Skip to main content

Fractal Phototherapy in Maximizing Retina and Brain Plasticity

  • Chapter
  • First Online:
The Fractal Geometry of the Brain

Abstract

The neuroplasticity potential is reduced with aging and impairs during neurodegenerative diseases and brain and visual system injuries. This limits the brain’s capacity to repair the structure and dynamics of its activity after lesions. Maximization of neuroplasticity is necessary to provide the maximal CNS response to therapeutic intervention and adaptive reorganization of neuronal networks in patients with degenerative pathology and traumatic injury to restore the functional activity of the brain and retina.

Considering the fractal geometry and dynamics of the healthy brain and the loss of fractality in neurodegenerative pathology, we suggest that the application of self-similar visual signals with a fractal temporal structure in the stimulation therapy can reactivate the adaptive neuroplasticity and enhance the effectiveness of neurorehabilitation. This proposition was tested in the recent studies. Patients with glaucoma had a statistically significant positive effect of fractal photic therapy on light sensitivity and the perimetric MD index, which shows that methods of fractal stimulation can be a novel nonpharmacological approach to neuroprotective therapy and neurorehabilitation. In healthy rabbits, it was demonstrated that a long-term course of photostimulation with fractal signals does not harm the electroretinogram (ERG) and retina structure. Rabbits with modeled retinal atrophy showed better dynamics of the ERG restoration during daily stimulation therapy for a week in comparison with the controls. Positive changes in the retinal function can indirectly suggest the activation of its adaptive plasticity and the high potential of stimulation therapy with fractal visual stimuli in a nonpharmacological neurorehabilitation, which requires further study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott A. Fractals and art: in the hands of a master. Nature. 2006;439(7077):648–50. https://doi.org/10.1038/439648a.

    Article  CAS  PubMed  Google Scholar 

  2. Aguayo AJ, Rasminsky M, Bray GM, Carbonetto S, McKerracher L, Villegas-Perez MP, Vidal-Sanz M, Carter DA. Degenerative and regenerative responses of injured neurons in the central nervous system of adult mammals. Philos Trans R Soc Lond B Biol Sci. 1991;331:337–43.

    Article  CAS  PubMed  Google Scholar 

  3. Ajina S, Kennard C. Rehabilitation of damage to the visual brain. Rev Neurol (Paris). 2012;168(10):754–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aks D, Sprott J. Quantifying aesthetic preference for chaotic patterns. Empir Stud Arts. 1996;14(1):1–16.

    Article  Google Scholar 

  5. Alain C, Zendel BR, Hutka S, Bidelman GM. Turning down the noise: the benefit of musical training on the aging auditory brain. Hear Res. 2014;308:162–73.

    Article  PubMed  Google Scholar 

  6. Allen K, Blascovich J. Effects of music on cardiovascular reactivity among surgeons. JAMA. 1994;272:882–4.

    Article  CAS  PubMed  Google Scholar 

  7. Al-Nuaimi AH, Blūma M, Al-Juboori SS, Eke CS, Jammeh E, Sun L, Ifeachor E. Robust EEG based biomarkers to detect Alzheimer’s disease. Brain Sci. 2021;11(8):1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alwis DS, Rajan R. Environmental enrichment and the sensory brain: the role of enrichment in remediating brain injury. Front Syst Neurosci. 2014;8:156.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Amore FM, Paliotta S, Silvestri V, Piscopo P, Turco S, Reibaldi A. Biofeedback stimulation in patients with age-related macular degeneration: comparison between 2 different methods. Can J Ophthalmol. 2013;48(5):431–7.

    Article  PubMed  Google Scholar 

  10. Andersen JK. Oxidative stress in neurodegeneration: cause or consequence? Nat Med. 2004;10:S18–25.

    Article  PubMed  Google Scholar 

  11. Anderson S. Auditory training: evidence for neural plasticity in older adults. Perspect Hear Hear Disord Res Res Diagn. 2013;17:37–57.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Andreou C, Nolte G, Leicht G, Polomac N, Hanganu-Opatz IL, Lambert M, et al. Increased resting-state gamma-band connectivity in first-episode schizophrenia. Schizophr Bull. 2014;41:930–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Antón Álvarez X, Fuentes P. Cerebrolysin in Alzheimer’s disease. Drugs Today (Barc). 2011;47:487–513.

    Article  PubMed  Google Scholar 

  14. Arneson D, Zhang Y, Yang X, Narayanan M. Shared mechanisms among neurodegenerative diseases: from genetic factors to gene networks. J Genet. 2018;97(3):795–806.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ashok A, Singh N, Chaudhary S, Bellamkonda V, Kritikos AE, Wise AS, Rana N, McDonald D, Ayyagari R. Retinal degeneration and Alzheimer’s disease: an evolving link. Int J Mol Sci. 2020;21:7290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature. 2010;468:232–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Babiloni C, Lizio R, Marzano N, Capotosto P, Soricelli A, Triggiani A, et al. Brain neural synchronization and functional coupling in Alzheimer’s disease as revealed by resting state EEG rhythms. Int J Psychophysiol. 2016;103:88–102.

    Article  PubMed  Google Scholar 

  18. Bach M, Brigell MG, Hawlina M, Holder GE, Johnson MA, McCulloch DL, et al. ISCEV standard for clinical pattern electroretinography (PERG). Doc Ophthalmol. 2013;126(1):1–7.

    Article  PubMed  Google Scholar 

  19. Balshem H, Helfand M, Schünemann HJ, Oxmand AD, Kunz R, Brozek J, et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol. 2011;64(4):401–6.

    Article  PubMed  Google Scholar 

  20. Barber A, Antonetti D, Gardner TW. Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. Invest Ophthalmol Vis Sci. 2000;41:3561–8.

    CAS  PubMed  Google Scholar 

  21. Barlow JS. Rhymtic activity induced by photic stimulation in relation to intrinsic alpha activity of the brain in man. Electroencephalogr Clin Neurophysiol. 1960;12(2):317–26.

    Article  CAS  PubMed  Google Scholar 

  22. Baroncelli L, Braschi C, Spolidoro M, Begenisic T, Sale A, Maffei L. Nurturing brain plasticity: impact of environmental enrichment. Cell Death Differ. 2010;17:1092–103.

    Article  CAS  PubMed  Google Scholar 

  23. Baroncelli L, Lunghi C. Neuroplasticity of the visual cortex: in sickness and in health. Exp Neurol. 2021;335:113515.

    Article  PubMed  Google Scholar 

  24. Barton DJ, Kumar RG, Schuster AA, Juengst SB, Oh BM, Wagner AK. Acute cortisol profile associations with cognitive impairment after severe traumatic brain injury. Neurorehabil Neural Repair. 2021;35(12):1088–99.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Beier C, Hovhannisyan A, Weiser S, Kung J, Lee S, Lee D, et al. Deafferented adult rod bipolar cells create new synapses with photoreceptors to restore vision. J Neurosci. 2017;37(17):4635–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bengoetxea H, Ortuzar N, Bulnes S, Rico-Barrio I, Lafuente JV, Argandona EG. Enriched and deprived sensory experience induces structural changes and rewires connectivity during the postnatal development of the brain. Neural Plast. 2012;Article ID 305693:10.

    Google Scholar 

  27. Benoit C-E, Dalla Bella S, Farrugia N, Obrig H, Mainka S, Kotz SA. Musically cued gait-training improves both perceptual and motor timing in Parkinson’s disease. Front Neurosci. 2014;8, Article 494, 11 pages.

    Google Scholar 

  28. Bhattacharya J, Petsche H. Drawing on mind’s canvas: differences in cortical integration patterns between artists and non-artists. Hum Brain Mapping. 2005;26:1–14.

    Article  Google Scholar 

  29. Bigerelle M, Iost A. Fractal dimension and classification of music. Chaos Solitons Fractals. 2000;11:2179–92.

    Article  Google Scholar 

  30. Björkdahl A, Akerlund E, Svensson S, Esbjornsson E. A randomized study of computerized working memory training and effects on functioning in everyday life for patients with brain injury. Brain Inj. 2013;27(13):1658–65.

    Article  PubMed  Google Scholar 

  31. Blumenfeld-Katzir T, Pasternak O, Dagan M, Assaf Y. Diffusion MRI of structural brain plasticity induced by a learning and memory task. PloS One. 2011;6(6):e20678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bogolepova AN, Chukanova EI. The problem of neuroplasticity in modern neurology. Zh Nevrol Psikhiatr Im SS Korsakova. 2010;110(8):62–6. (In Russ.).

    Google Scholar 

  33. Bornstein NM, Guekht A, Vester J, Heiss W-D, Gusev E, Hömberg V, Rahlfs VW, Bajenaru O, Popescu BO, Muresanu D. Safety and efficacy of Cerebrolysin in early post-stroke recovery: a meta-analysis of nine randomized clinical trials. Neurol Sci. 2018;39:629–40.

    Article  PubMed  Google Scholar 

  34. Borowska J, Trenholm S, Awatramani GB. An intrinsic neural oscillator in the degenerating mouse retina. J Neurosci. 2011;31(13):5000–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bourne RR, Stevens GA, White RA, Smith JL, Flaxman SR, Price H, et al. Vision Loss Expert Group. Causes of vision loss worldwide, 1990-2010: a systematic analysis. Lancet Glob Health. 2013;1(6):e339–49.

    Article  PubMed  Google Scholar 

  36. Bouslama-Oueghlani L, Wehrle R, Sotelo C, Dusart I. The developmental loss of the ability of Purkinje cells to regenerate their axons occurs in the absence of myelin: an in vitro model to prevent myelination. J Neurosci. 2003;23:8318–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Braun Janzen T, Koshimori Y, Richard NM, Thaut MH. Rhythm and music-based interventions in motor rehabilitation: current evidence and future perspectives. Front Hum Neurosci. 2022;15:789467.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Buccellato KH, Nordstrom M, Murphy JM, Burdea GC, Polistico K, House G, Kim N, Grampurohit N, Sorensen J, Isaacson BM, Pasquina PF. A randomized feasibility trial of a novel, integrative and intensive virtual rehabilitation program for service members post-acquired brain injury. Mil Med. 2020;185:203–11.

    Google Scholar 

  39. Buell SJ, Coleman PD. Dendritic growth in the aged human brain and failure of growth in senile dementia. Science. 1979;206:854–6.

    Article  CAS  PubMed  Google Scholar 

  40. Buonomano DV, Merzenich MM. Cortical plasticity: from synapses to maps. Ann Rev Neurosci. 1998;21:149.

    Article  CAS  PubMed  Google Scholar 

  41. Burke SN, Barnes CA. Neural plasticity in the ageing brain. Nat Rev Neurosci. 2006;7:30–40.

    Article  CAS  PubMed  Google Scholar 

  42. Burns TC, Verfaillie CM. From mice to mind: strategies and progress intranslating neuroregeneration. Eur J Pharmacol. 2015;759:90–100.

    Article  CAS  PubMed  Google Scholar 

  43. Butz M, Wörgötter F, van Ooyen A. Activity-dependent structural plasticity. Brain Res Rev. 2009;60:287–305.

    Article  PubMed  Google Scholar 

  44. Calkins DJ, Horner PJ. The cell and molecular biology of glaucoma: axonopathy and the brain. Invest Ophthalmol Vis Sci. 2012;53(5):2482–4.

    Article  CAS  PubMed  Google Scholar 

  45. Calkins DJ. Adaptive responses to neurodegenerative stress in glaucoma. Prog Retin Eye Res. 2021;84:100953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Carcea I, Froemke RC. Cortical plasticity, excitatory-inhibitory balance and sensory perception. Prog Brain Res. 2013;207:65–90.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Castilho Á, Madsen E, Ambrósio AF, Veruki ML, Hartveit E. Diabetic hyperglycemia reduces Ca2+ permeability of extrasynaptic AMPA receptors in AII amacrine cells. J Neurophysiol. 2015;114(3):1545–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Castrén E, Antila H. Neuronal plasticity and neurotrophic factors in drug responses. Mol Psychiatry. 2017;22:1085–95.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Castrén E, Zafra F, Thoenen H, Lindholm D. Light regulates expression of brain-derived neurotrophic factor mRNA in rat visual cortex. Proc Natl Acad Sci U S A. 1992;89:9444–8.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cehajic-Kapetanovic J, Singh MS, Zrenner E, MacLaren RE. Bioengineering strategies for restoring vision. Nat Biomed Eng. 2022.

    Google Scholar 

  51. Cehajic-Kapetanovic J, Xue K, Martinez-Fernandez de la Camara C, Nanda A, Davies A, Wood LJ, Salvetti AP, et al. Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by mutations in RPGR. Nat Med. 2020;26(3):354–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chan JW, Chan NC, Sadun AA. Glaucoma as neurodegeneration in the brain. Eye Brain. 2021;13:21–8.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chen DF, Jhaveri S, Schneider GE. Intrinsic changes in developing retinal neurons result in regenerative failure of their axons. Proc Natl Acad Sci U S A. 1995;92(16):7287–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cheng KJ, Hsieh CM, Nepali K, Liou JP. Ocular disease therapeutics: design and delivery of drugs for diseases of the eye. J Med Chem. 2020;63:10533–93.

    Article  CAS  PubMed  Google Scholar 

  55. Cheng W, Law PK, Kwan HC, Cheng RS. Stimulation therapies and the relevance of fractal dynamics to the treatment of diseases. Open J Regener Med. 2014;3(4):73–94.

    Article  Google Scholar 

  56. Cheung N, Donaghue KC, Liew G, Rogers SL, Wang JJ, Lim SW, Jenkins AJ, Hsu W, Li Lee M, Wong TY. Quantitative assessment of early diabetic retinopathy using fractal analysis. Diabetes Care. 2009;32:106–10.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chiari M, Savi C, Battagliola E, Saviola D, De Tanti A. Visual rehabilitation with Retimax vision trainer in patients with severe Acquired brain injury: Report of two cases. Neuropsychol Trends. 2014;15:35–40.

    Article  Google Scholar 

  58. Chichagova V, Hallam D, Collin J, Zerti D, Dorgau B, Felemban M, et al. Cellular regeneration strategies for macular degeneration: past, present and future. Eye. 2018;32:946–71.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Choudhary M, Malek G. Rethinking nuclear receptors as potential therapeutic targets for retinal diseases. J Biomol Screen. 2016;21(10):1007–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Coombs JL, Chalupa LM. Plasticity of Retinal Ganglion Cells. In: Chalupa LM, Berardi N, Caleo M, Galli-Resta L, Pizzorusso T, editors. Cerebral Plasticity: New Perspectives. The MIT Press; 2013.

    Google Scholar 

  61. Costa M, Priplata AA, Lipsitz LA, Wu Z, Huang NE, Goldberger AL, et al. Noise and poise: Enhancement of postural complexity in the elderly with a stochastic-resonance-based therapy. Europhys Lett. 2007;77(6):68008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Crair MC, Mason CA. Reconnecting eye to brain. J Neurosci. 2016;36(42):10707–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Crowell AL, Ryapolova-Webb ES, Ostrem JL, Galifianakis NB, Shimamoto S, Lim DA, Starr PA. Oscillations in sensorimotor cortex in movement disorders: an electrocorticography study. Brain. 2012;135(Pt.2):615–30.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cuenca N, Fernández-Sánchez L, Campello L, Maneu V, De la Villa P, Lax P, Pinilla I. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res. 2014;43:17–75.

    Article  CAS  PubMed  Google Scholar 

  65. Dauwels J, Srinivasan K, Reddy MR, Musha T. Slowing and loss of complexity in Alzheimer’s EEG: two sides of the same coin? Int J Alzheimers’s Dis. 2011;2011, Art ID 539621, 10 pages.

    Google Scholar 

  66. Davis MF, Figueroa Velez DX, Guevarra RP, Yang MC, Habeeb M, Carathedathu MC, Gandhi SP. Inhibitory neuron transplantation into adult visual cortex creates a new critical period that rescues impaired vision. Neuron. 2015;86:1055–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dehn LB, Piefke M, Toepper M, Kohsik A, Rogalewski A, Dyck E, Botsch M, Schäbitz WR. Cognitive training in an everyday-like virtual reality enhances visual-spatial memory capacities in stroke survivors with visual field defects. Top Stroke Rehabil. 2020;27(6):442–52.

    Article  PubMed  Google Scholar 

  68. Delignieres D, Torre K. Fractal dynamics of human gait: a reassessment of the 1996 data of Hausdorff et al. J Appl Physiol. 2009;106:1272–9.

    Article  PubMed  Google Scholar 

  69. Della Santina L, Inman DM, Lupien CB, Horner PJ, Wong RO. Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma. J Neurosci. 2013;33(44):17444–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dey S, Proulx SR, Teotónio H. Adaptation to temporally fluctuating environments by the evolution of maternal effects. PLoS Biol. 2016;14(2):e1002388.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Di Ieva A, Esteban FJ, Grizzi F, Klonowski W, Martín-Landrove M. Fractals in the neurosciences, part II: clinical applications and future perspectives. Neuroscientist. 2015;21(1):30–43.

    Article  PubMed  Google Scholar 

  72. Di Ieva A, Grizzi F, Jelinek H, Pellionisz AJ, Losa GA. Fractals in the neurosciences, part I: general principles and basic neurosciences. Neuroscientist. 2014;20(4):403–17.

    Article  PubMed  Google Scholar 

  73. Diekmann H, Leibinger M, Fischer D. Do growth-stimulated retinal ganglion cell axons find their central targets after optic nerve injury? New insights by three-dimensional imaging of the visual pathway. Exp Neurol. 2013;248:254–7.

    Article  PubMed  Google Scholar 

  74. Dockx K, Bekkers EMJ, Van den Bergh V, Ginis P, Rochester L, Hausdorff JM, Mirelman A, Nieuwboer A. Virtual reality for rehabilitation in Parkinson’s disease. Cochrane Datab System Rev. 2016; Issue 12. Art. No: CD010760.

    Google Scholar 

  75. Drager UC, Hubel DH. Studies of visual function and its decay in mice with hereditary retinal degeneration. J Comp Neurol. 1978;180:85–114.

    Article  CAS  PubMed  Google Scholar 

  76. Duffau H. Brain plasticity: from pathophysiological mechanisms to therapeutic applications. J Clin Neurosci. 2006;13(9):885–97.

    Article  PubMed  Google Scholar 

  77. Dunnett SB, Björklund A. Prospects for new restorative and neuroprotective treatments in Parkinson’s disease. Nature. 1999;399(6738 Suppl):A32–9.

    Article  CAS  PubMed  Google Scholar 

  78. EGS Guidelines 5: European Glaucoma Society Terminology and Guidelines for Glaucoma, 5th Edition. Br J Ophthalmol. 2021;105(Suppl 1):1–169.

    Google Scholar 

  79. El-Danaf RN, Huberman AD. Characteristic patterns of dendritic remodeling in early-stage glaucoma: evidence from genetically identified retinal ganglion cell types. J Neurosci. 2015;35(6):2329–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Endo M, Hattori M, Toriyabe H, Ohno H, Kamiguchi H, Iino Y, Ozawa TJ. Optogenetic activation of axon guidance receptors controls direction. Sci Rep. 2016;36(42):10707–22.

    Google Scholar 

  81. Espinosa JS, Stryker M. Development and plasticity of the primary visual cortex. Neuron. 2012;75:230–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Esposito Veneruso P, Ziccardi L, Magli G, Falsini B, Magli A. Short-term effects of vision trainer rehabilitation in patients affected by anisometropic amblyopia: electrofunctional evaluation. Doc Ophthalmol. 2014;129(3):177–89.

    Article  PubMed  Google Scholar 

  83. Eysel UT. Adult cortical plasticity. Bochum: Ruhr-University Bochum; 2009. p. 141–7.

    Google Scholar 

  84. Eysel UT. Plasticity of receptive fields on early stages of the adult visual system. Perceptual Learning. Eds. M. Fahle and T. Poggio. 2002:43–65.

    Google Scholar 

  85. Field DJ, Brady N. Visual sensitivity, blur and the sources of variability in the amplitude spectra of natural scenes. Vis Res. 1997;37:3367–83.

    Article  CAS  PubMed  Google Scholar 

  86. Field DJ. Relationships between the statistics of natural images and the response properties of cortical cells. J Opt Soc Am. 1987;4(12):2379–94.

    Article  CAS  Google Scholar 

  87. Fink A, Benedek M. EEG alpha power and creative ideation. Neurosci Biobehav Rev. 2014;44:111–23.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Fink A, Grabner RH, Benedek M, Neubauer AC. Divergent thinking training is related to frontal electroencephalogram alpha synchronization. Eur J Neurosci. 2006;23:2241–6.

    Article  PubMed  Google Scholar 

  89. Foster PP, Rosenblatt KP, Kuljiš RO. Exercise-induced cognitive plasticity, implications for mild cognitive impairment and Alzheimer’s disease. Front Neurol. 2011;2:28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Francardo V, Schmitz Y, Sulzer D, Cenci MA. Neuroprotection and neurorestoration as experimental therapeutics for Parkinson’s disease. Exp Neurol. 2017;298:137–47.

    Article  CAS  PubMed  Google Scholar 

  91. Galetto V, Sacco K. Neuroplastic changes induced by cognitive rehabilitation in traumatic brain injury: a review. Neurorehabil Neural Repair. 2017;31(9):800–13.

    Article  PubMed  Google Scholar 

  92. Garita-Hernandez M, Lampič M, Chaffiol A, Guibbal L, Routet F, Santos-Ferreira T, Gasparini S, Borsch O, Gagliardi G, Reichman S, Picaud S, Sahel J-A, Goureau O, Ader M, Dalkara D, Duebel J. Restoration of visual function by transplantation of optogenetically engineered photoreceptors. Nat Commun. 2019;10:4524.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Gaub BM, Berry MH, Holt AE, Isacoff EY, Flannery JG. Optogenetic vision restoration using rhodopsin for enhanced sensitivity. Mol Ther. 2015;23(10):1562–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gauthier S, Proaño JV, Jia J, Froelich L, Vester JC, Doppler E. Cerebrolysin in mild-to-moderate Alzheimer’s disease: a meta-analysis of randomized controlled clinical trials. Dement Geriatr Cogn Disord. 2015;39(5-6):332–47.

    Article  CAS  PubMed  Google Scholar 

  95. Gauvain G, Akolkar H, Chaffiol A, Arcizet F, Khoei MA, Desrosiers M, et al. Optogenetic therapy: high spatiotemporal resolution and pattern discrimination compatible with vision restoration in non-human primates. Commun Biol. 2021;4:125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Geula C. Abnormalities of neural circuitry in Alzheimer’s disease: hippocampus and cortical cholinergic innervation. Neurology. 1998;51(Suppl 1):S18.

    CAS  PubMed  Google Scholar 

  97. Gidday JM. Adaptive plasticity in the retina: Protection against acute injury and neurodegenerative disease by conditioning stimuli. Cond Med. 2018;1(2):85–97.

    PubMed  PubMed Central  Google Scholar 

  98. Gilbert CD, Li W. Adult visual cortical plasticity. Neuron. 2012;75(2):250–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gjörloff K, Andréasson S, Ehinger B. Standardized full-field electroretinography in rabbits. Doc Ophthalmol. 2004;109(2):163–8.

    Article  PubMed  Google Scholar 

  100. Goldberger AL, Amaral LAN, Hausdorff JM, Ivanov PC, Peng CK, Stanley HE. Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci USA. 2002;99:2466–72.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Goldberger AL, Rigney DR, West BJ. Chaos and fractals in human physiology. Sci Am. 1990;262:42–9.

    Article  CAS  PubMed  Google Scholar 

  102. Goldberger AL. Complex systems. Proc Am Thorac Soc. 2006;3:467–72.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Goldberger AL. Fractal variability versus pathologic periodicity: complexity loss and stereotypy in disease. Perspect Biol Med. 1997;40:543–61.

    Article  CAS  PubMed  Google Scholar 

  104. Goo YS, Ahn KN, Song YJ, Ahn SH, Han SK, Ryu SB, et al. Spontaneous Oscillatory Rhythm in Retinal Activities of Two Retinal Degeneration (rd1 and rd10) Mice. Korean. J Physiol Pharmacol. 2011;15:415–22.

    Google Scholar 

  105. Goo YS, Park DJ, Ahn JR, Senok SS. Spontaneous oscillatory rhythms in the degenerating mouse retina modulate retinal ganglion cell responses to electrical stimulation. Front Cell Neurosci. 2016;12(9):512.

    Google Scholar 

  106. Gordon JA, Stryker MP. Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J Neurosci. 1996;16(10):3274–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K. Optical deconstruction of parkinsonian neural circuitry. Science. 2009;324(5925):354–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Green CS, Bavelier D. Action-video-game experience alters the spatial resolution of vision. Psychol Sci. 2007;18(1):88–94.

    Article  CAS  PubMed  Google Scholar 

  109. Gudlin J, Mueller I, Thanos S, Sabel BA. Computer based vision restoration therapy in glaucoma patients: a small open pilot study. Restor Neurol Neurosci. 2008;26(4-5):403–12.

    PubMed  Google Scholar 

  110. Gupta N, Yücel Y. Glaucoma as a neurodegenerative disease. Curr Opin Ophthalmol. 2007;18:110–4.

    Article  PubMed  Google Scholar 

  111. Gupta S, Zivadinov R, Ramanathan M, Weinstock-Guttman B. Optical coherence tomography and neurodegeneration: are eyes the windows to the brain? Expert Rev Neurother. 2016a;16:765–75.

    Article  CAS  PubMed  Google Scholar 

  112. Gupta V, Gupta VB, Chitranshi N, Gangoda S, Vander Wall R, Abbasi M, et al. One protein, multiple pathologies: multifaceted involvement of amyloid β in neurodegenerative disorders of the brain and retina. Cell Mol Life Sci. 2016b;73:4279–97.

    Article  CAS  PubMed  Google Scholar 

  113. Guy J, Feuer WJ, Davis JL, Porciatti V, Gonzalez PJ, Koilkonda RD, et al. Gene therapy for Leber hereditary optic neuropathy: low- and medium-dose visual results. Ophthalmology. 2017;124(11):1621–34.

    Article  PubMed  Google Scholar 

  114. Halley JM, Inchausti P. The increasing importance of 1/f noise as models of ecological variability. Fluctuation and Noise Letters. 2004;4(2):R1–26.

    Article  Google Scholar 

  115. Halley JM. Ecology, evolution and 1/f-noise. Trends Ecol Evol. 1996;11:33–7.

    Article  CAS  PubMed  Google Scholar 

  116. Hamer M, Chida Y. Physical activity and risk of neurodegenerative disease: a systematic review of prospective evidence. Psychol Med. 2009;39:3–11.

    Article  CAS  PubMed  Google Scholar 

  117. Hausdorff JM, Ashkenazy Y, Peng CK, Ivanov PC, Stanley HE, Goldberger AL. When human walking becomes random walking: fractal analysis and modeling of gait rhythm fluctuations. Phys A. 2001;302:138–47.

    Article  CAS  Google Scholar 

  118. Hausdorff JM, Mitchell SL, Firtion R, Peng CK, Cudkowicz ME, Wei JY, Goldberger AL. Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington’s disease. J Appl Physiol. 1997;82:262–9.

    Article  CAS  PubMed  Google Scholar 

  119. Hausdorff JM, Peng C-K, Ladin Z, Wei JY, Goldberger AL. Is walking a random walk? Evidence for long-range correlations in stride interval of human gait. J Appl Physiol. 1995;78:349–58.

    Article  CAS  PubMed  Google Scholar 

  120. Hausdorff JM, Purdon PL, Peng CK, Ladin Z, Wei JY, Goldberger AL. Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuation. J Appl Physiol. 1996;80:1448–57.

    Article  CAS  PubMed  Google Scholar 

  121. Haverkamp S, Michalakis S, Claes E, Seeliger M, Humphries P, Biel M, Feigenspan A. Synaptic plasticity in CNGA3(-/-)mice: cone bipolar cells react on the missing cone input and form ectopic synapses with rods. J Neurosci. 2006;26:5248–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hazard C, Kimport C, Johnson D. Fractal music. Research Project (1998–1999): http://www.tursiops.cc/fm

  123. He BJ. Scale-free properties of the functional magnetic resonance imaging signal during rest and task. J Neurosci. 2011;31(39):13786–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hebb DO. The effects of early experience on problem solving at maturity. Am Psychol. 1947;2:306–7.

    Google Scholar 

  125. Hebb DO. The organization of behavior. New York: Wiley; 1949.

    Google Scholar 

  126. Heinrichs-Graham E, Wilson TW, Santamaria PM, Heithoff SK, Torres-Russotto D, Hutter-Saunders JAL, et al. Neuromagnetic evidence of abnormal movement-related beta desynchronization in Parkinson’s disease. Cereb Cortex. 2014;24:2669–78.

    Article  PubMed  Google Scholar 

  127. Hensch T. Critical period plasticity in local cortical circuitries. Nat Rev Neurosci. 2005;6:877–88.

    Article  CAS  PubMed  Google Scholar 

  128. Hensch TK, Fagiolini M. Excitatory-inhibitory balance and critical period plasticity in developing visual cortex. Prog Brain Res. 2005;147:115–24.

    Article  CAS  PubMed  Google Scholar 

  129. Herholz SC, Zatorre RJ. Musical training as a framework for brain plasticity: behavior, function, and structure. Neuron. 2012;76:486–502.

    Article  CAS  PubMed  Google Scholar 

  130. Herpich F, Melnick MD, Agosta S, Huxlin KR, Tadin D, Battelli L. Boosting learning efficacy with noninvasive brain stimulation in intact and brain-damaged humans. J Neurosci. 2019;39(28):5551–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Herz DM, Florin E, Christensen MS, Reck C, Barbe MT, Tscheuschler MK, et al. Dopamine replacement modulates oscillatory coupling between premotor and motor cortical areas in Parkinson’s disease. Cereb Cortex. 2014;24(11):2873.

    Article  PubMed  Google Scholar 

  132. Hooks B, Chen C. Critical periods in the visual system: changing views for a model of experience-dependent plasticity. Neuron. 2007;56:312–26.

    Article  CAS  PubMed  Google Scholar 

  133. Hornero R, Abásolo D, Escudero J, Gómes C. Nonlinear analysis of electroencephalogram and magnetoencephalogram recordings in patients with Alzheimer’s disease. Phil Trans R Soc A. 1887;2009(367):317–36.

    Google Scholar 

  134. Hove MJ, Suzuki K, Uchitomi H, Orimo S, Miyake Y. Interactive rhythmic auditory stimulation reinstates natural 1/f timing in Gait of Parkinson’s patients. PLoS One. 2012;7(3):e32600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hsieh J, Gage FH. Chromatin remodeling in neural development and plasticity. Curr Opin Cell Biol. 2005;17(6):664–71.

    Article  CAS  PubMed  Google Scholar 

  136. Hsü KJ, Hsü A. Self-similarity of the 1/f Noise called music. Proc Natl Acad Sci U S A. 1991;88:3507–9.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Hu K, van Someren EJ, Shea SA, Scheer FA. Reduction of scale invariance of activity fluctuations with aging and Alzheimer’s disease: involvement of the circadian pacemaker. Proc Natl Acad Sci USA. 2009;106:2490–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Huang L, Zhang D, Ji J, Wang Y, Zhang R. Central retina changes in Parkinson’s disease: a systematic review and meta-analysis. J Neurol. 2021;268(12):4646–54.

    Article  PubMed  Google Scholar 

  139. Huang TL, Charyton C. A comprehensive review of the psychological effects of brainwave entrainment. Altern Ther Health Med. 2008;14(5):38–50.

    PubMed  Google Scholar 

  140. Hubel DH, Wiesel TN. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol. 1970;206:419–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hunt N, McGrath D, Stergiou N. The influence of auditory-motor coupling on fractal dynamics in human gait. Sci Rep. 2014;4:5879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Indrieri A, Pizzarelli R, Franco B, De Leonibus E. Dopamine, alpha-synuclein, and mitochondrial dysfunctions in Parkinsonian eyes. Front Neurosci. 2020;14:567129.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Ivanov PC, Amaral LA, Goldberger AL, Stanley HE. Stochastic feedback and the regulation of biological rhythms. Europhys Lett. 1998;43:363–8.

    Article  CAS  Google Scholar 

  144. Jacquin-Courtois S, Bays PM, Salemme R, Leff AP, Husain M. Rapid compensation of visual search strategy in patients with chronic visual field defects. Cortex. 2013;49(4):994–1000.

    Article  PubMed  Google Scholar 

  145. Jausovec N, Jausovec K, Gerlic I. The influence of Mozart’s music on brain activity in the process of learning. Clin Neurophysiol. 2006;117(12):2703–14.

    Article  PubMed  Google Scholar 

  146. Jenkins JS. The Mozart effect. J R Soc Med. 2001;94(4):170–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jeong J. EEG dynamics in patients with Alzheimer’s disease. Clin Neurophysiol. 2004;115(7):1490–505.

    Article  PubMed  Google Scholar 

  148. Jin K, Simpkins JW, Ji X, Leis M, Stambler I. The Critical need to promote research of aging and aging-related diseases to improve health and longevity of the elderly population. Aging Dis. 2015;6(1):1–5.

    PubMed  Google Scholar 

  149. Jindal V. Interconnection between brain and retinal neurodegenerations. Mol Neurobiol. 2015;51:885–92.

    Article  CAS  PubMed  Google Scholar 

  150. Jolij J, Meurs M. Music alters visual perception. PLoS ONE. 2011;6:e18861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Joltikov KA, Sesi CA, de Castro VM, Davila JR, Anand R, Khan SM, Farbman N, Jackson GR, Johnson CA, Gardner TW. Disorganization of Retinal Inner Layers (DRIL) and neuroretinal dysfunction in early diabetic retinopathy. Invest Ophthalmol Vis Sci. 2018;59:5481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Jones BW, Kondo M, Terasaki H, Lin Y, McCall M, Marc RE. Retinal remodeling. Jpn J Ophthalmol. 2012;56:289–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kaipust JP, McGrath D, Mukherjee M, Stergiou N. Gait variability is altered in older adults when listening to auditory stimuli with differing temporal structures. Ann Biomed Eng. 2013;41:1595–603.

    Article  PubMed  Google Scholar 

  154. Kalaria RN, Akinyemi R, Ihara M. Stroke injury, cognitive impairment and vascular dementia. Biochim Biophys Acta. 2016;1862(5):915–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kalesnykas G, Oglesby EN, Zack DJ, Cone FE, Steinhart MR, Tian J, et al. Retinal ganglion cell morphology after optic nerve crush and experimental glaucoma. Invest Ophthalmol Vis Sci. 2012;53:3847–57.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Kantor A, McClements ME, Peddle CF, Frya LE, Salman A, Cehajic-Kapetanovic J, et al. CRISPR genome engineering for retinal diseases. Prog Mol Biol Transl Sci. 2021;182:29–79.

    Article  CAS  PubMed  Google Scholar 

  157. Kasten E, Sabel BA. Visual field enlargement after computer training in brain-damaged patients with homonymous deficits: an open pilot trial. Restor Neurol Neurosci. 1995;8(3):113–27.

    CAS  PubMed  Google Scholar 

  158. Kasten E, Wüst S, Behrens-Baumann W, Sabel BA. Computer-based training for the treatment of partial blindness. Nat Med. 1998;4(9):1083–7.

    Article  CAS  PubMed  Google Scholar 

  159. Katz LC, Shatz CJ. Synaptic activity and the construction of cortical circuits. Science. 1996;274(5290):1133–8.

    Article  CAS  PubMed  Google Scholar 

  160. Keirstead SA, Rasminsky M, Fukuda Y, Carter DA, Aguayo AJ, Vidal-Sanz M. Electrophysiologic responses in hamster superior colliculus evoked by regenerating retinal axons. Science. 1989;246:255–7.

    Article  CAS  PubMed  Google Scholar 

  161. Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, Franceschi C, Lithgow GJ, Morimoto RI, Pessin JE, Rando TA, Richardson A, Schadt EE, Wyss-Coray T, Sierra F. Geroscience: linking aging to chronic disease. Cell. 2014;159(4):709–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kesler A. Neuro-ophthalmology: the eye as a window to the brain. Harefuah. 2013;152:66–8. (in Hebrew)

    PubMed  Google Scholar 

  163. Kimberley TJ, Samargia S, Moore LG, Shakakya JK, Lang CE. Comparison of amounts and types of practice during rehabilitation for traumatic brain injury and stroke. J Rehabil Res Dev. 2010;47(9):851–62.

    Article  PubMed  Google Scholar 

  164. Kirpichnikov MP, Ostrovskiy MA. Optogenetics and prosthetic treatment of retinal degeneration. Vestn Ophthalmol. 2015;131(3):99–111. (in Russ.)

    CAS  Google Scholar 

  165. Kirpichnikov MP, Ostrovskiy MA. Optogenetics and vision. Vestnik Rossijskoj Akademii Nauk. 2019;89(2):125–30.

    Google Scholar 

  166. Kovalenko EA, Bogolepova AN. Dynamics of post-stroke cognitive deficiency and the main factors influencing it. Farmateka. 2018;5(358):46–52. (in Russ.).

    Google Scholar 

  167. Kraus N, Chandrasekaran B. Music training for the development of auditory skills. Nat Rev Neurosci. 2010;11:599–605.

    Article  CAS  PubMed  Google Scholar 

  168. Kumano H, Horie H, Shidara T, Kuboki T, Suematsu H, Yasushi M. Treatment of a depressive disorder patient with EEG-driven photic stimulation. Biofeedback Self Regul. 1996;21(4):323–34.

    Article  CAS  PubMed  Google Scholar 

  169. Laaksonen K, Helle L, Parkkonen L, Kirveskari E, Mäkelä JP, Mustanoja S, Tatlisumak T, Kaste M, Forss N. Alterations in spontaneous brain oscillations during stroke recovery. PLoS One. 2013;8:e61146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lai JQ, Shi YC, Lin S, Chen XR. Metabolic disorders on cognitive dysfunction after traumatic brain injury. Trends Endocrinol Metab. 2022;33(7):451–62.

    Article  CAS  PubMed  Google Scholar 

  171. Lane JD, Kasian SJ, Owens JE, Marsh GR. Binaural auditory beats affect vigilance performance and mood. Physiol Behav. 1998;63(2):249–52.

    Article  CAS  PubMed  Google Scholar 

  172. Larochelle RD, Mann SE, Ifantides C. 3D printing in eye care. Ophthalmol Ther. 2021;10:733–52.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Lawlor M, Danesh-Meyer H, Levin LA, Davagnanam I, De Vita E, Plant GT. Glaucoma and the brain: Trans-synaptic degeneration, structural change, and implications for neuroprotection. Surv Ophthalmol. 2018;63:296–306.

    Article  PubMed  Google Scholar 

  174. Lebrun-Julien F, Di Polo A. Molecular and cell-based approaches for neuroprotection in glaucoma. Optom Vis Sci. 2008;85(6):417–24.

    Article  PubMed  Google Scholar 

  175. LeGates TA, Fernandez DC, Hattar S. Light as a central modulator of circadian rhythms, sleep and affect. Nat Rev Neurosci. 2014;15:443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Lehnertz K. Non-linear time series analysis of intracranial EEG recordings in patients with epilepsy – an overview. Int J Psychophysiol. 1999;34:45–52.

    Article  CAS  PubMed  Google Scholar 

  177. Leucht S, Helfer B, Gartlehner G, Davis JM. How effective are common medications—a perspective based on meta-analyses of major drugs. BioMed Centeral Ltd—BMC Med. 2015;13(1):253.

    Google Scholar 

  178. Li Y, Tong S, Liu D, Gai Y, Wang X, Wang J, Qui Y, Zhu Y. Abnormal EEG complexity in patients with schizophrenia and depression. Clin Neurophysiol. 2008;119(6):1232–41.

    Article  PubMed  Google Scholar 

  179. Lim JKH, Li Q-X, He Z, Vingrys AJ, Wong VHY, Currier N, Mullen J, Bui BV, Nguyen CTO. The eye as a biomarker for Alzheimer’s disease. Front Neurosci. 2016;10:536.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Lin JY, Lin MZ, Steinbach P, Tsien RY. Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys J. 2009;96(5):1803–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Lipsitz LA, Goldberger AL. Loss of ‘complexity’ and aging. JAMA. 1992;267(13):1806–9.

    Article  CAS  PubMed  Google Scholar 

  182. Liu X, Zhang C, Ji Z, Ma Y, Shang X, Zhang Q, Zheng W, Li X, Gao J, Wang R, Wang J, Yu H. Multiple characteristics analysis of Alzheimer’s electroencephalogram by power spectral density and Lempel-Ziv complexity. Cogn Neurodyn. 2016;10(2):121–33.

    Article  PubMed  Google Scholar 

  183. London A, Benhar I, Schwartz M. The retina as a window to the brain-from eye research to CNS disorders. Nat Rev Neurol. 2013;9(1):44–53. https://doi.org/10.1038/nrneurol.2012.227.

    Article  CAS  PubMed  Google Scholar 

  184. Lorber B, Hsiao WK, Hutchings IM, Martin KR. Adult rat retinal ganglion cells and glia can be printed by piezoelectric inkjet printing. Biofabrication. 2014;6(1):015001.

    Article  CAS  PubMed  Google Scholar 

  185. Lorber B, Hsiao WK, Martin KR. Three-dimensional printing of the retina. Curr Opin Ophthalmol. 2016;27(3):262–7.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Lowen SB, Ozaki T, Kaplan E, Saleh BEA, Teich MC. Fractal features of dark, maintained, and driven neural discharges in the cat visual system. Methods. 2001;24:377–94.

    Article  CAS  PubMed  Google Scholar 

  187. Lupo G, Gaetani S, Cacci E, Biagioni S, Negri R. Molecular signatures of the aging brain: finding the links between genes and phenotypes. Neurotherapeutics. 2019;16:543–53.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Ly T, Gupta N, Weinreb RN, Kaufman PL, Yücel YH. Dendrite plasticity in the lateral geniculate nucleus in primate glaucoma. Vis Res. 2011;51(2):243–50.

    Article  PubMed  Google Scholar 

  189. Ma F, Wu T, Zhao J, Ji L, Song A, Zhang M, Huang G. Plasma homocysteine and serum folate and vitamin b12 levels in mild cognitive impairment and Alzheimer’s disease: a case-control study. Nutrients. 2017;9(7):725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Maggio MG, De Luca R, Molonia F, Porcari B, Destro M, Casella C, Salvati R, Bramanti P, Calabro RS. Cognitive rehabilitation in patients with traumatic brain injury: a narrative review on the emerging use of virtual reality. J Clin Neurosci. 2019;61:1–4.

    Article  PubMed  Google Scholar 

  191. Maggio MG, Torrisi M, Buda A, De Luca R, Piazzitta D, Cannavò A, Leo A, Milardi D, Manuli A, Calabro RS. Effects of robotic neurorehabilitation through lokomat plus virtual reality on cognitive function in patients with traumatic brain injury: a retrospective case-control study. Int J Neurosci. 2020;130(2):117–23.

    Article  PubMed  Google Scholar 

  192. Mahalakshmi B, Maurya N, Lee SD, Bharath KV. Possible neuroprotective mechanisms of physical exercise in neurodegeneration. Int J Mol Sci. 2020;21(16):5895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Mahncke HW, Bronstone A, Merzenich MM. Brain plasticity and functional losses in the aged: scientific bases for a novel intervention. Prog Brain Res. 2006a;157:81–109.

    Article  PubMed  Google Scholar 

  194. Mahncke HW, Connor BB, Appelman J, Ahsanuddin ON, Hardy JL, Wood RA, Joyce NM, Boniske T, Atkins SM, Merzenich MM. Memory enhancement in healthy older adults using a brain plasticity-based training program: a randomized, controlled study. Proc Natl Acad Sci U S A. 2006b;103(33):12523–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Mancino R, Cesareo M, Martucci A, Di Carlo E, Ciuffoletti E, Giannini C, Morrone LA, Nucci C, Garaci F. Neurodegenerative process linking the eye and the brain. Curr Med Chem. 2019;26(20):3754–63.

    Article  CAS  PubMed  Google Scholar 

  196. Mandelbrot B. The fractal geometry of nature. Macmillan; 1983.

    Book  Google Scholar 

  197. Mandelbrot BB. Fractals and an art for the sake of science. In: Emmer M, editor. The visual mind. Cambridge, MA: MIT Press; 1993. p. 11–4.

    Google Scholar 

  198. Maniglia M, Soler V, Cottereau B, Trotter Y. Spontaneous and training-induced cortical plasticity in MD patients: Hints from lateral masking. Sci Report. 2018;8:90.

    Article  Google Scholar 

  199. Manor B, Lipsitz LA. Physiologic complexity and aging: implications for physical function and rehabilitation. Prog Neuropsychopharmacol Biol Psychiatry. 2013;45:287–93.

    Article  PubMed  Google Scholar 

  200. Marchesi N, Fahmideh F, Boschi F, Pascale A, Barbieri A. Ocular neurodegenerative diseases: interconnection between retina and cortical areas. Cells. 2021;10(9):2394.

    Google Scholar 

  201. Margolis DJ, Detwiler PB. Cellular origin of spontaneous ganglion cell spike activity in animal models of retinitis pigmentosa. J Ophthalmol. 2011;2011:Article ID 507037.

    Google Scholar 

  202. Margolis DJ, Gartland AJ, Singer JH, Detwiler PB. Network oscillations drive correlated spiking of ON and OFF ganglion cells in the rd1 mouse model of retinal degeneration. PLoS One. 2014;9(1):e86253.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Marmelat V, Torre K, Beek PJ, Daffertshofer A. Persistent fluctuations in stride intervals under fractal auditory stimulation. PLoS One. 2014;9:e91949.

    Google Scholar 

  204. Marrone DF, Le Boutillier JC, Petit TL. Changes in synaptic ultrastructure during reactive synaptogenesis in the rat dentate gyrus. Brain Res. 2004;1005(1–2):124–36.

    Google Scholar 

  205. Maya-Vetencourt JF, Origlia N. Visual cortex plasticity: a complex interplay of genetic and environmental influences. Neural Plast. 2012;14: Article ID 631965.

    Google Scholar 

  206. Maya-Vetencourt JF, Tiraboschi E, Spolidoro M, Castrén E, Maffei L. Serotonin triggers a transient epigenetic mechanism that reinstates adult visual cortex plasticity in rats. Eur J Neurosci. 2011;33:49–57.

    Article  PubMed  Google Scholar 

  207. McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Rzekov R, Bach M. ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol. 2015;130(1):1–12.

    Article  PubMed  Google Scholar 

  208. Meleth AD, Mettu P, Agrón E, Chew EY, Sadda SR, Ferris FL, Wong WT. Changes in retinal sensitivity in geographic atrophy progression as measured by microperimetry. Invest Ophthalmol Vis Sci. 2011;52(2):1119–26.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Menon A, Vijayavenkataraman S. Novel vision restoration techniques: 3D bioprinting, gene and stem cell therapy, optogenetics, and the bionic eye. Artif Organs. 2022;46(8):1463–74.

    Article  PubMed  Google Scholar 

  210. Menzler J, Zeck G. Network oscillations in rod-degenerated mouse retinas. J Neurosci. 2011;31(6):2280–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Merabet LB, Pascual-Leone A. Neural reorganization following sensory loss: the opportunity of change. Nat Rev Neurosci. 2010;11(1):44–52.

    Google Scholar 

  212. Merzenich M. Soft-wired: how the new science of brain plasticity can change your life, 2nd ed. Parnassus Publishing; 2013, 266P.

    Google Scholar 

  213. Meshkini M, Meshkini A, Sadeghi-Bazargani H. Use of neuroprotective agents for traumatic brain injury. In: Zhou Y, editor. Traumatic brain injury. IntechOpen; 2019.

    Google Scholar 

  214. Messinis L, Kosmidis MH, Nasios G, Dardiotis E, Tsaousides T. Cognitive neurorehabilitation in acquired neurological brain injury. Behav Neurol. 2019:8241951.

    Google Scholar 

  215. Miura G, Sugawara T, Kawasaki Y, Tatsumi T, Nizawa T, Baba T, Hanaoka H, Yamamoto S. Clinical trial to evaluate safety and efficacy of transdermal electrical stimulation on visual functions of patients with retinitis pigmentosa. Sci Rep. 2019;9(1):11668.

    Article  PubMed  PubMed Central  Google Scholar 

  216. Mizutani M, Gerhardinger C, Lorenzi M. Muller cell changes in human diabetic retinopathy. Diabetes. 1998;47(3):445–9.

    Article  CAS  PubMed  Google Scholar 

  217. Mora F, Segovia G, del Arco A. Aging, plasticity and environmental enrichment: structural changes and neurotransmitter dynamics in several areas of the brain. Brain Res Rev. 2007;55(1):78–88.

    Article  CAS  PubMed  Google Scholar 

  218. Morales MU, Saker S, Amoaku WM. Bilateral eccentric vision training on pseudovitelliform dystrophy with microperimetry biofeedback. BMJ Case Rep. 2015;2015:bcr2014207969.

    Google Scholar 

  219. Morgan JE. Retina ganglion cell degeneration in glaucoma: an opportunity missed? A review. Clin Exp Ophthalmol. 2012;40:364–8.

    Article  PubMed  Google Scholar 

  220. Morris RGDO. Hebb: the organization of behavior, Wiley: New York; 1949. Brain Res Bull. 1999;50(5-6):437.

    Article  CAS  PubMed  Google Scholar 

  221. Morrison JH, Baxter MG. The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci. 2012;13(4):240–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Moucha R, Kilgard MP. Cortical plasticity and rehabilitation. Prog Brain Res. 2006;157:111–22.

    Article  PubMed  Google Scholar 

  223. Nagappan PG, Chen H, Wang DY. Neuroregeneration and plasticity: a review of the physiological mechanisms for achieving functional recovery postinjury. Mil Med Res. 2020;7(1):30.

    PubMed  PubMed Central  Google Scholar 

  224. Namazi H, Kulish V, Akrami A. The analysis of the influence of fractal structure of stimuli on fractal dynamics in fixational eye movements and EEG signal. Sci Rep. 2016;6:26639.

    Google Scholar 

  225. Neroev VV, Kolchin AA, Kiseleva TN, Zueva MV, Tsapenko IV, Ryabina MV et al. Correlations of the functional activity of the retina and retinal blood flow in patients with diabetic retinopathy. Russ Ophthalmol J. 2013;6(2):58–64 (In Russ.).

    Google Scholar 

  226. Neroev VV, Zueva MV, Kalamkarov GR. Molecular mechanisms of retinal ischemia. Vestn Oftalmol. 2010b;126(3):59–64. (In Russ.).

    Google Scholar 

  227. Neroev VV, Zueva MV, Manakhov PA, Neroeva NV, Shan AV, Chujkin NK, Fadeev DV. Method for improving the functional activity of the visual system using fractal phototherapy using a stereoscopic display. RU2773684C1, Priority 2021.10.04, 2022a.

    Google Scholar 

  228. Neroev VV, Zueva MV, Neroeva NN, Fadeev DV, Tsapenko IV, Okhotsimskaya TD, Kotelin VI, Pavlenko TA, Chesnokova NB. Impact of fractal visual stimulation on a healthy rabbit retina: functional, morphometric and biochemical studies. Russ Ophthalmol J. 2022c;15(3):99–111.

    Article  Google Scholar 

  229. Neroev VV, Zueva MV, Neroeva NV, Fadeev DV, Kotelin VI, Sumin SL, Buryi EV. [Stimulator with complex-structured optical signals and method for operation thereof]. RU211969U1, Priority 2022-03-31, 2022b.

    Google Scholar 

  230. Neroev VV, Zueva MV, Tsapenko IV, Ryabina MV, Kiseleva OA, Kalamkarov GR. Ischemic aspects of the pathogenesis of retinal diseases. Russ Ophthalmol J. 2010a; 3(1):42–49 (In Russ.).

    Google Scholar 

  231. Neroeva NV, Neroev VV, Ilyukhin PA, Karmokova AG, Losanova OA, Ryabina MV et al. Modeling the atrophy of retinal pigment epithelium. Russ Ophthalmol J. 2020;13(4):58–63. (In Russ.).

    Google Scholar 

  232. Newton F, Megaw R. Mechanisms of photoreceptor death in retinitis pigmentosa. Genes. 2020;11:1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Niketeghad S, Pouratian N. Brain machine interfaces for vision restoration: the current state of cortical visual prosthetics. Neurotherapeutics. 2019;16:134–43.

    Article  CAS  PubMed  Google Scholar 

  234. Nirenberg S, Pandarinath C. Retinal prosthetic strategy with the capacity to restore normal vision. Proc Nat Acad Sci U S A. 2012;109:15012–7.

    Article  CAS  Google Scholar 

  235. Nithianantharajah J, Hannan AJ. The neurobiology of brain and cognitive reserve: mental and physical activity as modulators of brain disorders. Prog Neurobiol. 2009;89:369.

    Google Scholar 

  236. Nozaradan S. Exploring how musical rhythm entrains brain activity with electroencephalogram frequency-tagging. Phil Trans R Soc B. 2014;369:20130393.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Nuzzi R, Dallorto L, Rolle T. Changes of visual pathway and brain connectivity in glaucoma: a systematic review. Front Neurosci. 2018;29(12):363.

    Google Scholar 

  238. Nuzzi R, Dallorto L, Vitale A. Cerebral modifications and visual pathway reorganization in maculopathy: a systematic review. Front Neurosci. 2020;14:755.

    Article  PubMed  PubMed Central  Google Scholar 

  239. O’Brien J, Bloomfield SA. Plasticity of retinal gap junctions: roles in synaptic physiology and disease. Ann Rev Vis Sci. 2018;4:79–100.

    Google Scholar 

  240. Oster G. Auditory beats in the brain. Sci Am. 1973;229(4):94–102.

    Article  CAS  PubMed  Google Scholar 

  241. Pannese E. Morphological changes in nerve cells during normal aging. Brain Struct Funct. 2011;216:85–9.

    Article  PubMed  Google Scholar 

  242. Parbery-Clark A, Anderson S, Hittner E, Kraus N. Musical experience offsets age-related delays in neural timing. Neurobiol Aging. 2012;33:1483e1–4.

    Google Scholar 

  243. Parbery-Clark A, Skoe E, Lam C, Kraus N. Musician enhancement for speech-in-noise. Ear Hear. 2009;30:653–61.

    Article  PubMed  Google Scholar 

  244. Parbery-Clark A, Strait DL, Anderson S, Hittner E, Kraus N. Musical experience and the aging auditory system: implications for cognitive abilities and hearing speech in noise. PLoS ONE. 2011;6:e18082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Park HY, Kim JH, Park CK. Alterations of the synapse of the inner retinal layers after chronic intraocular pressure elevation in glaucoma animal model. Molbrain. 2014;7:53.

    Google Scholar 

  246. Pascual-Leone A, Freitas C, Oberman L, Horvath JC, Halko M, Eldaief M, Bashir S, Vernet M, Shafi M, Westover B, Vahabzadeh-Hagh AM, Rotenberg A. Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI. Brain Topogr. 2011;24:302–15.

    Article  PubMed  PubMed Central  Google Scholar 

  247. Paz JT, Davidson TJ, Frechette ES, Delord B, Parada I, Peng K, et al. Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat Neurosci. 2013;16:64–70.

    Article  CAS  PubMed  Google Scholar 

  248. Peng CK, Mietus JE, Liu Y, Lee C, Hausdorff JM, Stanley HE, Goldberger AL, Lipsitz LA. Quantifying fractal dynamics of human respiration: age and gender effects. Ann Biomed Eng. 2002;30:683–92.

    Article  CAS  PubMed  Google Scholar 

  249. Perna R, Perkey H. Internal memory rehabilitation strategies in the context of post-acute brain injury: a pilot study. Int J Neurorehabil. 2016;3(1):199.

    Article  Google Scholar 

  250. Perry BD. Childhood experience and the expression of genetic potential: what childhood neglect tells us about nature and nurture. Brain Mind. 2002;3:79–100.

    Article  Google Scholar 

  251. Petsche H. Approaches to verbal, visual and musical creativity by EEG coherence analysis. Int J Psychophysiol. 1996;24(1-2):145–59.

    Article  CAS  PubMed  Google Scholar 

  252. Pignatelli V, Cepko CL, Strettoi E. Inner retinal abnormalities in a mouse model of Leber’s congenital amaurosis. J Comp Neurol. 2004;469:351–9.

    Article  PubMed  Google Scholar 

  253. Pillar S, Moisseiev E, Sokolovska J, Grzybowski A. Recent developments in diabetic retinal neurodegeneration: a literature review. J Diabetes Res. 2020;2020:5728674.

    Article  PubMed  PubMed Central  Google Scholar 

  254. Plank T, Rosengarth K, Schmalhofer C, Goldhacker M, Brandl-Rühle S, Greenlee MW. Perceptual learning in patients with macular degeneration. Front Psychol. 2014;5:1189.

    Article  PubMed  PubMed Central  Google Scholar 

  255. Plow EB, Obretenova SN, Fregni F, Pascual-Leone A, Merabet LB. Comparison of visual field training for hemianopia with active versus sham transcranial direct cortical stimulation. Neurorehabil Neural Repair. 2012;26(6):616–26.

    Google Scholar 

  256. Pogosyan A, Gaynor LD, Eusebio A, Brown P. Boosting cortical activity at beta-band frequencies slows movement in humans. Curr Biol. 2009;19:1637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Porciatti V, Ventura LM. Retinal ganglion cell functional plasticity and optic neuropathy: a comprehensive model. J Neuroophthalmol. 2012;32(4):354–8.

    Google Scholar 

  258. Prins D, Hanekamp S, Cornelissen FW. Structural brain MRI studies in eye diseases: are they clinically relevant? A review of current findings. Acta Ophthalmol. 2016;94:113–21.

    Article  PubMed  Google Scholar 

  259. Priplata A, Niemi JB, Harry JD, Lipsitz LA, Collins JJ. Vibrating insoles and balance control in elderly people. Lancet. 2003;362:1123–4.

    Article  PubMed  Google Scholar 

  260. Puthussery T, Taylor WR. Functional changes in inner retinal neurons in animal models of photoreceptor degeneration. Adv Exp Med Biol. 2010;664:525–32.

    Article  CAS  PubMed  Google Scholar 

  261. Pyankova SD, Chertkova YD, Scobeyeva VA, Chertkova ER. Influence of genetic factors on perception of self-similar objects. Psychol Subculture Phenomenol Contemp Tendencies Dev. 2019.

    Google Scholar 

  262. Qian T, Xu X, Liu X, Yen M, Zhou H, Mao M, et al. Efficacy of MP-3 microperimeter biofeedback fixation training for low vision rehabilitation in patients with maculopathy. BMC Ophthalmol. 2022;22:197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Rabinovich MI, Abarbanel HDI. The role of chaos in neural systems. Neuroscience. 1998;87:5–14.

    Article  CAS  PubMed  Google Scholar 

  264. Rampon C, Jiang CH, Dong H, Tang Y-P. Effects of environmental enrichment on gene expression in the brain. Proc Natl Acad Sci U S A. 2000;97(23):12880–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Reedijk SA, Bolders A, Hommel B. The impact of binaural beats on creativity. Front Hum Neurosci. 2013;7. Article 786.

    Google Scholar 

  266. Renton T, Tibbles A, Topolovec-Vranic J. Neurofeedback as a form of cognitive rehabilitation therapy following stroke: a systematic review. PLoS ONE. 2017;12(5):e0177290.

    Article  PubMed  PubMed Central  Google Scholar 

  267. Rhea CK, Kiefer AW, Wittstein MW, Leonard KB, MacPherson RP, Wright WG, Haran FJ. Fractal gait patterns are retained after entrainment to a fractal stimulus. PLoS ONE. 2014;9(9): e106755.

    Google Scholar 

  268. Rosa AM, Silva MF, Ferreira S, Murta J, Castelo-Branco M. Plasticity in the human visual cortex: an ophthalmology-based perspective. Biomed Res Int. 2013;2013:568354.

    Article  PubMed Central  Google Scholar 

  269. Ross SE. Noise-enhanced postural stability in subjects with functional ankle instability. Br J Sports Med. 2007;41:656–9.

    Article  PubMed  PubMed Central  Google Scholar 

  270. Roth EA, Smith KH. The Mozart effect: evidence for the arousal hypothesis. Percept Mot Skill. 2008;107:396–402.

    Article  Google Scholar 

  271. Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF, Tillman A, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390(10097):849–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Sabel BA, Gudlin J. Vision restoration training for glaucoma: a randomized clinical trial. Jama Ophthalmol. 2014;132:381–9.

    Article  PubMed  Google Scholar 

  273. Sabel BA, Henrich-Noack P, Fedorov A, Gall C. Vision restoration after brain and retina damage: the “residual vision activation theory”. Prog Brain Res. 2011;192:199–262.

    Article  PubMed  Google Scholar 

  274. Sahel JA, Boulanger-Scemama E, Pagot C, Arleo A, Galluppi F, Martel JN, Esposti SD, Delaux A, de Saint Aubert J-B, de Montleau C, Gutman E, Audo I, Duebel J, Picaud S, Dalkara D, Blouin L, Taiel M, Roska B. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat Med. 2021;27:1223–9.

    Article  CAS  PubMed  Google Scholar 

  275. Sahraie A, Trevethan CT, MacLeod MJ, Murray AD, Olson JA, Weiskrantz L. Increased sensitivity after repeated stimulation of residual spatial channels in blind-sight. Proc Natl Acad Sci U S A. 2006;103(40):14971–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Saionz EL, Feldon SE, Huxlin KR. Rehabilitation of cortically induced visual field loss. Curr Opin Neurol. 2021;34(1):67–74.

    Article  PubMed  PubMed Central  Google Scholar 

  277. Salingaros NA. Fractal art and architecture reduce physiological stress. J Biourbanizm. 2012;2:11.

    Google Scholar 

  278. Särkämö T, Ripollés P, Vepsäläinen H, Autti T, Silvennoinen HM, Salli E, et al. Structural changes induced by daily music listening in the recovering brain after middle cerebral artery stroke: a voxel-based morphometry study. Front Hum Neurosci. 2014;8:245.

    PubMed  PubMed Central  Google Scholar 

  279. Särkämö T, Tervaniemi M, Laitinen S, Forsblom A, Soinila S, Mikkonen M, et al. Music listening enhances cognitive recovery and mood after middle cerebral artery stroke. Brain. 2008;131:866–76.

    Article  PubMed  Google Scholar 

  280. Sauvé Y, Gaillard F. Regeneration in the Visual System of Adult Mammals. 2005 May 1 [updated 2007 Jun 21]. In: Kolb H, Fernandez E, Nelson R, editors. Webvision: The organization of the retina and visual system [Internet]. Salt Lake City: University of Utah Health Sciences Center; 1995.

    Google Scholar 

  281. Sauvé Y, Sawai H, Rasminsky M. Functional synaptic connections made by regenerated retinal ganglion cell axons in the superior colliculus of adult hamsters. J Neurosci. 1995;15:665–75.

    Article  PubMed  PubMed Central  Google Scholar 

  282. Sborgia G, Niro A, Tritto T, Albano V, Sborgia L, Sborgia A et al. Microperimetric biofeedback training after successful inverted flap technique for large macular hole. J Clin Med. 2020;9(2):556.

    Google Scholar 

  283. Schatz A, Pach J, Gosheva M, Naycheva L, Willmann G, Wilhelm B, Peters T, Bartz-Schmidt KU, Zrenner E, Messias A, Gekeler F. Transcorneal electrical stimulation for patients with retinitis pigmentosa: A prospective, randomized, sham-controlled follow-up study over 1 year. Invest Ophthalmol Vis Sci. 2017;58:257–69.

    Article  PubMed  Google Scholar 

  284. Sehic A, Guo S, Cho KS, Corraya RM, Chen DF, Utheim TP. Electrical stimulation as a means for improving vision. Am J Pathol. 2016;186(11):2783–97.

    Article  PubMed  PubMed Central  Google Scholar 

  285. Seidl SE, Potashkin JA. The promise of neuroprotective agents in Parkinson’s disease. Front Neurol. 2011;2:68.

    Article  PubMed  PubMed Central  Google Scholar 

  286. Sejdić E, Findlay B, Merey C, Chau T. The effects of listening to music or viewing television on human gait. Comput Biol Med. 2013;43(10):1497–501.

    Article  PubMed  PubMed Central  Google Scholar 

  287. Sejdić E, Lipsitz LA. Necessity of noise in physiology and medicine. Comput Methods Programs Biomed. 2013;111(2):459–70.

    Article  PubMed  PubMed Central  Google Scholar 

  288. Sen S, Saxena R, Tripathi M, Vibha D, Dhiman R. Neurodegeneration in Alzheimer’s disease and glaucoma: overlaps and missing links. Eye. 2020;34:1546–53.

    Article  PubMed  PubMed Central  Google Scholar 

  289. Serruyaa MD, Kahana MJ. Techniques and devices to restore cognition. Behav Brain Res. 2008;192:149–65.

    Article  Google Scholar 

  290. Sharma N, Classen J, Cohen LG. Neural plasticity and its contribution to functional recovery. Handb Clin Neurol. 2013;110:3–12.

    Article  PubMed  PubMed Central  Google Scholar 

  291. Shewan D, Berry M, Cohen J. Extensive regeneration in vitro by early embryonic neurons on immature and adult CNS tissue. J Neurosci. 1995;15:2057–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Shin YW, O’Donnell BF, Youn S, Kwon JS. Gamma oscillation in schizophrenia. Psychiatry Investig. 2011;8(4):288–96.

    Article  PubMed  PubMed Central  Google Scholar 

  293. Shors TJ, Anderson ML, Curlik DM, Nokia MS. Use it or lose it: how neurogenesis keeps the brain fit for learning. Behav Brain Res. 2012;227(2):450–8.

    Article  CAS  PubMed  Google Scholar 

  294. Shors TJ, Olson RL, Bates ME, Selby EA, Alderman BL. Mental and Physical (MAP) Training: A neurogenesis-inspired intervention that enhances health in humans. Neurobiol Learn Mem. 2014;115:3–9.

    Article  PubMed  PubMed Central  Google Scholar 

  295. Siebner HR, Ziemann U. Rippling the cortex with high-frequency (>100 Hz) alternating current stimulation. J Physiol. 2010;588(Pt.24):4851.

    Google Scholar 

  296. Sikström S, Söderlund G. Stimulus-dependent dopamine release in attention-deficit/hyperactivity disorder. Psychol Rev. 2007;114:1047–75.

    Article  PubMed  Google Scholar 

  297. Simó R, Hernández C. European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR). Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab. 2014;25:23–33.

    Article  PubMed  Google Scholar 

  298. Sink M, Hossain M, Kato T. Non-Linear Analysis of psychophysiological effects of auditory stimuli using fractal mining. 2011.

    Google Scholar 

  299. Skrebitskii VG, Shtark MB. The fundaments of neuronal plasticity. Ann Russ Acad Med Sci. 2012;67(9):39–44.

    Google Scholar 

  300. Smith GE, Housen P, Yaffe K, Ruff R, Kennison RF, Mahncke HW, Zelinski EM. A cognitive training program based on principles of brain plasticity: results from the improvement in memory with plasticity-based adaptive cognitive training (IMPACT) study. J Am Geriatr Soc. 2009;57:594.

    Article  PubMed  PubMed Central  Google Scholar 

  301. So KF, Aguayo AJ. Lengthy regrowth of cut axons from ganglion cells after peripheral nerve transplantation into the retina of adult rats. Brain Res. 1985;328:349–54.

    Article  CAS  PubMed  Google Scholar 

  302. Söderlund G, Sikström S, Loftesnes JM, Sonuga-Barke EJ. The effects of background white noise on memory performance in inattentive school children. Behav Brain Funct. 2010;6:55.

    Article  PubMed  PubMed Central  Google Scholar 

  303. Söderlund G, Sikström S, Smart A. Listen to the noise: noise is beneficial for cognitive performance in ADHD. J Child Psychol Psychiatry. 2007;48:840–7.

    Google Scholar 

  304. Soldatov VO, Kukharsky MS, Belykh AE, Sobolev AM, Deykin AV. Retinal damage in amyotrophic lateral sclerosis: underlying mechanisms. Eye Brain. 2021;13:131–46.

    Article  PubMed  PubMed Central  Google Scholar 

  305. Soto F, Watkins KL, Johnson RE, Schottler F, Kerschensteiner D. NGL-2 regulates pathway-specific neurite growth and lamination, synapse formation, and signal transmission in the retina. J. Neurosci. 2013;33:11949–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Southwell DG, Froemke RC, Alvarez-Buylla A, Stryker MP, Gandhi SP. Cortical plasticity induced by inhibitory neuron transplantation. Science. 2010;327:1145–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Spehar B, Clifford C, Newell B, Taylor RP. Universal aesthetic of fractals. Copmuters Graphics. 2003;27(5):813–20.

    Article  Google Scholar 

  308. Srinivasan A, Karuppathal E, Venkatesan KR, Kalpana R. Brainwave entrainment through external sensory stimulus: a therapy for Insomnia (1784). Neurology. 2020;94(15 Supplement).

    Google Scholar 

  309. Staricoff RL. Arts in health: a review of the medical literature. Research report 36. London: Arts Council England; 2004.

    Google Scholar 

  310. Stein J. Dyslexia: the role of vision and visual attention. Curr Dev Disord Rep. 2014;1(4):267–80.

    Article  PubMed  PubMed Central  Google Scholar 

  311. Storch D, Gaston KJ, Cepák J. Pink landscapes: 1/f spectra of spatial environmental variability and bird community composition. Proc Biol Sci. 2002;269(1502):1791–6.

    Article  PubMed  PubMed Central  Google Scholar 

  312. Strait DL, Parbery-Clark A, Hittner E, Kraus N. Musical training during early childhood enhances the neural encoding of speech in noise. Brain Lang. 2012;123:191.

    Article  PubMed  PubMed Central  Google Scholar 

  313. Strettoi E, Porciatti V, Falsini B, Pignatelli V, Rossi C. Morphological and functional abnormalities in the inner retina of the rd/rd mouse. J Neurosci. 2002;22(13):5492–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Suen HC, Qian Y, Liao J, Luk CS, Lee WT, Ng JKW, et al. Transplantation of retinal ganglion cells derived from male germline stem cell as a potential treatment to glaucoma. Stem Cells Dev. 2019;28(20):1365–75.

    Article  CAS  PubMed  Google Scholar 

  315. Sullivan RK, Woldemussie E, Pow DV. Dendritic and synaptic plasticity of neurons in the human age-related macular degeneration retina. Invest Ophthalmol Vis Sci. 2007 Jun;48(6):2782–91.

    Article  PubMed  Google Scholar 

  316. Sundstrom JM, Hernández C, Weber SR, Zhao Y, Dunklebarger M, Tiberti N, et al. Proteomic analysis of early diabetic retinopathy reveals mediators of neurodegenerative brain diseases. Invest Ophthalmol Vis Sci. 2018;59:2264–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Sur M, Nagakura I, Chen, Sugihara H. Mechanisms of plasticity in the developing and adult visual cortex. Chapter 9. Prog Brain Res. 2013;207:243–54.

    Article  PubMed  Google Scholar 

  318. Tan CO, Cohen MA, Eckberg DL, Taylor JA. Fractal properties of human heart period variability: physiological and methodological implications. J Physiol. 2009;587(Pt 15):3929–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Tang H-Y, Riegel B, McCurry SM, Vitiello MV. Open-Loop Audio-Visual Stimulation: a pilot study of its potential for sleep induction in older adults. Appl Psychophysiol Biofeedback. 2015;40:183–8.

    Article  PubMed  PubMed Central  Google Scholar 

  320. Tang H-Y, Riegel B, McCurry SM, Vitiello MV. Open-Loop Audio-Visual Stimulation (AVS): a useful tool for management of insomnia? Appl Psychophysiol Biofeedback. 2016;41(1):39–46.

    Article  PubMed  Google Scholar 

  321. Tang H-Y, Vitiello MV, Perlis M, Mao JJ, Riegel BA. Pilot study of audio-visual stimulation as a self-care treatment or insomnia in adults with insomnia and chronic pain. Appl Psychophysiol Biofeedback. 2014;39(39):219–25.

    Article  PubMed  PubMed Central  Google Scholar 

  322. Tarita-Nistor L, González EG, Markowitz SN, Steinbach MJ. Plasticity of fixation in patients with central vision loss. Vis Neurosci. 2009;26(5-6):487–94.

    Article  PubMed  Google Scholar 

  323. Taylor RP, Micolich A, Jonas D. Fractal analysis of Pollock’s drip paintings. Nature. 1999;399:422.

    Article  CAS  Google Scholar 

  324. Taylor RP, Micolich AP, Jonas D. Fractal analysis: revisiting Pollock’s drip paintings (Reply). Nature. 2006;444:E10–1.

    Article  CAS  Google Scholar 

  325. Taylor RP, Spehar B, Donkelaar PV, Hagerhall CM. Perceptual and physiological responses to Jackson Pollock’s fractals. Front Hum Neurosci. 2011;5:60.

    Article  PubMed  PubMed Central  Google Scholar 

  326. Taylor RP, Spehar B, Wise JA, Clifford CW, Newell BR, Hagerhall CM, Purcell T, Martin TP. Perceptual and physiological responses to the visual complexity of fractal patterns. Nonlinear Dynamics Psychol Life Sci. 2005;9(1):89–114.

    CAS  PubMed  Google Scholar 

  327. Taylor RP, Sprott JC. Biophilic fractals and the visual journey of organic Screen-savers. J Non-Linear Dyn Psychol Life Sci. 2008;12:117–29.

    CAS  Google Scholar 

  328. Taylor RP. The potential of biophilic fractal designs to promote health and performance: a review of experiments and applications. Sustainability. 2021;13:823.

    Article  Google Scholar 

  329. Teich MC, Heneghan C, Lowen SB, Ozaki T, Kaplan E. Fractal character of the neural spike train in the visual system of the cat. J Opt Soc Am A. 1997;14(3):529–46.

    Article  CAS  Google Scholar 

  330. Thaut MH, Abiru M. Rhythmic auditory stimulation in rehabilitation of movement disorders: A review of current research. Music Percept. 2010;27(4):263–9.

    Article  Google Scholar 

  331. Thut G, Veniero D, Romei V, Miniussi C, Schyns P, Gross J. Rhythmic TMS causes local entrainment of natural oscillatory signatures. Curr Biol. 2011;21:1176–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Tomaszczyk JC, Green NL, Frasca D, Colella B, Turner GR, Christensen BK et al. Negative neuroplasticity in chronic traumatic brain injury and implications for neurorehabilitation. Neuropsychol Rev. 2014;24(4):409–27.

    Google Scholar 

  333. Trauzettel-Klosinski S. Current methods of visual rehabilitation. Dtsch Arztebl Int. 2011a;108:871–8.

    PubMed  PubMed Central  Google Scholar 

  334. Trauzettel-Klosinski S. Rehabilitative techniques. Handb Clin Neurol. 2011b;102:263–78.

    Article  PubMed  Google Scholar 

  335. Trenholm S, Awatramani GD. Origins of spontaneous activity in the degenerating retina. Front Cell Neurosci. 2015;9:277.

    Article  PubMed  PubMed Central  Google Scholar 

  336. Uchitomi H, Ota L, Ogawa K-i, Orimo S, Miyake Y. Interactive rhythmic cue facilitates gait relearning in patients with parkinson’s disease. PLoS ONE. 2013;8(9):e72176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Uhlhaas PJ, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci. 2010;11(2):100–13.

    Article  CAS  PubMed  Google Scholar 

  338. Ulrich RS. View through a window may influence recovery from surgery. Science. 1984;224(4647):420–1.

    Article  CAS  PubMed  Google Scholar 

  339. van Nispen RMA, Virgili G, Hoeben M, Langelaan M, Klevering J, Keunen JEE et al. Low vision rehabilitation for better quality of life in visually impaired adults (Review). Cochrane Datab System Rev. 2020;Issue 1. Art. No.:CD006543.

    Google Scholar 

  340. van Praag H, Kempermann G, Gage FH. Neural consequences of environmental enrichment. Nat Rev Neurosci. 2000;1:191–8.

    Article  PubMed  Google Scholar 

  341. van Praag H, Shubert T, Zhao C, Gage FH. Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci. 2005;25:8680–5.

    Article  PubMed  PubMed Central  Google Scholar 

  342. Vasseur DA, Yodzis P. The color of environmental noise. Ecology. 2004;85(4):1146–52.

    Article  Google Scholar 

  343. Vaudano AE, Ruggieri A, Avanzini P, Gessaroli G, Cantalupo G, Coppola A, et al. Photosensitive epilepsy is associated with reduced inhibition of alpha rhythm generating networks. Brain. 2017;140(4):981–97.

    Article  PubMed  PubMed Central  Google Scholar 

  344. Vecchio F, Babiloni C, Lizio R, Fallani Fde V, Blinowska K, Verrienti G, et al. Resting state cortical EEG rhythms in Alzheimer’s disease: toward EEG markers for clinical applications: a review. Suppl Clin Neurophysiol. 2013;62:223–36.

    Article  PubMed  Google Scholar 

  345. Venugopalan P, Wang Y, Nguyen T, Huang A, Muller KJ, Goldberg JL. Transplanted neurons integrate into adult retinas and respond to light. Nat Commun. 2016;7:1047.

    Article  Google Scholar 

  346. Verdina T, Piaggi S, Ferraro V, Russolillo V, Peschiera R, Chester J, et al. Efficacy of biofeedback rehabilitation based on visual evoked potentials analysis in patients with advanced age-related macular degeneration. Sci Rep. 2020;10(1):20886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Verrotti A, Tocco AM, Salladini C, Latini G, Chiarelli F. Human photosensitivity: from pathophysiology to treatment. Eur J Neurol. 2005;12(11):828–41.

    Article  CAS  PubMed  Google Scholar 

  348. Vester JC, Buzoianu AD, Florian SI, Hömberg V, Kim SH, Lee TMC, et al. Cerebrolysin after moderate to severe traumatic brain injury: prospective meta-analysis of the CAPTAIN trial series. Neurol Sci. 2021;42:4531–41.

    Article  PubMed  Google Scholar 

  349. Vidal-Sanz M, Bray GM, Villegas-Perez MP, Thanos S, Aguayo AJ. Axonal regeneration and synapse formation in the superior colliculus by retinal ganglion cells in the adult rat. J Neurosci. 1987;7:2894–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Vingolo EM, Cavarretta S, Domanico D, Parisi F, Malagola R. Microperimetric biofeedback in AMD patients. Appl Psychophysiol Biofeedback. 2007;32(3–4):185–9.

    Article  PubMed  Google Scholar 

  351. Vingolo EM, Salvatore S, Cavarretta S. Low-vision rehabilitation by means of MP-1 biofeedback examination in patients with different macular diseases: A pilot study. Appl Psychophysiol Biofeedback. 2009;34(2):127–33.

    Article  PubMed  Google Scholar 

  352. Vingolo EM, Salvatore S, Limoli PG. MP-1 biofeedback: luminous pattern stimulus versus acoustic biofeedback in age related macular degeneration (AMD). Appl Psychophysiol Biofeedback. 2013;38(1):11–6.

    Article  PubMed  Google Scholar 

  353. Wagner SK, Jolly JK, Pefkianaki M, Gekeler F, Webster AR, Downes SM, Maclaren RE. Transcorneal electrical stimulation for the treatment of retinitis pigmentosa: results from the TESOLAUK trial. BMJ Open Ophthalmol. 2017;2(1):e000096.

    Article  PubMed  PubMed Central  Google Scholar 

  354. Wainwright SR, Galea LAM. The neural plasticity theory of depression: assessing the roles of adult neurogenesis and PSA-NCAM within the hippocampus. Neural Plast. 2013:805497.

    Google Scholar 

  355. Wallace CS, Withers GS, Farnand A, Lobingier BT, McCleery EJ. Evidence that angiogenesis lags behind neuron and astrocyte growth in experience-dependent plasticity. Dev Psychobiol. 2011;53(5):435–42.

    Article  PubMed  Google Scholar 

  356. Wang V, Kuriyan AE. Optoelectronic devices for vision restoration. Curr Ophthalmol Rep. 2020;8:69–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Wareham LK, Liddelow SA, Temple S, Benowitz LI, Di Polo A, Wellington C, et al. Solving neurodegeneration: common mechanisms and strategies for new treatments. Mol Neurodegen. 2022;17:23.

    Article  CAS  Google Scholar 

  358. Warraich Z, Kleim JA. Neural plasticity: the biological substrate for neurorehabilitation. PM R. 2010;2(12 Suppl 2):S208–19.

    PubMed  Google Scholar 

  359. Wei X, Day AG, Ouelette-Kuntz H, Hevland DK. The association between nutritional adequacy and long-term outcomes in critically ill patients requiring prolonged mechanical ventilation: a multicenter cohort study. Crit Care Med. 2015;43(8):1569.

    Article  PubMed  Google Scholar 

  360. Westlake KP, Hinkley LB, Bucci M, Guggisberg AG, Byl N, Findlay AM, Henry RG, Nagarajan SS. Resting state alpha-band functional connectivity and recovery after stroke. Exp Neurol. 2012;237:160–9.

    Article  PubMed  PubMed Central  Google Scholar 

  361. Whitson HE, Ansah D, Whitaker D, Potter G, Cousins SW, MacDonald H, Pieper CF, Landerman L, Steffens DC, Cohen HJ. Prevalence and patterns of comorbid cognitive impairment in low vision rehabilitation for macular disease. Arch Gerontol Geriatr. 2010;50:209–12.

    Article  PubMed  Google Scholar 

  362. Wilkins A, Veitch J, Lehman B. LED lighting flicker and potential health concerns: IEEE standard PAR1789 update 2010. IEEE Energy Convers Congress Expos. 2010:171–8.

    Google Scholar 

  363. Wilkins AJ, Bonanni P, Porciatti V, Guerrini R. Physiology of human photosensitivity. Epilepsia. 2004;45(Suppl 1):7–13.

    Article  PubMed  Google Scholar 

  364. Williams J, Ramaswamy D, Oulhaj A. 10 Hz flicker improves recognition memory in older people. BMC Neurosci. 2006;7(5): Article number 21.

    Google Scholar 

  365. Williams JH. Frequency-specific effects of flicker on recognition memory. Neuroscience. 2001;104:283–6.

    Article  CAS  PubMed  Google Scholar 

  366. Wise JA, Rosenberg E. The effects of interior treatments on performance stress in three types of mental tasks. Technical Report, Space Human Factors Office, NASA-ARC, Sunnyvale. 1986.

    Google Scholar 

  367. Wittwer JE, Webster KE, Hill K. Effect of Rhythmic Auditory cueing on gait in people with Alzheimer disease. Arch Phys Med Rehabil. 2013;94:718–24.

    Article  PubMed  Google Scholar 

  368. Wittwer JE, Winbolt M, Morris ME. Home-based gait training using Rhythmic Auditory cues in Alzheimer’s disease: feasibility and outcomes. Front Med. 2020;6:335.

    Article  Google Scholar 

  369. World Population Ageing 2015. United Nations, Department of Economic and Social Affairs, Population Division (2015). (ST/ESA/SER.A/390).

    Google Scholar 

  370. Wu S, Chang KC, Nahmou M, Goldberg JL. Induced pluripotent stem cells promote retinal ganglion cell survival after transplant. Invest Ophthalmol Vis Sci. 2018;59(3):1571–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Yamamoto Y, Struzik ZR, Soma R, Ohashi K, Kwak S. Noisy vestibular stimulation improves autonomic and motor responsiveness in central neurodegenerative disorders. Ann Neurol. 2005;58:175–81.

    Article  PubMed  Google Scholar 

  372. Yap TE, Balendra SI, Almonte MT, Cordeiro MF. Retinal correlates of neurological disorders. Ther Adv Chronic Dis. 2019;10:204062231988220.

    Article  Google Scholar 

  373. Yiannopoulou KG, Papageorgiou SG. Current and future treatments in Alzheimer disease: an update. J Cent Nerv Syst Dis. 2020;12:1179573520907397.

    Article  PubMed  PubMed Central  Google Scholar 

  374. You M, Rong R, Zeng Z, Xia X, Ji D. Transneuronal degeneration in the brain during glaucoma. Front Aging Neurosci. 2021;13:643685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Yuan Q, Liu XH, Li DC, Wang HL, Liu YS. Effects of noise and music on EEG power spectrum. Space Med Med Eng (Beijing). 2000;13:401–6. (In Chinese).

    CAS  PubMed  Google Scholar 

  376. Yücel YH, Zhang Q, Weinreb RN, Kaufman PL, Gupta N. Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res. 2003;22:465–81.

    Article  PubMed  Google Scholar 

  377. Yuvaraj R, Murugappan M. Hemispheric asymmetry non-linear analysis of EEG during emotional responses from idiopathic Parkinson’s disease patients. Cogn Neurodyn. 2016;10(3):225–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Zaehle T, Rach S, Herrmann CS. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS One. 2010;5:e13766.

    Article  PubMed  PubMed Central  Google Scholar 

  379. Zafar S, Sachdeva M, Frankfort BJ, Channa R. Retinal neurodegeneration as an early manifestation of diabetic eye disease and potential neuroprotective therapies. Curr Diabetes Rep. 2019;19:17.

    Article  Google Scholar 

  380. Zafra F, Lindholm D, Castrén E, Hartikka J, Thoenen H. Regulation of brain-derived neurotrophic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes. J Neurosci. 1992;12:4793–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Zakharova-Luneva E, Cooke DM, Okano S, Hurst C, Geffen S, Eagles R. The relationship between cognition and functional outcomes in rehabilitation: FIMCog vs. MoCA. Geriatr Gerontol Int. 2020;4:336–42.

    Article  Google Scholar 

  382. Zeck G. Aberrant activity in degenerated retinas revealed by electrical imaging. Front Cell Neurosci. 2016;10:25.

    Article  PubMed  PubMed Central  Google Scholar 

  383. Zendel BR, Alain C. Musicians experience less age-related decline in central auditory processing. Psychol Aging. 2012;27(2):410–7.

    Article  PubMed  Google Scholar 

  384. Zhang J, Wu S, Jin ZB, Wang N. Stem cell-based regeneration and restoration for retinal ganglion cell: recent advancements and current challenges. Biomolecules. 2021;11(7):987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  385. Zhang X, Li S, Tang Y, Guo Y, Gao S. Intractable ocular diseases and treatment progress. AAPS PharmSciTech. 2020a;21(6):236.

    Article  PubMed  Google Scholar 

  386. Zhang X, Tenerelli K, Wu S, Xia X, Yokota S, Sun C, et al. Cell transplantation of retinal ganglion cells derived from hESCs. Restor Neurol Neurosci. 2020b;38:131–40.

    PubMed  Google Scholar 

  387. Zhang Y, Wang C, Sun C, Zhang X, Wang Y, Oi H, He F, Zhao X, Wan B, Du J, Ming D. Neural complexity in patients with poststroke depression: a resting EEG study. J Affect Disord. 2015;188:310–8.

    Article  PubMed  Google Scholar 

  388. Zhang Y, Zhang X, Yue Y, Tian T. Retinal degeneration: A window to understand the origin and progression of Parkinson’s disease? Front Neurosci. 2022;15:799526.

    Article  PubMed  PubMed Central  Google Scholar 

  389. Zhang YS, Guo D, Xu P, Zhang Y, Yao D. Robust frequency recognition for SSVEP-based BCI with temporally local multivariate synchronization index. Cogn Neurodyn. 2016;10:505–11.

    Article  PubMed  PubMed Central  Google Scholar 

  390. Zhuang J, Madden DJ, Cunha P, Badea A, Davis SW, Potter GG, et al. Cerebral white matter connectivity, cognition, and age-related macular degeneration. NeuroImage. 2021;30:102594.

    Article  PubMed  PubMed Central  Google Scholar 

  391. Zhuravleva AN, Zueva MV. Hypotensive glaucoma therapy and neuroprotection. Russ Ophthalmol J. 2020;13(2):78–82. (In Russ.).

    Article  Google Scholar 

  392. Zhuravleva AN, Zueva MV, Shustov EB. Optimization of medicinal treatment of patients with glaucoma in combination with concurrent system pathology. Part 1: Cardiovascular pathology. Ophthalmoln Russia. 2020;17(3):321–9. (In Russ.)

    Article  Google Scholar 

  393. Zihl J, von Cramon D. Restitution of visual function in patients with cerebral blindness. J Neurol Neurosurg Psychiatry. 1979;42(4):312–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  394. Zueva M, Spiridonov I, Semenova N, Tsapenko I, Maglakelidze N, Stadelman J. The LED fractal stimulator and first evidence of its application in electroretinography. Doc Ophthalmol. 2017;135(Suppl.1):35–6.

    Google Scholar 

  395. Zueva MV, Karankevich AI. Method of brain training. RU2680185C1, Priority 2017-10-23, 2018.

    Google Scholar 

  396. Zueva MV, Kovalevskaya MA, Donkareva OV, Karankevich AI, Tsapenko IV, Taranov AA, Antonyan VB. Fractal phototherapy in neuroprotection of gaucoma. Ophthalmol Russ. 2019b;16:317–28. (In Russ.).

    Article  Google Scholar 

  397. Zueva MV, Kovalevskaya MA, Donkareva OV, Starikova MA, Karankevitch AI, Taranov AA, Antonyan VB. The impact of complex-structured optical signals on color perception and light sensitivity in patients with suspicion of glaucoma and primary open-angle glaucoma. J Clin Exp Ophthalmol. 2018b:9.

    Google Scholar 

  398. Zueva MV, Neroev VV, Tsapenko IV, Sarygina OI, Grinchenko MI, Zaitseva SI. Topographic diagnosis of retinal dysfunction in case of rhegmatogenous retinal detachment by the method of flicker ERG of a wide range of frequencies. Russ Ophthalmol J. 2009;1(2):18–23. (In Russ.)

    Google Scholar 

  399. Zueva MV, Spiridonov IN, Semenova NA, Rezvykh SV. Fractal flicker generator for biomedical investigations. RU2549150C1, priority 2014-02-27, 2015.

    Google Scholar 

  400. Zueva MV. The dynamics of the death of ganglion cells of the retina in glaucoma and its functional markers. Russ J Glaucoma. 2016;15(1):70–85. (in Russ.).

    Google Scholar 

  401. Zueva MV. The prospect of the use of nonlinear stimulation therapy in the treatment of traumatic brain injury and maintaining cognitive functions in elderly. V.M. Bekhterev Rev Psychiatry Med Psychol. 2018b; 2:36–43. (In Russ.).

    Google Scholar 

  402. Zueva MV. Dynamic fractal flickering as a tool in research of non- linear dynamics of the evoked activity of a visual system and the possible basis for new diagnostics and treatment of neurodegenerative diseases of the retina and brain. World Appl Sci J. 2013;27(4):462–8.

    Google Scholar 

  403. Zueva MV. Fractality of sensations and the brain health: the theory linking neurodegenerative disorder with distortion of spatial and temporal scale-invariance and fractal complexity of the visible world. Front Aging Neurosci. 2015;7:135.

    Article  PubMed  PubMed Central  Google Scholar 

  404. Zueva MV. Technologies of nonlinear stimulation: role in the treatment of diseases of the brain and the potential applications in healthy individuals. Hum Physiol. 2018a;44(3):289–99.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zueva, M.V. et al. (2024). Fractal Phototherapy in Maximizing Retina and Brain Plasticity. In: Di Ieva, A. (eds) The Fractal Geometry of the Brain. Advances in Neurobiology, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-031-47606-8_31

Download citation

Publish with us

Policies and ethics