Skip to main content

Fractal Dimension Analysis in Neurological Disorders: An Overview

  • Chapter
  • First Online:
The Fractal Geometry of the Brain

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 36))

Abstract

Fractal analysis has emerged as a powerful tool for characterizing irregular and complex patterns found in the nervous system. This characterization is typically applied by estimating the fractal dimension (FD), a scalar index that describes the topological complexity of the irregular components of the nervous system, both at the macroscopic and microscopic levels, that may be viewed as geometric fractals. Moreover, temporal properties of neurophysiological signals can also be interpreted as dynamic fractals. Given its sensitivity for detecting changes in brain morphology, FD has been explored as a clinically relevant marker of brain damage in several neuropsychiatric conditions as well as in normal and pathological cerebral aging. In this sense, evidence is accumulating for decreases in FD in Alzheimer’s disease, frontotemporal dementia, Parkinson’s disease, multiple sclerosis, and many other neurological disorders. In addition, it is becoming increasingly clear that fractal analysis in the field of clinical neurology opens the possibility of detecting structural alterations in the early stages of the disease, which highlights FD as a potential diagnostic and prognostic tool in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguillard D, Zarubin V, Wilson C, Steinmetz KRM, Martsberger C. Investigating fractal dimension, heart rate variability, and memory during different image sequencing regimes in young adults. Chaos. 2020;30(11):113116. https://doi.org/10.1063/5.0002764.

    Article  PubMed  Google Scholar 

  2. Aminuddin N, Achuthan A, Ruhaiyem NIR, Che Mohd Nassir CMN, Idris NS, Mustapha M. Reduced cerebral vascular fractal dimension among asymptomatic individuals as a potential biomarker for cerebral small vessel disease. Sci Rep. 2022;12(1):11780. https://doi.org/10.1038/s41598-022-15710-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ashraf GM, Chatzichronis S, Alexiou A, Kyriakopoulos N, Alghamdi BSA, Tayeb HO, Alghamdi JS, Khan W, ben Jalal M, Atta HM. BrainFD: measuring the intracranial brain volume with fractal dimension. Front Aging Neurosci. 2021;13 https://doi.org/10.3389/fnagi.2021.765185.

  4. Avelar BS, Mancini MC, Fonseca ST, Kelty-Stephen DG, de Miranda DM, Romano-Silva MA, de Araújo PA, Silva PL. Fractal fluctuations in exploratory movements predict differences in dynamic touch capabilities between children with Attention-Deficit Hyperactivity Disorder and typical development. PLoS One. 2019;14(5):e0217200. https://doi.org/10.1371/journal.pone.0217200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Benson CC, Lajish VL, Rajamani K. Robust classification of MR brain images based on fractal dimension analysis. In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI). 2017, pp. 1135–1140. https://doi.org/10.1109/ICACCI.2017.8125994.

  6. Collantoni E, Madan CR, Meneguzzo P, Chiappini I, Tenconi E, Manara R, Favaro A. Cortical complexity in anorexia nervosa: a fractal dimension analysis. J Clin Med. 2020;9(3):833. https://doi.org/10.3390/jcm9030833.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dawi NM, Kuca K, Krejcar O, Namazi H. Complexity and memory-based comparison of the brain activity between adhd and healthy subjects while playing a serious game. Fractals. 2021;29(05):2150202. https://doi.org/10.1142/S0218348X21502029.

    Article  Google Scholar 

  8. Di Ieva A. Fractal analysis of microvascular networks in malignant brain tumors. Clin Neuropathol. 2012;31(5):342–51. https://doi.org/10.5414/np300485.

    Article  PubMed  Google Scholar 

  9. Di Ieva A, Grizzi F, Sherif C, Matula C, Tschabitscher M. Angioarchitectural heterogeneity in human glioblastoma multiforme: a fractal-based histopathological assessment. Microvasc Res. 2011;81(2):222–30. https://doi.org/10.1016/j.mvr.2010.12.006.

    Article  PubMed  Google Scholar 

  10. Di Ieva A, Bruner E, Widhalm G, Minchev G, Tschabitscher M, Grizzi F. Computer-assisted and fractal-based morphometric assessment of microvascularity in histological specimens of gliomas. Sci Rep. 2012b;2:429. https://doi.org/10.1038/srep00429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Di Ieva A, Matula C, Grizzi F, Grabner G, Trattnig S, Tschabitscher M. Fractal analysis of the susceptibility weighted imaging patterns in malignant brain tumors during antiangiogenic treatment: technical report on four cases serially imaged by 7 T magnetic resonance during a period of four weeks. World Neurosurg. 2012c;77(5–6):785.e11–21. https://doi.org/10.1016/j.wneu.2011.09.006.

    Article  PubMed  Google Scholar 

  12. Di Ieva A, Göd S, Grabner G, Grizzi F, Sherif C, Matula C, Tschabitscher M, Trattnig S. Three-dimensional susceptibility-weighted imaging at 7 T using fractal-based quantitative analysis to grade gliomas. Neuroradiology. 2013;55(1):35–40. https://doi.org/10.1007/s00234-012-1081-1.

    Article  PubMed  Google Scholar 

  13. Di Ieva A, Niamah M, Menezes RJ, Tsao M, Krings T, Cho YB, Schwartz ML, Cusimano MD. Computational fractal-based analysis of brain arteriovenous malformation angioarchitecture. Neurosurgery. 2014;75(1):72–9. https://doi.org/10.1227/NEU.0000000000000353.

    Article  PubMed  Google Scholar 

  14. Di Ieva A, Boukadoumm M, Lahmiri S, Cusimano MD. Computational analyses of arteriovenous malformations in neuroimaging. J Neuroimaging. 2015a;25(3):354–60. https://doi.org/10.1111/jon.12200.

    Article  PubMed  Google Scholar 

  15. Di Ieva A, Esteban FJ, Grizzi F, Klonowski W, Martín-Landrove M. Fractals in the Neurosciences, Part II. Neuroscientist. 2015b;21(1):30–43. https://doi.org/10.1177/1073858413513928.

    Article  PubMed  Google Scholar 

  16. Di Ieva A, Le Reste PJ, Carsin-Nicol B, Ferre JC, Cusimano MD. Diagnostic value of fractal analysis for the differentiation of brain tumors using 3-tesla magnetic resonance susceptibility-weighted imaging. Neurosurgery. 2016;79(6):839–46. https://doi.org/10.1227/NEU.0000000000001308.

    Article  PubMed  Google Scholar 

  17. Esteban FJ, Díaz-Beltrán L, di Ieva A. Fractal analysis in neurological diseases. 2016, pp. 199–211. https://doi.org/10.1007/978-1-4939-3995-4_13.

  18. Florindo JB, Bruno OM. Closed contour fractal dimension estimation by the Fourier transform. Chaos, Solitons Fractals. 2011;44(10):851–61. https://doi.org/10.1016/J.CHAOS.2011.07.008.

    Article  Google Scholar 

  19. Hofman MA. The fractal geometry of convoluted brains. J Hirnforsch. 1991;32(1):103–11. https://doi.org/10.1007/978-1-4939-3995-4_11.

    Article  CAS  PubMed  Google Scholar 

  20. Im K, Lee J, Yoon U, Shin Y, Hong SB, Kim IY, Kwon JS, Kim SI. Fractal dimension in human cortical surface: multiple regression analysis with cortical thickness, sulcal depth, and folding area. Hum Brain Mapp. 2006;27:994–1003. https://doi.org/10.1002/hbm.20238.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jang K, Russo C, Di Ieva A. Radiomics in gliomas: clinical implications of computational modeling and fractal-based analysis. Neuroradiology. 2020;62(7):771–90. https://doi.org/10.1007/s00234-020-02403-1.

    Article  PubMed  Google Scholar 

  22. Jao C-W, Lau CI, Lien L-M, Tsai Y-F, Chu K-E, Hsiao C-Y, Yeh J-H, Wu Y-T. Using fractal dimension analysis with the Desikan–Killiany atlas to assess the effects of normal aging on subregional cortex alterations in adulthood. Brain Sci. 2021;11:107. https://doi.org/10.3390/brainsci11010107.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Karsy M, Burnett B, Di Ieva A, Cusimano MD, Jensen RL. Microvascularization of Grade I meningiomas: effect on tumor volume, blood loss, and patient outcome. J Neurosurg. 2018;128(3):657–66. https://doi.org/10.3171/2016.10.JNS161825.

    Article  PubMed  Google Scholar 

  24. Kinno R, Shiromaru A, Mori Y, Futamura A, Kuroda T, Yano S, Murakami H, Ono K. Differential effects of the factor structure of the Wechsler Memory Scale-revised on the cortical thickness and complexity of patients aged over 75 years in a memory clinic setting. Front Aging Neurosci. 2017;9:405. https://doi.org/10.3389/fnagi.2017.00405.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Krohn S, Froeling M, Leemans A, Ostwald D, Villoslada P, Finke C, Esteban FJ. Evaluation of the 3D fractal dimension as a marker of structural brain complexity in multiple-acquisition MRI. Hum Brain Mapp. 2019;40(11):3299–320. https://doi.org/10.1002/hbm.24599.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kubera KM, Schmitgen MM, Nagel S, Hess K, Herweh C, Hirjak D, Sambataro F, Wolf RC. A search for cortical correlates of trait impulsivity in Parkinson’s disease. Behav Brain Res. 2019;369:111911. https://doi.org/10.1016/j.bbr.2019.111911.

    Article  PubMed  Google Scholar 

  27. Lemmens S, Devulder A, van Keer K, Bierkens J, de Boever P, Stalmans I. Systematic review on fractal dimension of the retinal vasculature in neurodegeneration and stroke: assessment of a potential biomarker. Front Neurosci. 2020;14 https://doi.org/10.3389/fnins.2020.00016.

  28. Li S, Xia M, Pu F, Li D, Fan Y, Niu H, Pei B, He Y. Age-related changes in the surface morphology of the central sulcus. NeuroImage. 2011;58:381–90. https://doi.org/10.1016/j.neuroimage.2011.06.041.

    Article  PubMed  Google Scholar 

  29. Li D, Wang E, Jia Y, Xu J, Zhang Z, Jiang Z, Luo W. Cortical complexity and gyrification patterns in Parkinson’s disease. Neuroreport. 2020;31:565–70. https://doi.org/10.1097/wnr.0000000000001448.

    Article  PubMed  Google Scholar 

  30. Liew G, Gopinath B, White AJ, Burlutsky G, Yin Wong T, Mitchell P. Retinal vasculature fractal and stroke mortality. Stroke. 2021;52(4):1276–82. https://doi.org/10.1161/STROKEAHA.120.031886.

    Article  CAS  PubMed  Google Scholar 

  31. Liu H, Liu T, Jiang J, Cheng J, Liu Y, Li D, Dong C, Niu H, Li S, Zhang J, Brodaty H, Sachdev P, Wen W. Differential longitudinal changes in structural complexity and volumetric measures in community-dwelling older individuals. Neurobiol Aging. 2020;91:26–35. https://doi.org/10.1016/j.neurobiolaging.2020.02.023.

    Article  PubMed  Google Scholar 

  32. Lu H. Quantifying age-associated cortical complexity of left dorsolateral prefrontal cortex with multiscale measurements. J Alzheimers Dis. 2020;76:643–56. https://doi.org/10.3233/jad-200102.

    Article  Google Scholar 

  33. Lu X, Zhang J, Huang S, Lu J, Ye M, Wang M. Detection and classification of epileptic EEG signals by the methods of nonlinear dynamics. Chaos, Solitons Fractals. 2021;151:111032. https://doi.org/10.1016/j.chaos.2021.111032.

    Article  Google Scholar 

  34. Maclaren J, Han Z, Vos SB, Fischbein N, Bammer R. Reliability of brain volume measurements: a test-retest dataset. Sci Data. 2014;1(1):140037. https://doi.org/10.1038/sdata.2014.37.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Madan CR. Age differences in head motion and estimates of cortical morphology. PeerJ. 2018;6:e5176. https://doi.org/10.7717/peerj.5176.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Madan CR. Beyond volumetry: considering age-related changes in brain shape complexity using fractal dimensionality. Aging Brain. 2021a;1:1000016. https://doi.org/10.1016/j.nbas.2021.100016.

    Article  CAS  Google Scholar 

  37. Madan CR. Age-related decrements in cortical gyrification: evidence from an accelerated longitudinal dataset. Eur J Neurosci. 2021b;53:1661–71. https://doi.org/10.1111/ejn.15039.

    Article  CAS  PubMed  Google Scholar 

  38. Madan CR, Kensinger EA. Cortical complexity as a measure of age-related brain atrophy. NeuroImage. 2016;134:617–29. https://doi.org/10.1016/j.neuroimage.2016.04.029.

    Article  PubMed  Google Scholar 

  39. Madan CR, Kensinger EA. Test-retest reliability of brain morphology estimates. Brain Informatics. 2017;4(2):107–21. https://doi.org/10.1007/s40708-016-0060-4.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Madan CR, Kensinger EA. Predicting age from cortical structure across the lifespan. Eur J Neurosci. 2018;47:399–416. https://doi.org/10.1111/ejn.13835.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Malekzadeh A, Zare A, Yaghoobi M, Alizadehsani R. Automatic diagnosis of epileptic seizures in EEG signals using fractal dimension features and convolutional autoencoder method. Big Data Cogn Comput. 2021;5:78. https://doi.org/10.3390/bdcc5040078.

    Article  Google Scholar 

  42. Mandelbrot B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science (80-.). 1967;156:636–8. https://doi.org/10.1126/science.156.3775.636.

    Article  CAS  Google Scholar 

  43. Marzi C, Giannelli M, Tessa C, Mascalchi M, Diciotti S. Toward a more reliable characterization of fractal properties of the cerebral cortex of healthy subjects during the lifespan. Sci Rep. 2020;10(1):16957. https://doi.org/10.1038/s41598-020-73961-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McDonough IM, Madan CR. Structural complexity is negatively associated with brain activity: a novel multimodal test of compensation theories of aging. Neurobiol Aging. 2021;98:185–96. https://doi.org/10.1016/j.neurobiolaging.2020.10.023.

    Article  PubMed  Google Scholar 

  45. Meregalli V, Alberti F, Madan CR, Meneguzzo P, Miola A, Trevisan N, Sambataro F, Favaro A, Collantoni E. Cortical complexity estimation using fractal dimension: a systematic review of the literature on clinical and nonclinical samples. Eur J Neurosci. 2022;55(6):1547–83. https://doi.org/10.1111/ejn.15631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Morozova M, Koschutnig K, Klein E, Wood G. Monotonic non-linear transformations as a tool to investigate age-related effects on brain white matter integrity: a Box–Cox investigation. NeuroImage. 2016;125:1119–30. https://doi.org/10.1016/j.neuroimage.2015.08.003.

    Article  PubMed  Google Scholar 

  47. Mustafa, N., Ahearn, T. S., Waiter, G. D., Murray, A. D., Whalley, L. J., & Staff, R. T. (2012). Brain structural complexity and life course cognitive change. NeuroImage, 61, 694–701. https://doi.org/10.1016/j.neuroimage.2012.03.088.

  48. Nazlee N, Waiter GD, Sandu AL. Age-associated sex and asymmetry differentiation in hemispheric and lobar cortical ribbon complexity across adulthood: A UK Biobank imaging study. Hum Brain Mapp. 2022:1–17. https://doi.org/10.1002/hbm.26076.

  49. Nicastro N, Malpetti M, Cope TE, Bevan-Jones WR, Mak E, Passamonti L, Rowe JB, O’Brien J. Cortical complexity analyses and their cognitive correlate in Alzheimer’s disease and frontotemporal dementia. J Alzheimers Dis. 2020;76:331–40. https://doi.org/10.3233/jad-200246.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Nobukawa S, Yamanishi T, Nishimura H, Wada Y, Kikuchi M, Takahashi T. Atypical temporal-scale-specific fractal changes in Alzheimer’s disease EEG and their relevance to cognitive decline. Cogn Neurodyn. 2019;13(1):1–11. https://doi.org/10.1007/s11571-018-9509-x.

    Article  PubMed  Google Scholar 

  51. Pantoni L, Marzi C, Poggesi A, Giorgio A, De Stefano N, Mascalchi M, Inzitari D, Salvadori E, Diciotti S. Fractal dimension of cerebral white matter: A consistent feature for prediction of the cognitive performance in patients with small vessel disease and mild cognitive impairment. NeuroImage. 2019;24:101990. https://doi.org/10.1016/j.nicl.2019.101990.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Petrujkić K, Milošević N, Rajkovićm N, Stanisavljević D, Gavrilovićm S, Dželebdžić D, Ilić R, Di Ieva A, Maksimović R. Computational quantitative MR image features - a potential useful tool in differentiating glioblastoma from solitary brain metastasis. Eur J Radiol. 2019;119:108634. https://doi.org/10.1016/j.ejrad.2019.08.003.

    Article  PubMed  Google Scholar 

  53. Podgórski P, Bladowska J, Sasiadek M, Zimny A. Novel volumetric and surface-based magnetic resonance indices of the aging brain – does male and female brain age in the same way? Front Neurol. 2021;12:645729. https://doi.org/10.3389/fneur.2021.645729.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Radhakrishnan M, Won D, Manoharan TA, Venkatachalam V, Chavan RM, Nalla HD. Investigating electroencephalography signals of autism spectrum disorder (ASD) using Higuchi Fractal Dimension. Biomed Eng / Biomedizinische Technik. 2021;66(1):59–70. https://doi.org/10.1515/bmt-2019-0313.

    Article  Google Scholar 

  55. Reishofer G, Studencnik F, Koschutnig K, Deutschmann H, Ahammer H, Wood G. Age is reflected in the Fractal Dimensionality of MRI Diffusion Based Tractography. Sci Rep. 2018;8(1):5431. https://doi.org/10.1038/s41598-018-23769-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Roura E, Maclair G, Andorrà M, Juanals F, Pulido-Valdeolivas I, Saiz A, Blanco Y, Sepulveda M, Llufriu S, Martínez-Heras E, Solana E, Martinez-Lapiscina EH, Villoslada P. Cortical fractal dimension predicts disability worsening in Multiple Sclerosis patients. NeuroImage. 2021;30:102653. https://doi.org/10.1016/J.NICL.2021.102653.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ruiz de Miras J, Costumero V, Belloch V, Escudero J, Ávila C, Sepulcre J. Complexity analysis of cortical surface detects changes in future Alzheimer’s disease converters. Hum Brain Mapp. 2017;38:5905–18. https://doi.org/10.1002/hbm.23773.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sánchez J, Martín-Landrove M. Morphological and fractal properties of brain tumors. Front Physiol. 2022;13:878391. https://doi.org/10.3389/fphys.2022.87839.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sheelakumari R, Rajagopalan V, Chandran A, Varghese T, Zhang L, Yue GH, Mathuranath PS, Kesavadas C. Quantitative analysis of grey matter degeneration in FTD patients using fractal dimension analysis. Brain Imaging Behav. 2018;12(5):1221–8. https://doi.org/10.1007/s11682-017-9784-x.

    Article  PubMed  Google Scholar 

  60. Shoouri N. Detection of ADHD from EOG signals using approximate entropy and petrosain’s fractal dimension. J Med Signals Sens. 2022;12:254–62. https://doi.org/10.4103/jmss.jmss_119_21.

    Article  PubMed  Google Scholar 

  61. Skums P, Bunimovich L. Graph fractal dimension and the structure of fractal networks. J Compl Netw. 2020;8(4) https://doi.org/10.1093/comnet/cnaa037.

  62. Sungura R, Mpolya E, Spitsbergen J, Onyambu C, Sauli E, Vianney J-M. Novel multi-linear quantitative brain volume formula for manual radiological evaluation of brain atrophy. Eur J Radiol Open. 2020;7:100281. https://doi.org/10.1016/j.ejro.2020.100281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Villamizar J, Uribe L, Cerquera A, Prada E, Prada D, Alvarez M. Fractal analysis of neuroimaging: comparison between control patients and patients with the presence of Alzheimer’s disease. J Phys Conf Ser. 2022;2159(1):012011. https://doi.org/10.1088/1742-6596/2159/1/012011.

    Article  Google Scholar 

  64. Wang T, Kamata S. Classification of structural MRI images in Adhd using 3D fractal dimension complexity map. In: 2019 IEEE International Conference on Image Processing (ICIP). 2019, pp. 215–219. https://doi.org/10.1109/ICIP.2019.8802930.

  65. Yotter RA, Nenadic I, Ziegler G, Thompson PM, Gaser C. Local cortical surface complexity maps from spherical harmonic reconstructions. NeuroImage. 2011;56:961–73. https://doi.org/10.1016/j.neuroimage.2011.02.007.

    Article  PubMed  Google Scholar 

  66. Zhang F, Daducci A, He Y, Schiavi S, Seguin C, Smith RE, Yeh C-H, Zhao T, O’Donnell LJ. Quantitative mapping of the brain’s structural connectivity using diffusion MRI tractography: a review. NeuroImage. 2022;249:118870. https://doi.org/10.1016/j.neuroimage.2021.118870.

    Article  PubMed  Google Scholar 

  67. Zhao G, Walsh K, Long J, Gui W, Denisova K. Reduced structural complexity of the right cerebellar cortex in male children with autism spectrum disorder. PLoS ONE. 2018;13(7):e0196964. https://doi.org/10.1371/journal.pone.0196964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ziukelis ET, Mak E, Dounavi ME, Su L, O’Brien J. Fractal dimension of the brain in neurodegenerative disease and dementia: a systematic review. Ageing Res Rev. 2022;101651 https://doi.org/10.1016/j.arr.2022.101651.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Esteban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Díaz Beltrán, L., Madan, C.R., Finke, C., Krohn, S., Di Ieva, A., Esteban, F.J. (2024). Fractal Dimension Analysis in Neurological Disorders: An Overview. In: Di Ieva, A. (eds) The Fractal Geometry of the Brain. Advances in Neurobiology, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-031-47606-8_16

Download citation

Publish with us

Policies and ethics