: Trade costs. J. Econ. Lit. 42(3), 691–751 (2004)

    Article  Google Scholar 

  13. Morgan, J., Tumlinson, J., Vardy, F.: Bad trade: the loss of variety. Available at SSRN 3529246 (2020)

    Google Scholar 

  14. Kokovin, S., Molchanov, P., Bykadorov, I.: Increasing returns, monopolistic competition, and international trade: revisiting gains from trade. J. Int. Econ. 137, Article no. 103595 (2022)

    Google Scholar 

  15. Mrázová, M., Neary, J.P.: Not so demanding: demand structure and firm behavior. Am. Econ. Rev. 107(12), 3835–3874 (2017)

    Article  Google Scholar 

  16. Zhelobodko, E., Kokovin, S., Parenti, M., Thisse, J.-F.: Monopolistic competition in general equilibrium: beyond the CES. Econometrica 80(6), 2765–2784 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was carried out under the State Assignment Project (no. FWEU- 2021-0001) of the Fundamental Research Program of Russian Federation 2021–2030 and under the State contract of the Sobolev Institute of Mathematics (project no. FWNF-2022-0019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Aizenberg .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof of Theorem 1. i) Reaction of consumption. To find how consumptions in \(K+1\) symmetric countries respond to tariff \(\tau \), we denote total derivatives as \(x_{\tau }^{\prime }\equiv \frac{dx}{d\tau },\,y_{\tau }^{\prime }\equiv \frac{dy}{d\tau }\) and \(R_{z}^{\prime }\equiv R^{\prime }\left( z\right) \). Our symmetric-equilibrium equations are:

Free entry:

$$ \pi (x,y)\cdot \lambda \equiv R(x)+K\frac{R(y)}{\tau }-c\cdot \left( x+Ky\right) \lambda -f\lambda =0, $$

FOC:

$$ R^{\prime }(x)=c\lambda ,\,\,\,R^{\prime }(y)=c\tau \lambda . $$

Thus,

$$ \frac{R\left( x\right) }{R^{\prime }\left( x\right) }+K\frac{R\left( y\right) }{R^{\prime }\left( y\right) }=x+Ky+\frac{f}{c}. $$

Totally differentiating the latter equations in \(\tau \) (and applying \(\frac{d\pi }{dx}=0,\frac{d\pi }{dy}=0\) or Envelope Theorem to the third equation) we get

$$ R^{\prime \prime }(x)x_{\tau }^{\prime }=c\lambda _{\tau }^{\prime },\,\,\,R^{\prime \prime }(y)y_{\tau }^{\prime }=c\lambda +c\tau \lambda _{\tau }^{\prime } $$

and

$$ \lambda _{\tau }^{\prime }=-\frac{KR(y)\left( R^{\prime }\left( x\right) \right) ^{2}}{\left( R^{\prime }\left( y\right) \right) ^{2}\left( c\left( x+Ky\right) +f\right) }. $$

It follows that the total derivatives of consumptions are (20) and (21).

(ii) Reaction of output. Under general tariff, to find its impact on sales (output), we combine the changes in x and y:

$$\begin{aligned} q_{\tau }^{\prime }=x_{\tau }^{\prime }+Ky_{\tau }^{\prime }=\frac{K\left( \tau ^{2}R(x)R^{\prime \prime }(x)-R(y)R^{\prime \prime }(y)\right) }{\tau ^{2}R^{\prime \prime }(y)R^{\prime \prime }(x)\left( x+Ky+\frac{f}{c}\right) }. \end{aligned}$$
(25)

We would like to know the sign of this derivative. For linear demand \(R^{\prime \prime }(x)=R^{\prime \prime }(y)=constant\), so, the sign is clear: output decreases in \(\tau \) on the whole interval.

To find the derivative of output \(q_{\tau }^{\prime }=x_{\tau }^{\prime }+Ky_{\tau }^{\prime }\) we substitute (20) and (21) into \(q_{\tau }^{\prime }=x_{\tau }^{\prime }+Ky_{\tau }^{\prime }\) and

$$ q_{\tau }^{\prime }\mid _{\tau =1}=0. $$

To find the derivative of sales at autarky (\(\tau _{a}:\,\,y\left( \tau _{a}\right) =0\)) we just plug \(y\left( \tau _{a}\right) =0\) into our formulate and obtain

$$ x_{\tau _{a}}^{\prime }=-\frac{K\cdot R(0)}{\tau ^{2}\cdot R^{\prime \prime }(x)\left( x+\frac{f}{c}\right) }=0, $$
$$ y_{\tau _{a}}^{\prime }=\frac{K\cdot R(x)}{R^{\prime \prime }(0)\left( x+\frac{f}{c}\right) }<0, $$
$$ q_{\tau }^{\prime }<0. $$

To find the derivative of sales at global point (\(\tau _{x0}:\,\,x\left( \tau _{x0}\right) =0\)) we just plug \(x\left( \tau _{x0}\right) =0\) into our formula and obtain

$$ x_{\tau _{x0}}^{\prime }=-\frac{KR(y)}{\tau ^{2}\cdot R^{\prime \prime }(0)\left( y+\frac{f}{c}\right) }>0, $$
$$ y_{\tau _{x0}}^{\prime }=\frac{K\tau \cdot R(0)}{R^{\prime \prime }(y)\left( y+\frac{f}{c}\right) }=0, $$
$$ q_{\tau _{x0}}^{\prime }>0. $$

So it decreases when the subsidy grows.

Global impact \(q_{\tau }^{\prime }\) of \(\tau \). We use that \(\tau =\frac{R^{\prime }\left( y\right) }{R^{\prime }\left( x\right) }\). Substitute \(\tau \) into (25):

$$\begin{aligned} q_{\tau }^{\prime }=\frac{K\left( R^{\prime }\left( y\right) \right) ^{2}}{\tau ^{2}R^{\prime \prime }(y)R^{\prime \prime }(x)\left( x+Ky+\frac{f}{c}\right) }\cdot \left( \frac{R(x)R^{\prime \prime }(x)}{\left( R^{\prime }\left( x\right) \right) ^{2}}-\frac{R(y)R^{\prime \prime }(y)}{\left( R^{\prime }\left( y\right) \right) ^{2}}\right) . \end{aligned}$$
(26)

The sign of the bracket determines the sign of the derivative. Let us introduce the function \(\phi \left( z\right) \equiv \frac{R(z)R^{\prime \prime }(z)}{\left( R^{\prime }\left( z\right) \right) ^{2}}\). If function \(\phi \left( \cdot \right) \) is decreasing then the derivative \(q_{\tau }^{\prime }\) of the total output is negative under a positive tariff \(\tau >1\).

For IED:

$$\begin{aligned} \frac{R(z)R^{\prime \prime }(z)}{\left( R^{\prime }\left( z\right) \right) ^{2}}\equiv \frac{r_{u}^{\prime }\left( z\right) \cdot z+r_{u}\left( z\right) -\left( r_{u}\left( z\right) \right) ^{2}}{\left( 1-r_{u}\left( z\right) \right) ^{2}}. \end{aligned}$$
(27)

Find derivative:

$$ -\left( \frac{r_{u}^{\prime }\left( z\right) \cdot z+r_{u}\left( z\right) -\left( r_{u}\left( z\right) \right) ^{2}}{\left( 1-r_{u}\left( z\right) \right) ^{2}}\right) ^{\prime } $$
$$ =-\frac{\left( {\displaystyle \mathcal {E}_{r_{u}^{\prime }}\left( z\right) }+2\right) \cdot \left( 1-r_{u}\left( z\right) \right) +2\cdot r_{u}^{\prime }\left( z\right) \cdot z}{\left( 1-r_{u}\left( z\right) \right) ^{3}}\cdot r_{u}^{\prime }\left( z\right) . $$

Proof of Theorem 2 (about welfare)

Recall that any consumer’s welfare to be studied is expressed through consumptions as

$$ W_{\tau }\left( x,y\right) =\frac{u\left( x\right) +Ku\left( y\right) }{f+c(x+Ky)}. $$

Using notations \(C_{q}\equiv C(x+Ky)\equiv f+c(x+Ky)\), we estimate the welfare total derivative \(W_{\tau }^{\prime }\) w.r.t. tariff \(\tau \):

$$ W_{\tau }^{\prime }\left( x,y\right) =\frac{u^{\prime }\left( x\right) x_{\tau }^{\prime }+Ku^{\prime }\left( y\right) y_{\tau }^{\prime }}{\left( f+c(x+Ky)\right) }-\frac{u\left( x\right) +Ku\left( y\right) }{\left( f+c(x+Ky)\right) }\cdot \frac{c\left( x_{\tau }^{\prime }+Ky_{\tau }^{\prime }\right) }{\left( f+c(x+Ky)\right) }. $$

Multiplying everything by \(\frac{C_{q}}{U}\) we come to

$$ \frac{C_{q}}{U}\cdot W_{\tau }^{\prime }\left( x,y\right) =\frac{u^{\prime }\left( x\right) x_{\tau }^{\prime }+Ku^{\prime }\left( y\right) y_{\tau }^{\prime }}{u\left( x\right) +Ku\left( y\right) }-\frac{c\left( x_{\tau }^{\prime }+Ky_{\tau }^{\prime }\right) }{\left( f+c(x+Ky)\right) }, $$

which can be expressed in elasticities as

$$\begin{aligned} \frac{C_{q}}{U}\cdot W_{\tau }^{\prime }=\frac{x_{\tau }^{\prime }}{x}\cdot \left[ \mathcal {E}_{U|x}-\mathcal {E}_{C|x}\right] +K\frac{y_{\tau }^{\prime }}{y}\cdot \left[ \mathcal {E}_{U|y}-\mathcal {E}_{C|y}\right] , \end{aligned}$$
(28)

Unchanging Welfare at the Point of Free Trade. Using elasticities, at free trade we plug \(\tau =1,\,\,x=y\) into expression (28), substitute \(\mathcal {E}_{C|y}=\mathcal {E}_{C|x}\) (which is true everywhere, not only at \(x=y\)) and obtain

$$ \frac{C_{q}}{U}\cdot W_{\tau }^{\prime }=\left[ \mathcal {E}_{U|x}-\mathcal {E}_{C|x}\right] \left( \frac{x_{\tau }^{\prime }}{x}+K\frac{y_{\tau }^{\prime }}{x}\right) =0 $$

because of zero change \(q_{\tau }^{\prime }=x_{\tau }^{\prime }+Ky_{\tau }^{\prime }=0\) at \(\tau =1\), by Theorem 1.

The global welfare change under \(IED-DEU\)

Using (4) and let \(x_{\tau }^{\prime }\cdot \left[ A\right] +Ky_{\tau }^{\prime }\cdot \left[ B\right] \equiv \frac{C_{q}}{U}\cdot W_{\tau }^{\prime }\) we would like to prove to be negative everywhere, except the point of free trade. At free trade, this \(\frac{C_{q}}{U}\cdot W_{\tau }^{\prime }\) is zero, because the first bracket is equal to the second one (\(A=B\)), while \(q_{\tau }^{\prime }=x_{\tau }^{\prime }+Ky_{\tau }^{\prime }=0\) at \(\tau =1\). Both brackets at free trade (\(\tau =1,\,\,x=y=z\)) are positive under DEU (\(\mathcal {E}_{u}^{\prime }\left( z\right) <0\)) because

$$ \left[ B\right] _{\tau =1}=\frac{u^{\prime }\left( z\right) }{2u\left( z\right) }-\frac{c}{f+c(1+K)z}=-\frac{\mathcal {E}_{u}^{\prime }\left( z\right) }{2\mathcal {E}_{u}\left( z\right) }>0, $$

and identity \(z\cdot \mathcal {E}_{u}^{\prime }\left( z\right) \equiv \mathcal {E}_{u}\left( z\right) \cdot \left( 1-\mathcal {E}_{u}\left( z\right) -r_{u}\left( z\right) \right) \) that can be easily derived for any function u.

Further, under positive tariff, the second bracket \(\left[ B\right] \) should increase (and remain positive) when \(\tau \) increases and thereby y decreases. Indeed, differentiating \(\left[ B\right] \) we get

$$ \left[ B\right] _{\tau }^{\prime }=\frac{u^{\prime \prime }\left( y\right) y_{\tau }^{\prime }}{u\left( x\right) +Ku\left( y\right) }-\frac{u^{\prime }\left( y\right) \left( u^{\prime }\left( x\right) x_{\tau }^{\prime }+Ku^{\prime }\left( y\right) y_{\tau }^{\prime }\right) }{\left( u\left( x\right) +Ku\left( y\right) \right) ^{2}}+\frac{c^{2}\left( x_{\tau }^{\prime }+Ky_{\tau }^{\prime }\right) }{\left( f+c(x+Ky)\right) ^{2}}>0 $$

under DEU. First summands here is positive due to \(u^{\prime \prime }\left( y\right) y_{\tau }^{\prime }>0\), see part (i) of the theorem. Two of the remaining amount are

$$ y_{\tau }^{\prime }\nu _{y}+x_{\tau }^{\prime }\nu _{x}\equiv y_{\tau }^{\prime }\left[ -\frac{\left( u^{\prime }\left( y\right) \right) ^{2}}{\left( u\left( x\right) +Ku\left( y\right) \right) ^{2}}+\frac{1}{\left( \frac{f}{c}+(x+Ky)\right) ^{2}}\right] $$
$$+x_{\tau }^{\prime }\left[ -\frac{u^{\prime }\left( y\right) u^{\prime }\left( x\right) }{\left( u\left( x\right) +Ku\left( y\right) \right) ^{2}}+\frac{1}{\left( \frac{f}{c}+(x+Ky)\right) ^{2}}\right] . $$

Let’s compare two of the remaining amount \(\nu _{y}\) and \(\nu _{x}\). If \(-\frac{\left( u^{\prime }\left( y\right) \right) ^{2}}{\left( u\left( x\right) +Ku\left( y\right) \right) ^{2}}+\frac{1}{\left( \frac{f}{c}+(x+Ky)\right) ^{2}}<0\) then we have \(y_{\tau }^{\prime }\nu _{y}>-x_{\tau }^{\prime }\nu _{x}\) (using \(\frac{\left( u^{\prime }\left( y\right) \right) ^{2}}{\left( u\left( x\right) +Ku\left( y\right) \right) ^{2}}>\frac{\left( u^{\prime }\left( x\right) \right) ^{2}}{\left( u\left( x\right) +Ku\left( y\right) \right) ^{2}}\), i.e., \(u^{\prime }\left( z\right) \)is decreasing function). Then we get that positive summand \(x_{\tau }^{\prime }\) weighted with small positive or negative multiplier \(\nu _{x}\), whereas the negative summand \(y_{\tau }^{\prime }\) is weighted with bigger negative multiplier \(\nu _{y}\), while without multipliers \(x_{\tau }^{\prime }+Ky_{\tau }^{\prime }<0\) under IED by Theorem 1. Then \(y_{\tau }^{\prime }\nu _{y}+x_{\tau }^{\prime }\nu _{x}>0\).

We prove that \(-\frac{\left( u^{\prime }\left( y\right) \right) ^{2}}{\left( u\left( x\right) +Ku\left( y\right) \right) ^{2}}+\frac{1}{\left( \frac{f}{c}+(x+Ky)\right) ^{2}}<0\). So, bracket \(\left[ B\right] \) increases in \(\tau \), remaining positive, whereas its multiplier \(Ky_{\tau }^{\prime }\) is negative. At the same time, for all positive tariffs \(\left[ A\right] <\left[ B\right] \), because \(u^{\prime }\left( x\right) <u^{\prime }\left( y\right) \), other parts of these expressions being similar. Further, consider the sum \(x_{\tau }^{\prime }\cdot \left[ A\right] +Ky_{\tau }^{\prime }\cdot \left[ B\right] \), where the first positive summand is weighted with a smaller multiplier \(\left[ A\right] \) (positive or negative), then the negative summand \(Ky_{\tau }^{\prime }\). So, the sum remains negative (provided it was negative: \(x_{\tau }^{\prime }+Ky_{\tau }^{\prime }<0\) without any multipliers).

One can extend exactly the same reasoning to the case of subsidies, where \(\tau =1-s<1\), here welfare decreases in subsidy.

The global welfare change under \(DED-IEU\) – just exactly mirror the proof for the previous \(IED-DEU\) case. Only both signs change in the derivation: \(x_{\tau }^{\prime }+Ky_{\tau }^{\prime }>0\) for \(\tau \in (1,\,\tau _{a})\) under IED and \(\mathcal {E}_{u}^{\prime }\left( z\right) >0\) under DEU in assessing the sign of term \(\left[ A\right] \), instead of term \(\left[ B\right] \), both of them starting from a negative value, and \(\left[ A\right] \) decreasing.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aizenberg, N., Bykadorov, I. (2023). Reciprocal Import Tariffs in the Monopolistic Competition Open Economy. In: Olenev, N., Evtushenko, Y., Jaćimović, M., Khachay, M., Malkova, V. (eds) Optimization and Applications. OPTIMA 2023. Lecture Notes in Computer Science, vol 14395. Springer, Cham. https://doi.org/10.1007/978-3-031-47859-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47859-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47858-1

  • Online ISBN: 978-3-031-47859-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics