Skip to main content

SFQ/DQFP Interface Circuits

  • Chapter
  • First Online:
Single Flux Quantum Integrated Circuit Design

Abstract

The increasing complexity of hybrid superconductive computing systems has made interface circuits between logic families an issue of growing importance. In this chapter, interface circuits between single flux quantum (SFQ) and directly coupled quantum flux parametron (DQFP) logic families to achieve high speed, low power hybrid superconductive computing systems are presented. In the DQFP-to-SFQ interface, margins greater than \(\pm \)20% of the critical current of the JJs, bias currents, and inductances are exhibited. The margins of the excitation current of the DQFP buffer are \(-\)38% and \(+\)35% with the frequency of the excitation current in the range of 2 to 10 GHz. In the SFQ-to-DQFP interface, the margins are greater than \(-\)33% and \(+\)25%. The margins of the excitation current of the DQFP buffer are \(-\)50% and \(+\)20% for frequencies ranging from 2 to 10 GHz. Since no transformers are required, the physical area of the adiabatic portion of the interface circuits is significantly less than existing interface circuits. The SFQ-to-DQFP interface circuit operates at frequencies approaching 20 GHz. These interface circuits therefore exhibit high parameter margins and operating frequencies while requiring significantly less area as compared to existing interface circuits. The interface circuits support the use of both ultra-low power and high speed logic families in complex hybrid superconductive systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.K. Likharev, V.K. Semenov, RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans. Appl. Supercond. 1(1), 3–28 (1991)

    Article  Google Scholar 

  2. T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019)

    Google Scholar 

  3. T. Jabbari, E.G. Friedman, Global interconnects in VLSI complexity single flux quantum systems, in Proceedings of the Workshop on System-Level Interconnect: Problems and Pathfinding Workshop (2020), pp. 1–7

    Google Scholar 

  4. T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020)

    Google Scholar 

  5. T. Jabbari, E.G. Friedman, SFQ/DQFP interface circuits. IEEE Trans. Appl. Supercond. 33(5), 1–5 (2023)

    Google Scholar 

  6. T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759

    Google Scholar 

  7. R. Bairamkulov, T. Jabbari, E.G. Friedman, QuCTS – single flux quantum clock tree synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(10), 3346–3358 (2022)

    Article  Google Scholar 

  8. T. Jabbari, E.G. Friedman, Flux mitigation in wide superconductive striplines. IEEE Trans. Appl. Supercond. 32(3), 1–6 (2022)

    Article  Google Scholar 

  9. T. Jabbari, E.G. Friedman, Stripline topology for flux mitigation. IEEE Trans. Appl. Supercond. 335, 1–4 (2023)

    Google Scholar 

  10. T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022)

    Google Scholar 

  11. S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, A. Wynn, D.E. Oates, L.M. Johnson, M.A. Gouker, Advanced fabrication processes for superconducting very large-scale integrated circuits. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)

    Article  Google Scholar 

  12. N. Takeuchi, D. Ozawa, Y. Yamanashi, N. Yoshikawa, An adiabatic quantum flux parametron as an ultra-low-power logic device. Supercond. Sci. Technol. 26(3), 035010 (2013)

    Google Scholar 

  13. J.Y. Kim, J.H. Kang, High frequency operation of a rapid single flux quantum arithmetic and logic unit. J. Korean Phys. Soc. 48(5), 1004–1007 (2006)

    Google Scholar 

  14. T. Jabbari, R. Bairamkulov, J. Kawa, E. Friedman, Interconnect benchmark circuits for single flux quantum integrated circuits. IEEE Trans. Appl. Supercond. (2023). Under review

    Google Scholar 

  15. N. Takeuchi, Y. Yamanashi, N. Yoshikawa, Adiabatic quantum-flux-parametron cell library adopting minimalist design. J. Appl. Phys. 117(17), 173912 (2015)

    Google Scholar 

  16. N. Takeuchi, Y. Yamanashi, N. Yoshikawa, Energy efficiency of adiabatic superconductor logic. Supercond. Sci. Technol. 28(1), 015003 (2014)

    Google Scholar 

  17. Y. He, C.L. Ayala, N. Takeuchi, T. Yamae, Y. Hironaka, A. Sahu, V. Gupta, A. Talalaevskii, D. Gupta, N. Yoshikawa, A compact AQFP logic cell design using an 8-metal layer superconductor process. Supercond. Sci. Technol. 33(3), 035010 (2020)

    Google Scholar 

  18. Y. Hironaka, S.S. Meher, C.L. Ayala, Y. He, T. Tanaka, M. Habib, A. Sahu, A. Inamdar, D. Gupta, N. Yoshikawa, Demonstration of interface circuits for adiabatic quantum-flux-parametron cell library using an eight-metal layer superconductor process. IEEE Trans. Appl. Supercond. 33(5), 1–5 (2023)

    Article  Google Scholar 

  19. R. Ishida, N. Takeuchi, T. Yamae, N. Yoshikawa, Design and demonstration of directly coupled quantum-flux-parametron circuits with optimized parameters. IEEE Trans. Appl. Supercond. 31(5), 1100505 (2021)

    Google Scholar 

  20. R. Ishida, N. Takeuchi, T. Yamae, N. Yoshikawa, Parameter optimization of directly coupled quantum flux parametron circuits. IEICE Tech. Rep. 119(369), 91–93 (2020)

    Google Scholar 

  21. F. China, N. Tsuji, T. Narama, N. Takeuchi, T. Ortlepp, Y. Yamanashi, N. Yoshikawa, Demonstration of signal transmission between adiabatic quantum-flux-parametrons and rapid single-flux-quantum circuits using superconductive microstrip lines. IEEE Trans. Appl. Supercond. 27(4), 1–5 (2017)

    Google Scholar 

  22. F. China, T. Narama, N. Takeuchi, T. Ortlepp, Y. Yamanashi, N. Yoshikawa, Design and demonstration of interface circuits between rapid single-flux-quantum and adiabatic quantum-flux-parametron circuits. IEEE Trans. Appl. Supercond. 26(5), 1301305 (2016)

    Google Scholar 

  23. N. Takeuchi, T. Yamae, C.L. Ayala, H. Suzuki, N. Yoshikawa, An adiabatic superconductor 8-bit adder with 24k\({ }_B\)T energy dissipation per junction. Appl. Phys. Lett. 114(4), 042602 (2019)

    Google Scholar 

  24. Y. He, C.L. Ayala, N. Takeuchi, Y. Hironaka, T. Yamae, S. Meher, A. Inamdar, D. Gupta, N. Yoshikawa, Demonstration of interfaces between adiabatic quantum-flux-parametron and rapid single-flux-quantum circuits using the MIT-LL SFQ5ee process, in Proceedings of the Applied Superconductivity Conference (2020)

    Google Scholar 

  25. RSFQ Cell Library, February (2021) [Online]. Available: https://www.alt.tu-ilmenau.de/it-tet/forschung/supraleitende-hochgeschwindigkeits-elektronik/rsfq-cell/interfaces/

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gleb Krylov , Tahereh Jabbari or Eby G. Friedman .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krylov, G., Jabbari, T., Friedman, E.G. (2024). SFQ/DQFP Interface Circuits. In: Single Flux Quantum Integrated Circuit Design. Springer, Cham. https://doi.org/10.1007/978-3-031-47475-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47475-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47474-3

  • Online ISBN: 978-3-031-47475-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics