Skip to main content

Graph Attention Based Spatial Temporal Network for EEG Signal Representation

  • Conference paper
  • First Online:
Advances in Computational Intelligence Systems (UKCI 2023)

Abstract

Graph attention networks (GATs) based architectures have proved to be powerful at implicitly learning relationships between adjacent nodes in a graph. For electroencephalogram (EEG) signals, however, it is also essential to highlight electrode locations or underlying brain regions which are active when a particular event related potential (ERP) is evoked. Moreover, it is often important to identify corresponding EEG signal time segments within which the ERP is activated. We introduce a GAT Inspired Spatial Temporal (GIST) network that uses multilayer GAT as its base for three attention blocks: edge attentions, followed by node attention and temporal attention layers, which focus on relevant brain regions and time windows for better EEG signal classification performance, and interpretability. We assess the capability of the architecture by using publicly available Transcranial Electrical Stimulation (TES), neonatal pain (NP) and DREAMER EEG datasets. With these datasets, the model achieves competitive performance. Most importantly, the paper presents attention visualisation and suggests ways of interpreting them for EEG signal understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond euclidean data. IEEE Signal Process. Mag. 34, 18–42 (2017). https://doi.org/10.1109/MSP.2017.2693418

    Article  Google Scholar 

  2. Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., Sun, M.: Graph neural networks: a review of methods and applications. AI Open. 1, 57–81 (2020). https://doi.org/10.1016/j.aiopen.2021.01.001

  3. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv1609.02907 (2016)

    Google Scholar 

  4. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv1710.10903 (2017)

    Google Scholar 

  5. Zhang, D., Yao, L., Chen, K., Wang, S., Haghighi, P.D., Sullivan, C.: A graph-based hierarchical attention model for movement intention detection from EEG signals. IEEE Trans. Neural Syst. Rehabil. Eng. 27, 2247–2253 (2019). https://doi.org/10.1109/TNSRE.2019.2943362

    Article  Google Scholar 

  6. Song, T., Zheng, W., Song, P., Cui, Z.: EEG emotion recognition using dynamical graph convolutional neural networks. IEEE Trans. Affect. Comput. 11, 532–541 (2020). https://doi.org/10.1109/TAFFC.2018.2817622

    Article  Google Scholar 

  7. Li, X., Qian, B., Wei, J., Li, A., Liu, X., Zheng, Q.: Classify EEG and reveal latent graph structure with spatio-temporal graph convolutional neural network. In: 2019 IEEE International Conference on Data Mining (ICDM). pp. 389–398 (2019). https://doi.org/10.1109/ICDM.2019.00049

  8. Yin, Y., Zheng, X., Hu, B., Zhang, Y., Cui, X.: EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM. Appl. Soft Comput. 100, 106954 (2021). https://doi.org/10.1016/j.asoc.2020.106954

    Article  Google Scholar 

  9. Cao, J., et al.: Brain functional and effective connectivity based on electroencephalography recordings: a review. Hum. Brain Mapp. 43, 860–879 (2022). https://doi.org/10.1002/hbm.25683

    Article  Google Scholar 

  10. Rocca, D.L., et al.: Human brain distinctiveness based on EEG spectral coherence connectivity. IEEE Trans. Biomed. Eng. 61, 2406–2412 (2014). https://doi.org/10.1109/TBME.2014.2317881

    Article  Google Scholar 

  11. Msonda, J.R., He, Z., Lu, C.: Feature reconstruction based channel selection for emotion recognition using EEG. In: 2021 IEEE Signal Processing in Medicine and Biology Symposium (SPMB). pp. 1–7 (2021). https://doi.org/10.1109/SPMB52430.2021.9672258

  12. Gebodh, N., Esmaeilpour, Z., Datta, A., Bikson, M.: Dataset of concurrent EEG, ECG, and behavior with multiple doses of transcranial electrical stimulation. Sci. Data. 8, 274 (2021). https://doi.org/10.1038/s41597-021-01046-y

    Article  Google Scholar 

  13. Katsigiannis, S., Ramzan, N.: DREAMER: a database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices. IEEE J. Biomed. Heal. Informatics. 22, 98–107 (2018). https://doi.org/10.1109/JBHI.2017.2688239

    Article  Google Scholar 

  14. Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X., Zhou, J., Ma, C., Yu, L., Gai, Y., Xiao, T., He, T., Karypis, G., Li, J., Zhang, Z.: Deep graph library: a graph-centric, highly-performant package for graph neural networks. https://arxiv.org/abs/1909.01315 (2019). https://doi.org/10.48550/ARXIV.1909.01315

  15. McInnes, L., Healy, J., Melville, J.: UMAP: Uniform manifold approximation and projection for dimension reduction. https://arxiv.org/abs/1802.03426 (2018). https://doi.org/10.48550/ARXIV.1802.03426

  16. Tayeb, Z., Bose, R., Dragomir, A., Osborn, L.E., Thakor, N.V., Cheng, G.: Decoding of pain perception using EEG signals for a real-time reflex system in prostheses: a case study. Sci. Rep. 10, 4–8 (2020). https://doi.org/10.1038/s41598-020-62525-7

    Article  Google Scholar 

  17. Phillips, M.L., Drevets, W.C., Rauch, S.L., Lane, R.: Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol. Psychiatry 54, 504–514 (2003). https://doi.org/10.1016/S0006-3223(03)00168-9

    Article  Google Scholar 

  18. Zheng, W.L., Lu, B.L.: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Trans. Auton. Ment. Dev. 7, 162–175 (2015). https://doi.org/10.1109/TAMD.2015.2431497

    Article  Google Scholar 

  19. Zheng, W.: Multichannel EEG-based emotion recognition via group sparse canonical correlation analysis. IEEE Trans. Cogn. Dev. Syst. 9, 281–290 (2017). https://doi.org/10.1109/TCDS.2016.2587290

    Article  Google Scholar 

  20. Wang, Y., Qiu, S., Ma, X., He, H.: A prototype-based SPD matrix network for domain adaptation EEG emotion recognition. Pattern Recognit. 110, 107626 (2021). https://doi.org/10.1016/j.patcog.2020.107626

  21. Pandey, P., Seeja, K.R.: A one-dimensional CNN model for subject independent emotion recognition using EEG signals. In: Khanna, A., Gupta, D., Bhattacharyya, S., Hassanien, A.E., Anand, S., and Jaiswal, A. (eds.) International Conference on Innovative Computing and Communications. pp. 509–515. Springer Singapore, Singapore (2022)

    Google Scholar 

  22. Zhang, T., Wang, X., Xu, X., Chen, C.L.P.: GCB-Net: graph convolutional broad network and its application in emotion recognition. IEEE Trans. Affect. Comput. 13, 379–388 (2022). https://doi.org/10.1109/TAFFC.2019.2937768

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Ronald Msonda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Msonda, J.R., He, Z., Lu, C. (2024). Graph Attention Based Spatial Temporal Network for EEG Signal Representation. In: Naik, N., Jenkins, P., Grace, P., Yang, L., Prajapat, S. (eds) Advances in Computational Intelligence Systems. UKCI 2023. Advances in Intelligent Systems and Computing, vol 1453. Springer, Cham. https://doi.org/10.1007/978-3-031-47508-5_23

Download citation

Publish with us

Policies and ethics