Skip to main content

Randomized Controlled Trials in Dental Public Health

  • Chapter
  • First Online:
Randomized Controlled Trials in Evidence-Based Dentistry

Abstract

Dental public health (DPH) is the science and art of preventing and controlling dental diseases and promoting dental health through organized community efforts. Some themes, such as sugar, fluoride, and dental sealants, are central to DPH and were the focus of clinical, field, and community intervention trials. We selected some of them in order to illustrate the importance of the epidemiological experimental studies for DPH. Randomized controlled trials (RCTs) should focus on outcomes that are clinically relevant to patients instead of surrogate outcomes. When reporting the results of RCTs, authors should use absolute numbers, report the base rate and avoid relative measures, such as the prevented fraction. All types of RCTs play an important role in DPH; however, community intervention trials are better suited for addressing questions related to population health. The 2019 Nobel Prize in Economics was won by three economists who used RCTs to determine how best to lift people out of poverty and improve their health. This is an excellent illustration of the power of the RCT to investigate the effectiveness of public policies and should serve as an inspiration for DPH researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Alternatively, the control group may represent not the natural history of the disease, but the history of the disease in a similar group who is receiving another intervention, usually the standard intervention (standard care).

  2. 2.

    Cost-effectiveness = ratio of the difference in costs between two interventions (incremental costs) and difference in the effects (incremental effects) between them [20]. It expresses how much more it is paid, comparing the intervention with the control group, in order to avoid one event of an undesirable outcome (one episode of dental pain, a loss of a tooth or a new cavitated dentine lesion, e.g.).

References

  1. Porta M. A dictionary of epidemiology. 6th ed. New York: Oxford University Press; 2014.

    Book  Google Scholar 

  2. American Dental Association. Specialty definitions. https://www.ada.org/en/ncrdscb/dental-specialties/specialty-definitions. Adopted Mar 2018.

  3. Centers for Disease Control and Prevention. Ten great public health achievements. United States, 1900–1999. https://www.cdc.gov/mmwr/preview/mmwrhtml/00056796.htm.

  4. Gordis L. Epidemiology. 5th ed. Philadelphia, PA: Elsevier Saunders; 2014.

    Google Scholar 

  5. Rothman KJ, Greenland S. Types of epidemiological studies. In: Rothman KJ, Greenland S, editors. Modern epidemiology. 2nd ed. Philadelphia, PA: Lippincott-Raven; 1998.

    Google Scholar 

  6. Arnold FA Jr, Dean HT, Jay P, Knutson JW. Effect of fluoridated public water supplies on dental caries prevalence. Public Health Rep. 1956;71(7):652–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ast DB, Finn SB, Mc CI. The Newburgh-Kingston caries fluorine study; dental findings after three years of water fluoridation. Am J Public Health Nations Health. 1950;40(6):716–24. https://doi.org/10.2105/ajph.40.6.716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Backer Dirks O, Houwink B, Kwant GW. The results of 6 1/2 years of artificial fluoridation of drinking water in The Netherlands. The Tiel-Culemborg experiment. Arch Oral Biol. 1961;5:284–300. https://doi.org/10.1016/0003-9969(61)90065-6.

    Article  CAS  PubMed  Google Scholar 

  9. Iheozor-Ejiofor Z, Worthington HV, Walsh T, O’Malley L, Clarkson JE, Macey R, et al. Water fluoridation for the prevention of dental caries. Cochrane Database Syst Rev. 2015;2015(6):CD010856. https://doi.org/10.1002/14651858.CD010856.pub2.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rugg-Gunn AJ, Spencer AJ, Whelton HP, Jones C, Beal JF, Castle P, et al. Critique of the review of ‘Water fluoridation for the prevention of dental caries’ published by the Cochrane Collaboration in 2015. Br Dent J. 2016;220(7):335–40. https://doi.org/10.1038/sj.bdj.2016.257.

    Article  CAS  PubMed  Google Scholar 

  11. Marinho VC, Higgins JP, Sheiham A, Logan S. Fluoride toothpastes for preventing dental caries in children and adolescents. Cochrane Database Syst Rev. 2003;2016(1):CD002278. https://doi.org/10.1002/14651858.CD002278.

    Article  Google Scholar 

  12. Santos AP, Nadanovsky P, Oliveira BH. A systematic review and meta-analysis of the effects of fluoride toothpastes on the prevention of dental caries in the primary dentition of preschool children. Community Dent Oral Epidemiol. 2013;41(1):1–12. https://doi.org/10.1111/j.1600-0528.2012.00708.x.

    Article  PubMed  Google Scholar 

  13. Santos AP, Oliveira BH, Nadanovsky P. Effects of low and standard fluoride toothpastes on caries and fluorosis: systematic review and meta-analysis. Caries Res. 2013;47(5):382–90. https://doi.org/10.1159/000348492.

    Article  CAS  PubMed  Google Scholar 

  14. Twetman S. Caries prevention with fluoride toothpaste in children: an update. Eur Arch Paediatr Dent. 2009;10(3):162–7. https://doi.org/10.1007/BF03262678.

    Article  CAS  PubMed  Google Scholar 

  15. Twetman S, Axelsson S, Dahlgren H, Holm AK, Kallestal C, Lagerlof F, et al. Caries-preventive effect of fluoride toothpaste: a systematic review. Acta Odontol Scand. 2003;61(6):347–55. https://doi.org/10.1080/00016350310007590.

    Article  CAS  PubMed  Google Scholar 

  16. Walsh T, Worthington HV, Glenny AM, Marinho VC, Jeroncic A. Fluoride toothpastes of different concentrations for preventing dental caries. Cochrane Database Syst Rev. 2019;3:CD007868. https://doi.org/10.1002/14651858.CD007868.pub3.

    Article  PubMed  Google Scholar 

  17. Wright JT, Hanson N, Ristic H, Whall CW, Estrich CG, Zentz RR. Fluoride toothpaste efficacy and safety in children younger than 6 years: a systematic review. J Am Dent Assoc. 2014;145(2):182–9. https://doi.org/10.14219/jada.2013.37.

    Article  PubMed  Google Scholar 

  18. Davies GM, Worthington HV, Ellwood RP, Bentley EM, Blinkhorn AS, Taylor GO, et al. A randomised controlled trial of the effectiveness of providing free fluoride toothpaste from the age of 12 months on reducing caries in 5-6 year old children. Community Dent Health. 2002;19(3):131–6.

    CAS  PubMed  Google Scholar 

  19. Tavener JA, Davies GM, Davies RM, Ellwood RP. The prevalence and severity of fluorosis in children who received toothpaste containing either 440 or 1,450 ppm F from the age of 12 months in deprived and less deprived communities. Caries Res. 2006;40(1):66–72. https://doi.org/10.1159/000088909.

    Article  CAS  PubMed  Google Scholar 

  20. Listl S, Grytten JI, Birch S. What is health economics? Community Dent Health. 2019;36(4):262–74. https://doi.org/10.1922/CDH_4581Listl13.

    Article  CAS  PubMed  Google Scholar 

  21. Sheiham A, James WP. Diet and dental caries: the pivotal role of free sugars reemphasized. J Dent Res. 2015;94(10):1341–7. https://doi.org/10.1177/0022034515590377.

    Article  CAS  PubMed  Google Scholar 

  22. Krasse B. Why was the Vipeholm study done and why have this symposium? Scand J Dent Res. 1989;97(2):99–102. https://doi.org/10.1111/j.1600-0722.1989.tb01436.x.

    Article  CAS  PubMed  Google Scholar 

  23. Gustafsson BE, Quensel CE, Lanke LS, Lundqvist C, Grahnen H, Bonow BE, et al. The Vipeholm dental caries study; the effect of different levels of carbohydrate intake on caries activity in 436 individuals observed for five years. Acta Odontol Scand. 1954;11(3–4):232–64. https://doi.org/10.3109/00016355308993925.

    Article  CAS  PubMed  Google Scholar 

  24. Guideline: sugars intake for adults and children. Geneva: World Health Organization; 2015.

    Google Scholar 

  25. OECD/FAO. OECD-FAO agricultural outlook 2019-2028. Rome: OECD Publishing, Paris/Food and Agriculture Organization of the United Nations; 2019. https://doi.org/10.1787/agr_outlook-2019-en.

    Book  Google Scholar 

  26. Birkhed D. Sugar substitutes—one consequence of the Vipeholm study? Scand J Dent Res. 1989;97(2):126–9. https://doi.org/10.1111/j.1600-0722.1989.tb01441.x.

    Article  CAS  PubMed  Google Scholar 

  27. Scheinin A, Makinen KK, Ylitalo K. Turku sugar studies. V. Final report on the effect of sucrose, fructose and xylitol diets on the caries incidence in man. Acta Odontol Scand. 1976;34(4):179–216. https://doi.org/10.3109/00016357608997711.

    Article  CAS  PubMed  Google Scholar 

  28. Moynihan PJ, Kelly SA. Effect on caries of restricting sugars intake: systematic review to inform WHO guidelines. J Dent Res. 2014;93(1):8–18. https://doi.org/10.1177/0022034513508954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jevdjevic M, Trescher AL, Rovers M, Listl S. The caries-related cost and effects of a tax on sugar-sweetened beverages. Public Health. 2019;169:125–32. https://doi.org/10.1016/j.puhe.2019.02.010.

    Article  CAS  PubMed  Google Scholar 

  30. Schwendicke F, Thomson WM, Broadbent JM, Stolpe M. Effects of taxing sugar-sweetened beverages on caries and treatment costs. J Dent Res. 2016;95(12):1327–32. https://doi.org/10.1177/0022034516660278.

    Article  CAS  PubMed  Google Scholar 

  31. Sowa PM, Keller E, Stormon N, Lalloo R, Ford PJ. The impact of a sugar-sweetened beverages tax on oral health and costs of dental care in Australia. Eur J Pub Health. 2019;29(1):173–7. https://doi.org/10.1093/eurpub/cky087.

    Article  Google Scholar 

  32. von Philipsborn P, Stratil JM, Burns J, Busert LK, Pfadenhauer LM, Polus S, et al. Environmental interventions to reduce the consumption of sugar-sweetened beverages and their effects on health. Cochrane Database Syst Rev. 2019;6:CD012292. https://doi.org/10.1002/14651858.CD012292.pub2.

    Article  Google Scholar 

  33. Moynihan P, Miller C. Beyond the chair: public health and governmental measures to tackle sugar. J Dent Res. 2020;99(8):871–6. https://doi.org/10.1177/0022034520919333.

    Article  CAS  PubMed  Google Scholar 

  34. Broadbent JM, Thomson WM, Poulton R. Trajectory patterns of dental caries experience in the permanent dentition to the fourth decade of life. J Dent Res. 2008;87(1):69–72. https://doi.org/10.1177/154405910808700112.

    Article  CAS  PubMed  Google Scholar 

  35. Nadanovsky P. Sugar consumption and dental caries. Br Dent J. 1994;177(8):280–1. https://doi.org/10.1038/sj.bdj.4808586.

    Article  CAS  PubMed  Google Scholar 

  36. Sheiham A. Why free sugars consumption should be below 15 kg per person per year in industrialised countries: the dental evidence. Br Dent J. 1991;171(2):63–5. https://doi.org/10.1038/sj.bdj.4807606.

    Article  CAS  PubMed  Google Scholar 

  37. Haworth S, Esberg A, Lif Holgerson P, Kuja-Halkola R, Timpson NJ, Magnusson PKE, et al. Heritability of caries scores, trajectories, and disease subtypes. J Dent Res. 2020;99(3):264–70. https://doi.org/10.1177/0022034519897910.

    Article  CAS  PubMed  Google Scholar 

  38. van Loveren C. Sugar restriction for caries prevention: amount and frequency. Which is more important? Caries Res. 2019;53(2):168–75. https://doi.org/10.1159/000489571.

    Article  PubMed  Google Scholar 

  39. Woodward M, Walker AR. Sugar consumption and dental caries: evidence from 90 countries. Br Dent J. 1994;176(8):297–302. https://doi.org/10.1038/sj.bdj.4808437.

    Article  CAS  PubMed  Google Scholar 

  40. Nadanovsky P, Sheiham A. Relative contribution of dental services to the changes in caries levels of 12-year-old children in 18 industrialized countries in the 1970s and early 1980s. Community Dent Oral Epidemiol. 1995;23(6):331–9. https://doi.org/10.1111/j.1600-0528.1995.tb00258.x.

    Article  CAS  PubMed  Google Scholar 

  41. Thaler RH, Sunstein CR. Improving decisions about health, wealth, and happiness. New York: Penguin Books; 2008.

    Google Scholar 

  42. Velema E, Vyth EL, Hoekstra T, Steenhuis IHM. Nudging and social marketing techniques encourage employees to make healthier food choices: a randomized controlled trial in 30 worksite cafeterias in The Netherlands. Am J Clin Nutr. 2018;107(2):236–46. https://doi.org/10.1093/ajcn/nqx045.

    Article  PubMed  Google Scholar 

  43. Marcano-Olivier M, Pearson R, Ruparell A, Horne PJ, Viktor S, Erjavec M. A low-cost Behavioural Nudge and choice architecture intervention targeting school lunches increases children’s consumption of fruit: a cluster randomised trial. Int J Behav Nutr Phys Act. 2019;16(1):20. https://doi.org/10.1186/s12966-019-0773-x.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kearns CE, Glantz SA, Schmidt LA. Sugar industry influence on the scientific agenda of the National Institute of Dental Research’s 1971 National Caries Program: a historical analysis of internal documents. PLoS Med. 2015;12(3):e1001798. https://doi.org/10.1371/journal.pmed.1001798.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Alvesalo L, Brummer R, Le Bell Y. On the use of fissure sealants in caries prevention. A clinical study. Acta Odontol Scand. 1977;35(3):155–9. https://doi.org/10.3109/00016357709056004.

    Article  CAS  PubMed  Google Scholar 

  46. Llodra JC, Bravo M, Delgado-Rodriguez M, Baca P, Galvez R. Factors influencing the effectiveness of sealants—a meta-analysis. Community Dent Oral Epidemiol. 1993;21(5):261–8. https://doi.org/10.1111/j.1600-0528.1993.tb00771.x.

    Article  CAS  PubMed  Google Scholar 

  47. Mitchell L, Murray JJ. Fissure sealants: a critique of their cost-effectiveness. Community Dent Oral Epidemiol. 1989;17(1):19–23. https://doi.org/10.1111/j.1600-0528.1989.tb01819.x.

    Article  CAS  PubMed  Google Scholar 

  48. Ripa LW. Sealants revisted: an update of the effectiveness of pit-and-fissure sealants. Caries Res. 1993;27(Suppl 1):77–82. https://doi.org/10.1159/000261608.

    Article  PubMed  Google Scholar 

  49. Ahovuo-Saloranta A, Forss H, Walsh T, Nordblad A, Makela M, Worthington HV. Pit and fissure sealants for preventing dental decay in permanent teeth. Cochrane Database Syst Rev. 2017;7:CD001830. https://doi.org/10.1002/14651858.CD001830.pub5.

    Article  PubMed  Google Scholar 

  50. Weintraub JA, Stearns SC, Rozier RG, Huang CC. Treatment outcomes and costs of dental sealants among children enrolled in Medicaid. Am J Public Health. 2001;91(11):1877–81. https://doi.org/10.2105/ajph.91.11.1877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Heller KE, Reed SG, Bruner FW, Eklund SA, Burt BA. Longitudinal evaluation of sealing molars with and without incipient dental caries in a public health program. J Public Health Dent. 1995;55(3):148–53. https://doi.org/10.1111/j.1752-7325.1995.tb02358.x.

    Article  CAS  PubMed  Google Scholar 

  52. Himida T, Promise U. School-based dental sealant programmes may be effective in caries prevention. Evid Based Dent. 2017;18(1):13–4. https://doi.org/10.1038/sj.ebd.6401218.

    Article  PubMed  Google Scholar 

  53. Muller-Bolla M, Lupi-Pegurier L, Bardakjian H, Velly AM. Effectiveness of school-based dental sealant programs among children from low-income backgrounds in France: a pragmatic randomized clinical trial. Community Dent Oral Epidemiol. 2013;41(3):232–41. https://doi.org/10.1111/cdoe.12011.

    Article  PubMed  Google Scholar 

  54. Deery C. Clinical practice guidelines proposed the use of pit and fissure sealants to prevent and arrest noncavitated carious lesions. J Evid Based Dent Pract. 2017;17(1):48–50. https://doi.org/10.1016/j.jebdp.2017.01.008.

    Article  PubMed  Google Scholar 

  55. Wright JT, Crall JJ, Fontana M, Gillette EJ, Novy BB, Dhar V, et al. Evidence-based clinical practice guideline for the use of pit-and-fissure sealants: a report of the American Dental Association and the American Academy of Pediatric Dentistry. J Am Dent Assoc. 2016;147(8):672–82.e12. https://doi.org/10.1016/j.adaj.2016.06.001.

    Article  PubMed  Google Scholar 

  56. Chestnutt IG, Hutchings S, Playle R, Morgan-Trimmer S, Fitzsimmons D, Aawar N, et al. Seal or varnish? A randomised controlled trial to determine the relative cost and effectiveness of pit and fissure sealant and fluoride varnish in preventing dental decay. Health Technol Assess. 2017;21(21):1–256. https://doi.org/10.3310/hta21210.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chestnutt IG, Playle R, Hutchings S, Morgan-Trimmer S, Fitzsimmons D, Aawar N, et al. Fissure seal or fluoride varnish? A randomized trial of relative effectiveness. J Dent Res. 2017;96(7):754–61. https://doi.org/10.1177/0022034517702094.

    Article  CAS  PubMed  Google Scholar 

  58. Frencken JE, Wolke J. Clinical and SEM assessment of ART high-viscosity glass-ionomer sealants after 8-13 years in 4 teeth. J Dent. 2010;38(1):59–64. https://doi.org/10.1016/j.jdent.2009.09.004.

    Article  CAS  PubMed  Google Scholar 

  59. Alsabek L, Al-Nerabieah Z, Bshara N, Comisi JC. Retention and remineralization effect of moisture tolerant resin-based sealant and glass ionomer sealant on non-cavitated pit and fissure caries: randomized controlled clinical trial. J Dent. 2019;86:69–74. https://doi.org/10.1016/j.jdent.2019.05.027.

    Article  CAS  PubMed  Google Scholar 

  60. Sheiham A. Is there a scientific basis for six-monthly dental examinations? Lancet. 1977;2(8035):442–4. https://doi.org/10.1016/s0140-6736(77)90620-1.

    Article  CAS  PubMed  Google Scholar 

  61. Riley P, Worthington HV, Clarkson JE, Beirne PV. Recall intervals for oral health in primary care patients. Cochrane Database Syst Rev. 2013;(12):CD004346. https://doi.org/10.1002/14651858.CD004346.pub4.

  62. Wang N, Marstrander P, Holst D, Ovrum L, Dahle T. Extending recall intervals-effect on resource consumption and dental health. Community Dent Oral Epidemiol. 1992;20(3):122–4. https://doi.org/10.1111/j.1600-0528.1992.tb01544.x.

    Article  CAS  PubMed  Google Scholar 

  63. INTERVAL Dental Recalls Trial. ISRCTN95933794. https://doi.org/10.1186/ISRCTN95933794.

  64. Clarkson JE, Pitts NB, Fee PA, Goulao B, Boyers D, Ramsay CR, et al. Examining the effectiveness of different dental recall strategies on maintenance of optimum oral health: the INTERVAL dental recalls randomised controlled trial. Br Dent J. 2021;230(4):236–43. https://doi.org/10.1038/s41415-021-2612-0.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Disease GBD, Injury I, Prevalence C. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789–858. https://doi.org/10.1016/S0140-6736(18)32279-7.

    Article  Google Scholar 

  66. Kassebaum NJ, Smith AGC, Bernabe E, Fleming TD, Reynolds AE, Vos T, et al. Global, regional, and national prevalence, incidence, and disability-adjusted life years for oral conditions for 195 countries, 1990-2015: a systematic analysis for the global burden of diseases, injuries, and risk factors. J Dent Res. 2017;96(4):380–7. https://doi.org/10.1177/0022034517693566.

    Article  CAS  PubMed  Google Scholar 

  67. Listl S, Galloway J, Mossey PA, Marcenes W. Global economic impact of dental diseases. J Dent Res. 2015;94(10):1355–61. https://doi.org/10.1177/0022034515602879.

    Article  CAS  PubMed  Google Scholar 

  68. Guyatt GH, Osoba D, Wu AW, Wyrwich KW, Norman GR. Clinical Significance Consensus Meeting Group. Methods to explain the clinical significance of health status measures. Mayo Clin Proc. 2002;77(4):371–83. https://doi.org/10.4065/77.4.371.

  69. Marinho VC, Worthington HV, Walsh T, Chong LY. Fluoride gels for preventing dental caries in children and adolescents. Cochrane Database Syst Rev. 2015;2021(6):CD002280. https://doi.org/10.1002/14651858.CD002280.pub2.

    Article  Google Scholar 

  70. Weyant RJ, Tracy SL, Anselmo TT, Beltran-Aguilar ED, Donly KJ, Frese WA, et al. Topical fluoride for caries prevention: executive summary of the updated clinical recommendations and supporting systematic review. J Am Dent Assoc. 2013;144(11):1279–91. https://doi.org/10.14219/jada.archive.2013.0057.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tickle M, O’Neill C, Donaldson M, Birch S, Noble S, Killough S, et al. A randomized controlled trial of caries prevention in dental practice. J Dent Res. 2017;96(7):741–6. https://doi.org/10.1177/0022034517702330.

    Article  CAS  PubMed  Google Scholar 

  72. O’Neill C, Worthington HV, Donaldson M, Birch S, Noble S, Killough S, et al. Cost-effectiveness of caries prevention in practice: a randomized controlled trial. J Dent Res. 2017;96(8):875–80. https://doi.org/10.1177/0022034517708968.

    Article  PubMed  Google Scholar 

  73. Braun PA, Quissell DO, Henderson WG, Bryant LL, Gregorich SE, George C, et al. A cluster-randomized, community-based, tribally delivered oral health promotion trial in Navajo head start children. J Dent Res. 2016;95(11):1237–44. https://doi.org/10.1177/0022034516658612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kaur M, Sprague S, Ignacy T, Thoma A, Bhandari M, Farrokhyar F. How to optimize participant retention and complete follow-up in surgical research. Can J Surg. 2014;57(6):420–7. https://doi.org/10.1503/cjs.006314.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sousa FSO, Santos APP, Nadanovsky P, Hujoel P, Cunha-Cruz J, Oliveira BH. Fluoride varnish and dental caries in preschoolers: a systematic review and meta-analysis. Caries Res. 2019;53(5):502–13. https://doi.org/10.1159/000499639.

    Article  CAS  PubMed  Google Scholar 

  76. U.S. Department of Health and Human Services, Public Health Service, Food and Drug Administration. Memo regarding K102973—silver dental arrest. Available at: https://www.accessdata.fda.gov/cdrh_docs/pdf10/K102973.pdf. Accessed 2 Aug 2021.

  77. Oliveira BH, Cunha-Cruz J, Rajendra A, Niederman R. Controlling caries in exposed root surfaces with silver diamine fluoride: a systematic review with meta-analysis. J Am Dent Assoc. 2018;149(8):671–9 e1. https://doi.org/10.1016/j.adaj.2018.03.028.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Oliveira BH, Rajendra A, Veitz-Keenan A, Niederman R. The effect of silver diamine fluoride in preventing caries in the primary dentition: a systematic review and meta-analysis. Caries Res. 2019;53(1):24–32. https://doi.org/10.1159/000488686.

    Article  CAS  PubMed  Google Scholar 

  79. Seifo N, Cassie H, Radford JR, Innes NPT. Silver diamine fluoride for managing carious lesions: an umbrella review. BMC Oral Health. 2019;19(1):145. https://doi.org/10.1186/s12903-019-0830-5.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Duangthip D, Wong MCM, Chu CH, Lo ECM. Caries arrest by topical fluorides in preschool children: 30-month results. J Dent. 2018;70:74–9. https://doi.org/10.1016/j.jdent.2017.12.013.

    Article  CAS  PubMed  Google Scholar 

  81. Mabangkhru S, Duangthip D, Chu CH, Phonghanyudh A, Jirarattanasopha V. A randomized clinical trial to arrest dentine caries in young children using silver diamine fluoride. J Dent. 2020;99:103375. https://doi.org/10.1016/j.jdent.2020.103375.

    Article  CAS  PubMed  Google Scholar 

  82. Fung MHT, Duangthip D, Wong MCM, Lo ECM, Chu CH. Randomized clinical trial of 12% and 38% silver diamine fluoride treatment. J Dent Res. 2018;97(2):171–8. https://doi.org/10.1177/0022034517728496.

    Article  CAS  PubMed  Google Scholar 

  83. Marinho VC, Chong LY, Worthington HV, Walsh T. Fluoride mouthrinses for preventing dental caries in children and adolescents. Cochrane Database Syst Rev. 2016;7:CD002284. https://doi.org/10.1002/14651858.CD002284.pub2.

    Article  PubMed  Google Scholar 

  84. Moberg Skold U, Birkhed D, Borg E, Petersson LG. Approximal caries development in adolescents with low to moderate caries risk after different 3-year school-based supervised fluoride mouth rinsing programmes. Caries Res. 2005;39(6):529–35. https://doi.org/10.1159/000088191.

    Article  PubMed  Google Scholar 

  85. Kerbusch AE, Kuijpers-Jagtman AM, Mulder J, Sanden WJ. Methods used for prevention of white spot lesion development during orthodontic treatment with fixed appliances. Acta Odontol Scand. 2012;70(6):564–8. https://doi.org/10.3109/00016357.2011.640282.

    Article  PubMed  Google Scholar 

  86. Benson PE, Parkin N, Dyer F, Millett DT, Germain P. Fluorides for preventing early tooth decay (demineralised lesions) during fixed brace treatment. Cochrane Database Syst Rev. 2019;2019(11) https://doi.org/10.1002/14651858.CD003809.pub4.

  87. Curnow MM, Pine CM, Burnside G, Nicholson JA, Chesters RK, Huntington E. A randomised controlled trial of the efficacy of supervised toothbrushing in high-caries-risk children. Caries Res. 2002;36(4):294–300. https://doi.org/10.1159/000063925.

    Article  CAS  PubMed  Google Scholar 

  88. Jackson RJ, Newman HN, Smart GJ, Stokes E, Hogan JI, Brown C, et al. The effects of a supervised toothbrushing programme on the caries increment of primary school children, initially aged 5-6 years. Caries Res. 2005;39(2):108–15. https://doi.org/10.1159/000083155.

    Article  CAS  PubMed  Google Scholar 

  89. Petersen PE, Hunsrisakhun J, Thearmontree A, Pithpornchaiyakul S, Hintao J, Jurgensen N, et al. School-based intervention for improving the oral health of children in southern Thailand. Community Dent Health. 2015;32(1):44–50.

    CAS  PubMed  Google Scholar 

  90. Santos APP, Oliveira BH, Nadanovsky P. A systematic review of the effects of supervised toothbrushing on caries incidence in children and adolescents. Int J Paediatr Dent. 2018;28(1):3–11. https://doi.org/10.1111/ipd.12334.

    Article  PubMed  Google Scholar 

  91. Innes NP, Clarkson JE, Douglas GVA, Ryan V, Wilson N, Homer T, et al. Child caries management: a randomized controlled trial in dental practice. J Dent Res. 2020;99(1):36–43. https://doi.org/10.1177/0022034519888882.

    Article  CAS  PubMed  Google Scholar 

  92. Maguire A, Clarkson JE, Douglas GV, Ryan V, Homer T, Marshman Z, et al. Best-practice prevention alone or with conventional or biological caries management for 3- to 7-year-olds: the FiCTION three-arm RCT. Health Technol Assess. 2020;24(1):1–174. https://doi.org/10.3310/hta24010.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Griffin SO, Jones K, Gray SK, Malvitz DM, Gooch BF. Exploring four-handed delivery and retention of resin-based sealants. J Am Dent Assoc. 2008;139(3):281–9; quiz 358. https://doi.org/10.14219/jada.archive.2008.0157.

    Article  PubMed  Google Scholar 

  94. Screening and interventions to prevent dental caries in children younger than age 5 years: a systematic review for the U.S. Preventive Services Task Force. 11 May 2021. https://www.uspreventiveservicestaskforce.org/uspstf/document/draft-evidence-review/prevention-of-dental-caries-in-children-younger-than-age-5-years-screening-and-interventions1. Accessed 22 Sept 2021.

  95. Glassman P, Subar P, Budenz AW. Managing caries in virtual dental homes using interim therapeutic restorations. J Calif Dent Assoc. 2013;41(10):744–7, 50–2.

    PubMed  Google Scholar 

  96. Kohli R, Clemens J, Mann L, Newton M, Glassman P, Schwarz E. Training dental hygienists to place interim therapeutic restorations in a school-based teledentistry program: Oregon’s virtual dental home. J Public Health Dent. 2021;82:229. https://doi.org/10.1111/jphd.12465.

    Article  PubMed  Google Scholar 

  97. Fleming TR, DeMets DL. Surrogate end points in clinical trials: are we being misled? Ann Intern Med. 1996;125(7):605–13. https://doi.org/10.7326/0003-4819-125-7-199610010-00011.

    Article  CAS  PubMed  Google Scholar 

  98. Pilot T. Periodontal diseases. In: Pine CM, editor. Community oral health. Oxford: Wright; 1997. p. 82–8.

    Google Scholar 

  99. Wennstrom JL, Papapanou PN, Grondahl K. A model for decision making regarding periodontal treatment needs. J Clin Periodontol. 1990;17(4):217–22. https://doi.org/10.1111/j.1600-051x.1990.tb00016.x.

    Article  CAS  PubMed  Google Scholar 

  100. Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine DH, et al. Periodontitis: consensus report of workgroup 2 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. J Clin Periodontol. 2018;45(Suppl 20):S162–70. https://doi.org/10.1111/jcpe.12946.

    Article  PubMed  Google Scholar 

  101. John MT. Health outcomes reported by dental patients. J Evid Based Dent Pract. 2018;18(4):332–5. https://doi.org/10.1016/j.jebdp.2018.09.001.

    Article  PubMed  Google Scholar 

  102. Prentice RL. Surrogate endpoints in clinical trials: definition and operational criteria. Stat Med. 1989;8(4):431–40. https://doi.org/10.1002/sim.4780080407.

    Article  CAS  PubMed  Google Scholar 

  103. Shaw WC. Dentofacial irregularities. In: Pine CM, editor. Community oral health. Oxford: Wright; 1997. p. 104–11.

    Google Scholar 

  104. Hujoel PP. Endpoints in periodontal trials: the need for an evidence-based research approach. Periodontol. 2000;2004(36):196–204. https://doi.org/10.1111/j.1600-0757.2004.03681.x.

    Article  Google Scholar 

  105. Nadanovsky P, Santos A, Lira-Junior R, Oliveira BH. Clinical accuracy data presented as natural frequencies improve dentists’ caries diagnostic inference: evidence from a randomized controlled trial. J Am Dent Assoc. 2018;149(1):18–24. https://doi.org/10.1016/j.adaj.2017.08.006.

    Article  PubMed  Google Scholar 

  106. Nadanovsky P, Costa LR, Santos APP. Risk communication in the context of clinical research. Braz Oral Res. 2020;34(Suppl 2):e078.

    Article  PubMed  Google Scholar 

  107. Tollefson J. Revolt of the randomistas. Nature. 2015;524:150–3.

    Article  CAS  PubMed  Google Scholar 

  108. Callaway E. ‘Randomistas’ who used controlled trials to fight poverty win economics Nobel. Nature. 2019; https://doi.org/10.1038/d41586-019-03125-y.

  109. Moher D, Hopewell S, Schulz KF, Montori V, Gotzsche PC, Devereaux PJ, et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c869. https://doi.org/10.1136/bmj.c869.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Campbell MK, Piaggio G, Elbourne DR, Altman DG, CONSORT Group. Consort 2010 statement: extension to cluster randomised trials. BMJ. 2012;345:e5661. https://doi.org/10.1136/bmj.e5661.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Nadanovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nadanovsky, P., dos Santos, A.P.P., Kohli, R. (2024). Randomized Controlled Trials in Dental Public Health. In: Kohli, R., Sehgal, H.S., Milgrom, P. (eds) Randomized Controlled Trials in Evidence-Based Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-031-47651-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47651-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47650-1

  • Online ISBN: 978-3-031-47651-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics