Skip to main content

Sense Amplifier for Spin-Based Cryogenic Memory Cell

  • Chapter
  • First Online:
Single Flux Quantum Integrated Circuit Design

Abstract

One of the primary drawbacks limiting the use of superconductive electronics is the lack of fast and dense memory capable of operating within a cryogenic environment. Recent research suggests the use of cryogenic spin-based memory—magnetic tunnel junctions and spin valves. In this chapter, a sense amplifier topology for a spin-based cryogenic memory cell is proposed and described. The nanocryotron (nTron) device is used as a driver for a spin-based memory element—the cryogenic orthogonal spin transfer device. A clocked DC-to-SFQ converter is used as a sense amplifier to resolve small differences in the readout current. The sense amplifier produces a variable number of SFQ pulses to represent different analog states by passing or blocking input clock pulses. This clock is derived from the system clock by synchronizing the read pulse to the same clock signal. These output pulses are counted and converted into a binary form. The sense amplifier exploits the specific shape of the nTron output waveform characterized by an L/R time constant to achieve the resolution of low magnetoresistance (MR) memory cells and is adaptable to different nTron sizes, bias currents, and spin-based devices. The dynamic power dissipation and resolution of the sense amplifier can be adjusted by the frequency of the applied clock signal, allowing the resolution to be reduced for high MR devices. The sense amplifier consists of two Josephson junctions, requiring little area, particularly in comparison to a standard nTron device, and can therefore be connected to each column of the memory array.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Shanehsazzadeh, T. Jabbari, F. Qaderi, M. Fardmanesh, Integrated monolayer planar flux transformer and resonator tank circuit for high- T\({ }_C\) RF-SQUID magnetometer. IEEE Trans. Appl. Supercond. 27(4), 1–4 (2017)

    Google Scholar 

  2. K.K. Likharev, V.K. Semenov, RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans. Appl. Supercond. 1(1), 3–28 (1991)

    Article  Google Scholar 

  3. O.A. Mukhanov, D. Gupta, A.M. Kadin, V.K. Semenov, Superconductor analog-to-digital converters. Proc. IEEE 92(10), 1564–1584 (2004)

    Article  Google Scholar 

  4. T. Jabbari, E.G. Friedman, SFQ/DQFP interface circuits. IEEE Trans. Appl. Supercond. 33(5), 1–5 (2023)

    Google Scholar 

  5. R. Bairamkulov, T. Jabbari, E.G. Friedman, QuCTS – single flux quantum clock tree synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(10), 3346–3358 (2022)

    Article  Google Scholar 

  6. T. Jabbari, G. Krylov, J Kawa, E.G. Friedman, Splitter trees in single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5), 1302606 (2021)

    Google Scholar 

  7. A.N. McCaughan, K.K. Berggren, A superconducting-nanowire three-terminal electrothermal device. Nano Lett. 14(10), 5748–5753 (2014)

    Article  Google Scholar 

  8. G. Krylov, E.G. Friedman, Sense amplifier for spin-based cryogenic memory cells. IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019). Art no. 1501804

    Google Scholar 

  9. G. Krylov, E.G. Friedman, Behavioral verilog-A model of superconductor-ferromagnetic transistor, in Proceedings of the IEEE International Symposium on Circuits and Systems (2018)

    Google Scholar 

  10. G. Krylov, E.G. Friedman, Partitioning RSFQ circuits for current recycling. IEEE Trans. Appl. Supercond. 31(5), 1–6 (2021)

    Article  Google Scholar 

  11. G. Krylov, E.G. Friedman, Design methodology for distributed large-scale ERSFQ bias networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(11), 2438–2447 (2020)

    Google Scholar 

  12. G. Krylov, E.G. Friedman, Asynchronous dynamic single flux quantum majority gates. IEEE Trans. Appl. Supercond. 30(5), 1–7 (2020). Art no. 1300907

    Google Scholar 

  13. T. Jabbari, G. Krylov, E.G. Friedman, Logic locking in single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5) (2021)

    Google Scholar 

  14. Y. Mustafa, T. Jabbari, S. Köse, Emerging attacks on logic locking in SFQ circuits and related countermeasures. IEEE Trans. Appl. Supercond. 32(3), 1–8 (2022)

    Article  Google Scholar 

  15. T. Jabbari, H. Zandi, F. Foroughi, A. Bozbey, M. Fardmanesh, Investigation of readout cell configuration and parameters on functionality and stability of bi-directional RSFQ TFF. IEEE Trans. Appl. Supercond. 26(3), 1–5 (2016)

    Article  Google Scholar 

  16. G. Krylov, E.G. Friedman, Design for testability of SFQ circuits. IEEE Trans. Appl. Supercond. 27(8), 1–7 (2017)

    Article  Google Scholar 

  17. I.I. Soloviev, N.V. Klenov, S.V. Bakurskiy, M.Y. Kupriyanov, A.L. Gudkov, A.S. Sidorenko, Beyond Moore’s technologies: operation principles of a superconductor alternative. Beilstein J. Nanotechnol. 8, 2689–2710 (2017)

    Article  Google Scholar 

  18. L. Ye, D.B. Gopman, L. Rehm, D. Backes, G. Wolf, T. Ohki, A.F. Kirichenko, I.V. Vernik, O.A. Mukhanov, A.D. Kent, Spin-transfer switching of orthogonal spin-valve devices at cryogenic temperatures. J. Appl. Phys. 115(17), 17C725 (2014)

    Google Scholar 

  19. S.R. Whiteley, WRspice Reference Manual [Online]. Available: http://www.wrcad.com/manual/wrsmanual.pdf

  20. A.J. Kerman, E.A. Dauler, W.E. Keicher, J.K.W. Yang, K.K. Berggren, G. Gol’tsman, B. Voronov, Kinetic-inductance-limited reset time of superconducting nanowire photon counters. Appl. Phys. Lett. 88(11), 111116 (2006)

    Google Scholar 

  21. Q. Liu, T. Van Duzer, X. Meng, S.R. Whiteley, K. Fujiwara, T. Tomida, K. Tokuda, N. Yoshikawa, Simulation and measurements on a 64-kbit hybrid Josephson-CMOS memory. IEEE Trans. Appl. Supercond. 15(2), 415–418 (2005)

    Article  Google Scholar 

  22. J.K.W. Yang, A.J. Kerman, E.A. Dauler, V. Anant, K.M. Rosfjord, K.K. Berggren, Modeling the electrical and thermal response of superconducting nanowire single-photon detectors. IEEE Trans. Appl. Supercond. 17(2), 581–585 (2007)

    Article  Google Scholar 

  23. J.R. Clem, V.G. Kogan, Kinetic impedance and depairing in thin and narrow superconducting films. Phys. Rev. B 86, 174521 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gleb Krylov , Tahereh Jabbari or Eby G. Friedman .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krylov, G., Jabbari, T., Friedman, E.G. (2024). Sense Amplifier for Spin-Based Cryogenic Memory Cell. In: Single Flux Quantum Integrated Circuit Design. Springer, Cham. https://doi.org/10.1007/978-3-031-47475-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47475-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47474-3

  • Online ISBN: 978-3-031-47475-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics