Skip to main content

Respiratory Delivery of Probiotics to Improve Lung Health

  • Chapter
  • First Online:
Respiratory Delivery of Biologics, Nucleic Acids, and Vaccines

Part of the book series: AAPS Introductions in the Pharmaceutical Sciences ((AAPSINSTR,volume 8))

Abstract

Increasing evidence suggests that the lung microbiome is essential for maintaining lung health and homeostasis. Although causality has not been established, differences in its abundance, community richness, and composition are observed in inflammatory lung diseases such as asthma. Furthermore, respiratory infections such as COVID-19 were shown to influence the composition of the lung microbiome. The efficacy of inhaled probiotics to correct this dysbiosis is unknown as the respiratory route of administration is less reported compared to the oral route. The more direct intranasal administration of probiotics may exert a greater protective response against viral respiratory infections compared to the oral route in mice. However, there is a lack of human studies investigating the efficacy of inhaled probiotics. This may be due to the limitations in administration methods in delivering probiotics to humans, as to date, only a nasal spray or a nasal irrigation has been utilised. Nasal sprays require the probiotics to be in a liquid suspension which can affect the longevity of the product. Therefore, investment into developing a more stable probiotic formulation is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dickson RP, Erb-Downward JR, Martinez FJ, Huffnagle GB. The microbiome and the respiratory tract. Annu Rev Physiol. 2016;78:481–504. PubMed PMID: 26527186. PMCID: PMC4751994. Epub 20151102.

    Article  CAS  PubMed  Google Scholar 

  2. O’Dwyer D, Dickson R, Moore B. The lung microbiome, immunity and the pathogenesis of chronic lung disease. J Immunol. 2016;196(12):4839–47.

    Article  PubMed  Google Scholar 

  3. Bassis C, Erb-Downward J, Dickson R, Freeman C, Schmidt T, Young V, et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. mBio. 2015;6(2):e00037-15.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dickson R, Huffnagle G. The lung microbiome: new principles for respiratory bacteriology in health and disease. PLoS Pathog. 2015;11(7):e1004923.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gleeson K, Maxwell S, Eggli D. Quantitative aspiration during sleep in normal subjects. Chest. 1997;111(5):1266–72.

    Article  CAS  PubMed  Google Scholar 

  6. Huxley E, Viroslav J, Gray W, Pierce A. Pharyngeal aspiration in normal adults and patients with depressed consciousness. Am J Med. 1978;64(4):564–8.

    Article  CAS  PubMed  Google Scholar 

  7. Segal L, Clemente J, Tsay J, Koralov S, Keller B, Wu B, et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat Microbiol. 2016;1:106031.

    Article  Google Scholar 

  8. Berg G, Rybakova D, Rischer D, Cernava T, Champomier Verges M, Charles T, et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome. 2020;8:103.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano G, Gasbarrini A, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet and diseases. Microorganisms. 2019;7(1):14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boer C, Radjabzadeh D, Medina-Gomez C, Garmaeva S, Schiphof D, Arp P, et al. Intestinal microbiome composition and its relation to joint pain and inflammation. Nat Commun. 2019;10:4881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Budden K, Gellatly S, Wood D, Cooper M, Morrison M, Hugenholtz P, et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol. 2017;15:55–63.

    Article  CAS  PubMed  Google Scholar 

  12. Enaud R, Prevel R, Ciarlo E, Beaufils F, Wieërs G, Guery B, et al. The gut-lung axis in health and respiratory diseases: a place for inter-organ and inter-kingdom crosstalks. Front Cell Infect Microbiol. 2020;10:9. English

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ramsheh M, Haldar K, Esteve-Codina A, Purser L, Richardson M, Muller-Quernheim J, et al. Lung microbiome composition and bronchial epithelial gene expression in patients with COPD versus healthy individuals: a bacterial 16S rRNA gene sequencing and host transcriptomic analysis. Lancet Microbe. 2021;2(7):E300–10.

    Article  CAS  PubMed  Google Scholar 

  14. Charlson E, Bittinger K, Haas A, Fitzgerald A, Frank I, Yadav A, et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med. 2011;184(8):957–63.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Keely S, Talley N, Hansbro P. Pulmonary-intestinal cross-talk mucosal inflammatory disease. Mucosal Immunol. 2012;5:7–18.

    Article  CAS  PubMed  Google Scholar 

  16. Youn H, Lee D, Lee Y, Park J, Yuk S, Yang S, et al. Intranasal administration of live Lactobacillus species facilitates protection against influenza virus infections in mice. Antivir Res. 2012;93(1):138–43.

    Article  CAS  PubMed  Google Scholar 

  17. Pellaton C, Nutten S, Thierry A, Boudousquie C, Barbier N, Blanchard C, et al. Intragastric and intranasal administration of Lactobacillus paracasei NCC2461 modulates allergic airway inflammation in mice. Int J Inflam. 2012;2012:686739.

    PubMed  PubMed Central  Google Scholar 

  18. Park M, Ngo V, Kwon Y, Lee Y, Yoo S, Cho Y, et al. Lactobacillus plantarum DK119 as a probiotic ocnfers protection against influenza virus by modulating innnate immunity. PLoS One. 2013;8(10):e75368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jeon H, Kim K, Kim S. Effects of yogurt containing probiotics on respiratory virus infections: influenza H1N1 and SARS-CoV-2. J Dairy Sci. 2023;106(3):1549–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lancet T. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1204–22.

    Article  Google Scholar 

  21. Strachan DP. Hay fever, hygiene and household size. Br Med J. 1989;299:1259–60.

    Article  CAS  Google Scholar 

  22. Riedler J, Braun-Farländer C, Eder W, Schreuer M, Waser M, Maisch S, et al. Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet. 2001;358(9288):1129–33.

    Article  CAS  PubMed  Google Scholar 

  23. Christensen E, Hjelmsø M, Thorsen J, Shah S, Redgwell T, Poulsen C, et al. The developing airway and gut microbiota in early life is influenced by age of older siblings. Microbiome. 2022;10:106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ball T, Castro-Rodriguez J, Griffith K, Holberg C, Martinez F, Wright A. Siblings, day-care attendance, and the risk of asthma and wheezing during childhood. N Engl J Med. 2000;343:538–43.

    Article  CAS  PubMed  Google Scholar 

  25. Ong M, Umetsu D, Mandl K. Consequences of antibiotics and infections in infancy: bugs, drugs, and wheezing. Ann Allergy Asthma Immunol. 2014;112(5):441–5.

    Article  CAS  PubMed  Google Scholar 

  26. Donald K, Finlay BB. Early-life interactions between the microbiota and immune system: impact on immune system development and atopic disease. Nat Rev Immunol. 2023; https://doi.org/10.1038/s41577-023-00874-w. PubMed PMID: 37138015. Epub 20230503.

  27. Loverdos K, Bellos G, Koklatou L, Vasileiadis I, Giamarellos E, Pecchiari M, et al. Lung microbiome in asthma: current perspectives. J Clin Med. 2019;8(11):1967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, et al. Disordered microbial communities in asthmatic airways. PLoS One. 2010;5(1):e8578.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Marri P, Stern D, Wright A, Billheimer D, Martinez F. Asthma-associated differences in microbial composition of induced sputum. J Allergy Clin Immunol. 2013;131(2):346–52.

    Article  CAS  PubMed  Google Scholar 

  30. Huang Y, Nariya S, Harris J, Lynch S, Choy D, Arron J, et al. The airway microbiome in patients with severe asthma: associations with disease features and severity. J Allergy Clin Immunol. 2015;136(4):874–84.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Huang Y, Nelson C, Brodie E, DeSantis T, Baek M, Liu J, et al. Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. J Allergy Clin Immunol. 2011;127(2):372–81.

    Article  PubMed  Google Scholar 

  32. Zhang Q, Cox M, Liang Z, Brinkmann F, Cardenas P, Duff R, et al. Airway microbiota in severe asthma and relationship to asthma severity and phenotypes. PLoS One. 2016;11(4):e0152724.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Goleva E, Jackson L, Harris K, Robertson C, Sutherland E, Hall C, et al. The effects of airway mironiome on corticosteroid responsiveness in asthma. Am J Respir Crit Care Med. 2013;188(10):1193–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang E, Inoue T, Leone V, Dalal S, Touw K, Wang Y, et al. Using corticosteroids to reshape the gut microbiome: implication sfor inflammatory bowel diseases. Inflamm Bowel Dis. 2016;21(5):963–72.

    Article  Google Scholar 

  35. Franzin M, Stefancic K, Lucafo M, Decorti G, Stocco G. Microbiota and drug response in inflammatory bowel disease. Pathogens. 2021;10(2):211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hartmann J, Albrich W, Dmitrijeva M, Kahlert C. The effects of corticosteroids on the respiratory microbiome: a systematic review. Fron Med. 2021;8:588584.

    Article  Google Scholar 

  37. Tukey M, Lamb C. Bronchial washing, bronchoalveolar lavage, bronchial brush and endobronchial biopsy. In: Ernst A, Herth F, editors. Introduction to bronchoscopy. 2nd ed. Cambridge: Cambridge University; 2017. p. 102–17.

    Chapter  Google Scholar 

  38. García-Vázquez E, Marcos M, Mensa J, de Roux A, Puig J, Font C, et al. Assessment of the usefulness of sputum culture for diagnosis of community-acquired pneumonia using the PORT predictive scoring system. Arch Intern Med. 2004;164(16):1807–11.

    Article  PubMed  Google Scholar 

  39. Grønseth R, Drengenes C, Wiker H, Tangedal S, Xue Y, Husebø G, et al. Protected sampling is preferable in bronchoscopic studies of the airway microbiome. ERJ Open Res. 2017;3(3):00019-2017.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dewhirst F, Chen T, Izard J, Paster B, Tanner A, Yu W, et al. The human oral microbiome. J Bacteriol. 2010;192(19):5002–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dickson R, Erb-Downward J, Freeman C, McCloskey L, Beck J, Huffnagle G, et al. Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Ann Am Thorac Soc. 2015;12(6):821–30.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Morris A, Beck J, Schloss P, Campbell T, Crothers K, Curtis J, et al. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med. 2013;187(10):1067–75.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yatsunenko T, Rey F, Manary M, Trehan I, Dominguez-Bello M, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Natalini J, Singh S, Segal L. The dynamic lung microbiome in health and disease. Nat Rev Microbiol. 2023;21:222–35.

    Article  CAS  PubMed  Google Scholar 

  45. Russo C, Colaianni V, Ielo G, Valle M, Spicuzza L, Malaguarnera L. Impact of lung microbiota on COPD. Biomedicine. 2022;10(6):1337.

    CAS  Google Scholar 

  46. Cuthbertson L, Walker A, Oliver A, Rogers G, Rivett D, Hampton T, et al. Lung function and microbiota diversity in cystic fibrosis. Microbiome. 2020;8:45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Frey D, Bridson C, Dittrich S, Graeber S, Stahl M, Wege S, et al. Changes in the microbiome dominance are associated with declining lung function and fluctuating inflammation in people with cystic fibrosis. Front Microbiol. 2022;13:885822.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yildiz S, Mazel-Sanchez B, Kandasamy M, Manicassamy B, Schmolke M. Influenza A virus infection impacts systemic microbiota dynamics and causes quantitative enteric dysbiosis. Microbiome. 2018;6:9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sencio V, Barthelemy A, Tavares L, Machado M, Soulard D, Cuinat C, et al. Gut dysbiosis during influenza contributes to pulmonary penumococcal superinfection through altered short-chain fatty acid production. Cell Rep. 2020;30(9):2934–47.

    Article  CAS  PubMed  Google Scholar 

  50. Hernández-Terán A, Mejía-Nepomuceno F, Herrera M, Barreto O, Garcia E, Castillejos M, et al. Dysbiosis and structural disruption of the respiratory microbiota in COVID-19 patients with severe and fatal outcomes. Sci Rep. 2021;11:21297.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Russell C, Fairfield C, Drake T, Turtle L, Seaton R, Wootton D, et al. Co-infections, secondary infections and antimicrobial use in patients hospitalised with COVID-19 during the first pandemic wave from ISARIC WHO CCP-UK study: a multicentre, prospective cohort study. Lancet Microbe. 2021;8:e354–65.

    Article  Google Scholar 

  52. McFarland L. Use of probiotics to correct dysbiosis of normal microbiota following disease or disruptive events: a systematic review. BMJ Open. 2014;4(8):e005047.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hill C, Guarner F, Reid G, Gibson G, Merenstein D, Pot B, et al. The international scientific association for probiotics and prebioics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11:506–14.

    Article  PubMed  Google Scholar 

  54. Harata G, He F, Hiruta N, Kawase M, Kybota A, Hiramatsu M, et al. Intranasal administraton of Lactobacillus rhamnosus GG protects mice from H1N1 infuenza virus infection by regulating respiratory immue responses. Lett Appl Microbiol. 2010;50(6):597–602.

    Article  CAS  PubMed  Google Scholar 

  55. Tomosada Y, Chiba E, Zelaya H, Takahashi T, Tsukida K, Kitazawa H, et al. Nasally administered Lactobacillus rhamnosus strains differentially modulate respiratory antiviral immune responses and induce protection against respiratory syncytial virus infection. BMC Immunol. 2013;14:40.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zelaya H, Tada A, Vizoso-Pinto M, Salva S, Kanmani P, Aguero G, et al. Nasal priming with immunobiotic Lactobacillus rhamnosus modulates inflammation-coagulation interactions and reduces influenza virus-associated pulmonary damage. Inflamm Res. 2015;64:589–602.

    Article  CAS  PubMed  Google Scholar 

  57. Jung Y, Lee Y, Ngo V, Cho Y, Ko E, Hong S, et al. Heat-killed Lactobacillus casei confers broad protection against influenza A virus primary infection and develops heterosubtypic immunity against future secondary infection. Sci Rep. 2017;7:17360.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Izumo T, Maekawa T, Ida M, Noguchi A, Kitagawa Y, Shibata H, et al. Effect of intranasal administration of Lactobacillus pentosus S-PT84 on influenza virus infection in mice. Int Immunopharmacol. 2010;10(9):1101–6.

    Article  CAS  PubMed  Google Scholar 

  59. Park M, Ngo V, Kwon Y, Lee Y, Yoo S, Cho Y, et al. Lactobacillus plantarum DK119 as a probiotic confers protection against influenza virus by modulating innnate immunity. PLoS One. 2013;8(10):e75368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Percopo C, Rice T, Brenner T, Dyer K, Luo J, Kanakabandi K, et al. Immunobiotic Lactobacillus administered post-exposure averts the lethal sequelae of respiratory virus infection. Antivir Res. 2015;121:109–19.

    Article  CAS  PubMed  Google Scholar 

  61. Groeger D, Schiavi E, Grant R, Kurnik-Lucka M, Michalovich D, Williamson R, et al. Intranasal Bifidobacterium longum protects against viral-induced lung inflammation and injury in a murine model of lethal influenza infection. EBioMedicine. 2020;60:102981.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Medina M, Villena J, Salva S, Vintiñi E, Langella P, Alvarez S. Nasal administration of Lactococcus lactis improves local and systemic immune responses against Streptococcus pneumoniae. Microbiol Immunol. 2008;52(8):399–409.

    Article  CAS  PubMed  Google Scholar 

  63. Kim H, Arellano K, Park H, Todorov S, Kim B, Kang H, et al. Assessment of the safety and anti-inflammatory effects of three Bacillus strains in the respiratory tract. Environ Microbiol. 2021;23(6):3077–98.

    Article  CAS  PubMed  Google Scholar 

  64. Tonetti F, Islam M, Vizoso-Pinto M, Takahashi H, Kitazawa H, Villena J. Nasal priming with immunobiotic lactobacilli improves the adaptive immune response against influenza virus. Int Immunopharmacol. 2020;78:106115.

    Article  CAS  PubMed  Google Scholar 

  65. Tonetti F, Islam M, Vizoso-Pinto M, Salva S, Kanmani P, Aguero G, et al. Nasal priming with immunobiotic Lactobacillus rhamnosus modulates inflammation-coagulation interactions and reduces influenza virus-associated pulmonary damage. Inflamm Res. 2015;64:589–602.

    Article  Google Scholar 

  66. Islam M, Albarracin L, Tomokiyo M, Valdez J, Sacur J, Vizoso-Pinto M, et al. Immunobiotic lactobacilli improve resistance of respiratory epithelial cells to SARS-CoV-2 infection. Pathogens. 2021;10(9):1197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kolling Y, Salva S, Villena J, Alvarez S. Are the immunomodulatory properties of Lactobacillus rhamnosus CRL1505 peptidoglycan common for all Lactobacilli during respiratory infection in malnourished mice? PLoS One. 2018;13(3):e0194034.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kolling Y, Salva S, Villena J, Marranzino G, Alvarez S. Non-viable immunobiotic Lactobacillus rhamnosus CRL1505 and its peptidoglycan improve systemic and respiratory innate immune response during recovery of immunocompromised-malnourished mice. Int Immunopharmacol. 2015;25(2):474–84.

    Article  CAS  PubMed  Google Scholar 

  69. Cooper M, Fehniger T, Ponnappan A, Mehta V, Wewers M, Caligiuri M. Interleukin-1β costimulates interferon-γ production by human natural killer cells. Eur J Immunol. 2001;31(3):792–801.

    Article  CAS  PubMed  Google Scholar 

  70. Renegar K, Small P Jr, Boykins L, Wright P. Role of IgA versus IgG in the control of influenza viral infection in the murine respiratory tract. J Immunol. 2004;173(3):1978–86.

    Article  CAS  PubMed  Google Scholar 

  71. Oliveria-Nascimento L, Massari P, Wetzler L. The role of TLR2 in infection and immunity. Front Immunol. 2012;3:79.

    Google Scholar 

  72. Ivory K, Wilson A, Sankaran P, Westwood M, McCarville J, Brockwell C, et al. Oral delivery of a probiotic induced changes at the nasal mucosa of seasonal allergic rhinitis subjects after local allergen challenge: a randomised clinical trial. PLoS One. 2013;8(11):e78650.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zeng J, Wang C, Zhang F, Qi F, Wang S, Ma S, et al. Effect of probiotics on the incidence of ventilator-associated pneumonia in critically ill patients: a randomised controlled multicentre trial. Intensive Care Med. 2016;42:1018–28.

    Article  CAS  PubMed  Google Scholar 

  74. Endam L, Alromaih S, Gonzalez E, Madrenas J, Cousineau B, Renteria A, et al. Intranasal application of Lactococcus lactis w136 is safe in chronic rhinosinusitis patients with previous sinus surgery. Front Cell Infect Microbiol. 2020;10:440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Southern California Evidence-based Practice Center. Safety of probiotics to reducee risk and prevent or treat disease. In: U.S. Department of Health and Human Services, editor. Evidence report/technology assessment no. 200, AHRQ Publication No. 11-E007. Rockville: Agency for Healthcare Research and Quality; 2011.

    Google Scholar 

  76. Tran D, Tran T, Phung T, Bui H, Nguyen P, Vu T, et al. Nasal-spraying Bacillus spores as an effective symptomatic treatment for children with acute respiratory syncytial virus infection. Sci Rep. 2022;12:12402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. De Boeck I, van den Broek M, Allonsius C, Spacova I, Wittouck S, Martens K, et al. Lactobacilli have a niche in the human nose. Cell Rep. 2020;31(8):107674.

    Article  PubMed  Google Scholar 

  78. Spacova I, De Boeck I, Cauwenberghs E, Delanghe L, Bron P, Henkens T, et al. Development of a live biotherapeutic throat spray with lactobacilli targeting respiratory viral infections. Microb Biotechnol. 2022;16:99–115.

    Article  PubMed  PubMed Central  Google Scholar 

  79. EFSA BIOHAZ Panel, Koutsoumanis K, Allende A, Alvarez-Ordonez A, Bolton D, Bover-Cid S, et al. Updated list of QPS-recommended microorganisms for safety risk assessments carried out by EFSA. 2023.

    Google Scholar 

  80. De Boeck I, Cauwenberghs E, Spacova I, Gehrmann T, Eliers T, Delanghe L, et al. Randomised, double-blind, placebo-controlled trial of a throat spray with selected lactobacilli in COVID-19 outpatients. Microbiol Spectr. 2022;10(5):e01682-22.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Lee C, Choi Y, Seo S, Kim S, Kim I, Kim S, et al. Addition of probiotics to antibiotics improves the clinical course of pneumonia in young people without comorbidities: a randomised controlled trial. Sci Rep. 2021;11:926.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chong H, Yusoff N, Hor Y, Lew L, Jaafar M, Choi S, et al. Lactobacillus plantarum DR7 improved upper respiratory tract infections via enhancing immune and inflammatory parameters: a randomised, double-blind, placebo-controlled study. J Dairy Sci. 2019;102(6):4783–97.

    Article  CAS  PubMed  Google Scholar 

  83. Johnstone J, Meade M, Lauzier F, Marshall J, Duan E, Dionne J, et al. Effect of probiotics on incident ventilator associated pneumonia in critically ill patients: a randomised clinical trial. JAMA. 2021;326(11):1024–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fangous M, Alexandre Y, Hymery N, Gouriou S, Arzur D, Le Blay G, et al. Lactobacilli intra-tracheal administration protects from Pseudomonas aeruginosa pulmonary infection in mice – a proof of concept. Benef Microbes. 2019;10(8):893–900.

    Article  CAS  PubMed  Google Scholar 

  85. Mårtensson A, Nordström F, Cervin-Hoberg C, Lindstedt M, Skakellariou C, Cervin A, et al. Nasal administration of a probiotic assemblage in allergic rhinitis: a randomised placebo-controlled crossover trial. Clin Exp Allergy. 2022;52(6):774–83.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Spacova I, Fremau P, Pollaris L, Vanoirbeek J, Ceuppens J, Seys S, et al. Intranasal administration of probiotic Lactobacillus rhamnosus GG prevents birch pollen-induced allergic asthma in a murine model. Allergy. 2019;74:100–10.

    Article  CAS  PubMed  Google Scholar 

  87. Morales A, Carvajal P, Silva N, Hernandez M, Godoy C, Rodriguez G, et al. Clinical effects of Lactobacillus rhamnosus in non-surgical treatment of chronic periodontitis: a randomised placebo-controlled trial with 1-year follow-up. J Periodontol. 2016;87(8):944–52.

    Article  PubMed  Google Scholar 

  88. Lee X, Vergara C, Lozano C. Severity of Candida-associated denture stomatitis is improved in institutionalised elders who consume Lactobacillus rhamnosus SP1. Aust Dent J. 2019;64(3):229–36.

    Article  CAS  PubMed  Google Scholar 

  89. Henriksson R, Franzén L, Sandström K, Nordin A, Arevärn M, Grahn E. Effects of active addition of bacterial cultures in fermented milk to patients with chronic bowel discomfort following irradiation. Support Care Cancer. 1995;3:81–3.

    Article  CAS  PubMed  Google Scholar 

  90. Huang S, Vignolles M, Chen X, Le Loir Y, Jan G, Schuck P, et al. Spray drying of probiotics and other food-grade bacteria: a review. Trends Food Sci Technol. 2017;63:1–17.

    Article  Google Scholar 

  91. Fu N, Huang S, Xiao J, Chen X. Chapter 6: Producing powders containing active dry probiotics with the aid of spray drying. Adv Food Nutr Res. 2018;85:211–62.

    Article  CAS  PubMed  Google Scholar 

  92. Santivarangkna C, Higl B, Foerst P. Protection mechanisms of sugars during different stages of preparation process of dried lactic acid starter cultures. Food Microbiol. 2008;25(3):439–41.

    Article  Google Scholar 

  93. Su Y, Zheng X, Zhao Q, Fu N, Xiong H, Wu W, et al. Spray drying of Lactobacillus rhamnosus GG with calcium-containing protectant for enhanced viability. Powder Technol. 2019;358:87–94.

    Article  CAS  Google Scholar 

  94. Prasad J, McJarrow P, Gopal P. Heat and osmotic stress responses of probiotic Lactobacillus rhamnosus HN001 (DR20) in relation to viability after drying. Appl Environ Microbiol. 2003;69(2):917–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Iaconelli C, Lemetais G, Kechaou N, Chain F, Bermudez-Humaran L, Langella P, et al. Drying process strongly affects probiotics viability and functionalities. J Biotechnol. 2015;214:17–26.

    Article  CAS  PubMed  Google Scholar 

  96. Zhang Y, Lin J, Zhong Q. Effects of media, heat adaptation, and outlet temperature on the survival of Lactobacillus salivarius NRRL B-30514 after spray drying and subsequent storage. LWT. 2016;74:441–7.

    Article  Google Scholar 

  97. Barbosa J, Almeida D, Machado D, Sousa S, Freitas A, Andrade J, et al. Spray-drying encapsulation of the live biotherapeutic candidate Akkermansia muciniphila DSM 22959 to survive aerobic storage. Pharmaceuticals. 2022;15(5):628.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Behboudi-Jobbehdar S, Soukoulis C, Yonekura L, Fisk I. Optimisation of spray-drying process conditions for the production of maximally viable microencapsulated L. acidophilus NCIMB 701748. Dry Technol. 2013;31(11):1274–83.

    Article  CAS  Google Scholar 

  99. Perdana J, Bereschenko L, Fox M, Kuperus J, Kleerebezem M, Boom R, et al. Dehydration and thermal inactivation of Lactobacillus planatarum WCFS1: comparing single droplet drying to spray and freeze drying. Food Res Int. 2013;54(2):1351–9.

    Article  CAS  Google Scholar 

  100. Paez R, Lavari L, Vinderola G, Audero G, Cuatrin A, Zaritzky N, et al. Effect of heat treatment and spray drying on lactobacilli viability and resistance to simulated gastrointestinal digestion. Food Res Int. 2012;48(2):748–54.

    Article  CAS  Google Scholar 

  101. Kojima M, Suda S, Hotta S, Hamada K, Suganuma A. Necessity of calcium ion for cell division in Lactobacillus bifidus. J Bacteriol. 1970;104(2):1010–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yu A, Wei L, Marco M. Calcium determines Lactiplantibacillus plantarum intraspecies competitive fitness. Appl Environ Microbiol. 2022;88(15):e00666-22.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Huang S, Chen X. Signficiant effect of Ca2+ on improving the heat resistance of lactic acid bacteria. FEMS Microbiol Lett. 2013;344(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  104. Yang Y, Huang S, Wang J, Jan G, Jeantet R, Chen X. Mg2+ improves the thermotolerance of probiotic Lactobacillus rhamnosus GG, Lactobacillus casei Zhang, Lactobacillus plantarum P-8. Lett Appl Microbiol. 2017;64(4):283–8.

    Article  CAS  PubMed  Google Scholar 

  105. Jokicevic K, Kiekens S, Byl E, De Boeck I, Cauwenberghs E, Lebeer S, et al. Probiotic nasal spray development by spray drying. Eur J Pharm Biopharm. 2021;159:211–20.

    Article  CAS  PubMed  Google Scholar 

  106. Roos Y, Karel M. Plasticising effect of water on thermal behaviour and crystallisation of amorphous food models. J Food Sci. 1991;56(1):38–43.

    Article  CAS  Google Scholar 

  107. Simperler A, Kornherr A, Chopra R, Bonnet A, Jones W, Motherwell S, et al. Glass transition temperature of glucose, sucrose and trehalose: an experimental and in silico study. J Phys Chem. 2006;110:19678–84.

    Article  CAS  Google Scholar 

  108. Zillen D, Beugeling M, Hinrichs W, Frijlink H, Grasmeijer F. Natural and bioinspired excipients for dry powder inhalation formulations. Curr Opin Colloid Interface Sci. 2021;56:101497.

    Article  CAS  Google Scholar 

  109. Rajab S, Tabandeh F, Shahraky M, Alahyaribeik S. The effect of lactobacillus cell size on its probiotic characteristics. Anaerobe. 2020;62:102103.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors received no financial support for the research, authorship, and publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Chi Lip Kwok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Byun, A.S., Vitetta, L., Chan, HK., Kwok, P.C.L. (2023). Respiratory Delivery of Probiotics to Improve Lung Health. In: Lam, J., Kwok, P.C.L. (eds) Respiratory Delivery of Biologics, Nucleic Acids, and Vaccines. AAPS Introductions in the Pharmaceutical Sciences, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-031-47567-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47567-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47566-5

  • Online ISBN: 978-3-031-47567-2

  • eBook Packages: MedicineBiomedical and Life Sciences (R0)

Publish with us

Policies and ethics