Skip to main content

Principals of Superconductive Circuits

  • Chapter
  • First Online:
Single Flux Quantum Integrated Circuit Design

Abstract

Superconductive circuits are introduced in this chapter. Both analog and digital circuits are described, and memory topologies are presented. Among the analog devices, one- and two-junction SQUIDs are introduced along with characteristic expressions and common applications. Different families of superconductive digital logic, such as voltage level logic, rapid single flux quantum logic, reciprocal quantum logic, and adiabatic quantum flux parametron logic, are described. The basic principles of adiabatic and reversible computing are also reviewed. Finally, different types of cryogenic memory are introduced, and the advantages and disadvantages of these memory topologies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.A. Buck, The cryotron – a superconductive computer component. Proc. IRE 44(4), 482–493 (1956)

    Article  Google Scholar 

  2. W.J. Gallagher, E.P. Harris, M.B. Ketchen, Superconductivity at IBM – a centennial review: part I – superconducting computer and device applications, in Proceedings of the IEEE/CSC ESAS European Superconductivity News Forum, vol. 21 (2012), pp. 1–34

    Google Scholar 

  3. F. Shanehsazzadeh, T. Jabbari, F. Qaderi, M. Fardmanesh, Integrated monolayer planar flux transformer and resonator tank circuit for high- T\({ }_C\) RF-SQUID magnetometer. IEEE Trans. Appl. Supercond. 27(4), 1–4 (2017)

    Google Scholar 

  4. K.K. Likharev, V.K. Semenov, RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans. Appl. Supercond. 1(1), 3–28 (1991)

    Article  Google Scholar 

  5. M. Hosoya, W. Hioe, J. Casas, R. Kamikawai, Y. Harada, Y. Wada, H. Nakane, R. Suda, E. Goto, Quantum flux parametron: a single quantum flux device for Josephson supercomputer. IEEE Trans. Appl. Supercond. 1(2), 77–89 (1991)

    Article  Google Scholar 

  6. S. Whiteley, E. Mlinar, G. Krylov, T. Jabbari, E.G. Friedman, J. Kawa, An SFQ digital circuit technology with fully-passive transmission line interconnect, in Proceedings of the Applied Superconductivity Conference (2020)

    Google Scholar 

  7. T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019)

    Google Scholar 

  8. T. Jabbari, E.G. Friedman, Global interconnects in VLSI complexity single flux quantum systems, in Proceedings of the Workshop on System-Level Interconnect: Problems and Pathfinding Workshop (2020), pp. 1–7

    Google Scholar 

  9. T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020)

    Google Scholar 

  10. W. Chen, A.V. Rylyakov, V. Patel, J.E. Lukens, K.K. Likharev, Rapid single flux quantum T-flip flop operating up to 770 GHz. IEEE Trans. Appl. Supercond. 9(2), 3212–3215 (1999)

    Article  Google Scholar 

  11. O.A. Mukhanov, D. Gupta, A.M. Kadin, V.K. Semenov, Superconductor analog-to-digital converters. Proc. IEEE 92(10), 1564–1584 (2004)

    Article  Google Scholar 

  12. N. Takeuchi, Y. Yamanashi, N. Yoshikawa, Reversible logic gate using adiabatic superconducting devices. Sci. Rep. 4, 6354 (2014)

    Article  Google Scholar 

  13. T. Jabbari, E.G. Friedman, SFQ/DQFP interface circuits. IEEE Trans. Appl. Supercond. 33(5), 1–5 (2023)

    Google Scholar 

  14. J.M. Lockhart, SQUID readout and ultra-low magnetic fields for gravity probe-B (GP-B). Proc. SPIE Cryog. Opt. Syst. Instrum. II 619, 148–156 (1986)

    Google Scholar 

  15. T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759

    Google Scholar 

  16. T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Resonance effects in single flux quantum interconnect, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2020), pp. 1–5

    Google Scholar 

  17. T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022)

    Google Scholar 

  18. K.K. Likharev, Dynamics of Josephson Junctions and Circuits (Gordon and Breach Science Publishers, London, 1986)

    Google Scholar 

  19. A.N. McCaughan, K.K. Berggren, A superconducting-nanowire three-terminal electrothermal device. Nano Lett. 14(10), 5748–5753 (2014)

    Article  Google Scholar 

  20. G. Krylov, E.G. Friedman, Sense amplifier for spin-based cryogenic memory cells. IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019). Art no. 1501804

    Google Scholar 

  21. G. Krylov, E.G. Friedman, Design methodology for distributed large-scale ERSFQ bias networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(11), 2438–2447 (2020)

    Google Scholar 

  22. T. Jabbari, H. Zandi, F. Foroughi, A. Bozbey, M. Fardmanesh, Investigation of readout cell configuration and parameters on functionality and stability of bi-directional RSFQ TFF. IEEE Trans. Appl. Supercond. 26(3), 1–5 (2016)

    Article  Google Scholar 

  23. G. Krylov, E.G. Friedman, Bias distribution in ERSFQ VLSI circuits, in Proceedings of the IEEE International Symposium on Circuits and Systems (2020), pp. 1–5

    Google Scholar 

  24. T. Jabbari, H. Zandi, M. Fardmanesh, Frequency limitation due to switching transition of the bias current in bidirectional RSFQ logic. J. Supercond. Novel Magn. 30, 3619–3624 (2017)

    Article  Google Scholar 

  25. S.K. Tolpygo, V. Bolkhovsky, D.E. Oates, R. Rastogi, S. Zarr, A.L. Day, T.J. Weir, A. Wynn, L.M. Johnson, Superconductor electronics fabrication process with MoNx kinetic inductors and self-shunted Josephson junctions. IEEE Trans. Appl. Supercond. 28(4), 1–12 (2018)

    Article  Google Scholar 

  26. J. Matisoo, The tunneling cryotron – a superconductive logic element based on electron tunneling. Proc. IEEE 55(2), 172–180 (1967)

    Article  Google Scholar 

  27. K.K. Likharev, O.A. Mukhanov, V.K. Semenov, Resistive single flux quantum logic for the Josephson-junction digital technology, in Proceedings of the Third International Conference on Superconducting Quantum Devices (1985), pp. 1103–1108

    Google Scholar 

  28. Q.P. Herr, A.Y. Herr, O.T. Oberg, A.G. Ioannidis, Ultra-low-power superconductor logic. J. Appl. Phys. 109(10), 103903 (2011)

    Google Scholar 

  29. S. Kumar, W.F. Avrin, B.R. Whitecotton, NMR of room temperature samples with a flux-locked DC SQUID. IEEE Trans. Magn. 32(6), 5261–5264 (1996)

    Article  Google Scholar 

  30. A.H. Silver, J.E. Zimmerman, Quantum transitions and loss in multiply connected superconductors. Phys. Rev. Lett. 15, 888–891 (1965)

    Article  Google Scholar 

  31. T. Van Duzer, C.W. Turner, Principles of Superconductive Devices and Circuits, 2nd edn. (Prentice Hall, Hoboken, 1999)

    Google Scholar 

  32. K.K. Likharev, Dynamics of some single flux quantum devices: I. Parametric quantron. IEEE Trans. Magn. 13(1), 242–244 (1977)

    Article  Google Scholar 

  33. R.L. Fagaly, Superconducting quantum interference device instruments and applications. Rev. Sci. Instrum. 77(10), 101101 (2006)

    Google Scholar 

  34. R.C. Jaklevic, J. Lambe, A.H. Silver, J.E. Mercereau, Quantum interference effects in Josephson tunneling. Phys. Rev. Lett. 12(7), 159 (1964)

    Google Scholar 

  35. T.R. Gheewala, A 30-ps Josephson current injection logic (CIL). IEEE J. Solid-State Circuits 14(5), 787–793 (1979)

    Article  Google Scholar 

  36. H.H. Zappe, A single flux quantum Josephson junction memory cell. Appl. Phys. Lett. 25(7), 424–426 (1974)

    Article  Google Scholar 

  37. E. Salman, E.G. Friedman, High Performance Integrated Circuit Design (McGraw-Hill Publishers, New York City, 2012)

    Google Scholar 

  38. T.R. Gheewala, Josephson logic circuits based on nonlinear current injection in interferometer devices. Appl. Phys. Lett. 33(8), 781–783 (1978)

    Article  Google Scholar 

  39. M. Klein, D.J. Herrell, Sub-100 ps experimental Josephson interferometer logic gates. IEEE J. Solid-State Circuits 13(5), 577–583 (1978)

    Article  Google Scholar 

  40. T.A. Fulton, R.C. Dynes, Switching to zero voltage in Josephson tunnel junctions. Solid State Commun. 9(13), 1069–1073 (1971)

    Article  Google Scholar 

  41. R. Jewett, T. Van Duzer, Low-probability punchthrough in Josephson junctions. IEEE Trans. Magn. 17(1), 599–602 (1981)

    Article  Google Scholar 

  42. R. Tuyl, C. Liechti, High-speed integrated logic with GaAs MESFET’s. IEEE J. Solid-State Circuits 9(5), 269–276 (1974)

    Article  Google Scholar 

  43. O.T. Oberg, Superconducting Logic Circuits Operating with Reciprocal Magnetic Flux Quanta, Ph.D. Dissertation, University of Maryland, College Park, Maryland, 2011

    Google Scholar 

  44. I.I. Soloviev, N.V. Klenov, S.V. Bakurskiy, M.Y. Kupriyanov, A.L. Gudkov, A.S. Sidorenko, Beyond Moore’s technologies: operation principles of a superconductor alternative. Beilstein J. Nanotechnol. 8, 2689–2710 (2017)

    Article  Google Scholar 

  45. A.M. Kadin, R.J. Webber, S. Sarwana, Effects of superconducting return currents on RSFQ circuit performance. IEEE Trans. Appl. Supercond. 15(2), 280–283 (2005)

    Article  Google Scholar 

  46. A.Y. Herr, Q.P. Herr, O.T. Oberg, O. Naaman, J.X. Przybysz, P. Borodulin, S.B. Shauck, An 8-bit carry look-ahead adder with 150 ps latency and sub-microwatt power dissipation at 10 GHz. J. Appl. Phys. 113(3), 033911 (2013)

    Google Scholar 

  47. V.K. Semenov, Y.A. Polyakov, S.K. Tolpygo, Very large scale integration of Josephson-junction-based superconductor random access memories. IEEE Trans. Appl. Supercond. 29(5), 1–9 (2019)

    Google Scholar 

  48. R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Develop. 5(3), 183–191 (1961)

    Article  MathSciNet  Google Scholar 

  49. J.P.S. Peterson, R.S. Sarthour, A.M. Souza, I.S. Oliveira, J. Goold, K. Modi, D.O. Soares-Pinto, L.C. Céleri, Experimental demonstration of information to energy conversion in a quantum system at the Landauer limit. Proc. R. Soc. A Math. Phys. Eng. Sci. 472(2188), 20150813 (2016)

    Google Scholar 

  50. C.H. Bennett, Logical reversibility of computation. IBM J. Res. Develop. 17(6), 525–532 (1973)

    Article  MathSciNet  Google Scholar 

  51. Y. Harada, H. Nakane, N. Miyamoto, U. Kawabe, E. Goto, T. Soma, Basic operations of the quantum flux parametron. IEEE Trans. Magn. 23(5), 3801–3807 (1987)

    Article  Google Scholar 

  52. N. Takeuchi, D. Ozawa, Y. Yamanashi, N. Yoshikawa, An adiabatic quantum flux parametron as an ultra-low-power logic device. Supercond. Sci. Technol. 26(3), 035010 (2013)

    Google Scholar 

  53. O. Chen, R. Cai, Ya. Wang, F. Ke, Ta. Yamae, R. Saito, N. Takeuchi, N. Yoshikawa, Adiabatic quantum-flux-parametron: towards building extremely energy-efficient circuits and systems. Sci. Rep. 9(10514), 1–10 (2019)

    Google Scholar 

  54. T.D. Clark, J.P. Baldwin, Superconducting memory device using Josephson junctions. Electron. Lett. 3(5), 178–179 (1967)

    Article  Google Scholar 

  55. S. Tahara, I. Ishida, Y. Ajisawa, Y. Wada, Experimental vortex transitional nondestructive read-out Josephson memory cell. J. Appl. Phys. 65(2), 851–856 (1989)

    Article  Google Scholar 

  56. Y. Kim, H. Kwon, S. Doo, M. Ahn, Y. Kim, Y. Lee, D. Kang, S. Do, C. Lee, G. Cho, J. Park, J. Kim, K. Park, S. Oh, S. Lee, J. Yu, K. Yu, C. Jeon, S. Kim, H. Park, J. Lee, S. Cho, K. Park, Y. Kim, Y. Seo, C. Shin, C. Lee, S. Bang, Y. Park, S. Choi, B. Kim, G. Han, S. Bae, H. Kwon, J. Choi, Y. Sohn, K. Park, S. Jang, G. Jin, A 16-Gb, 18-Gb/s/pin GDDR6 DRAM with per-bit trainable single-ended DFE and PLL-less clocking. IEEE J. Solid-State Circuits 54(1), 197–209 (2019)

    Article  Google Scholar 

  57. N. Yoshikawa, T. Tomida, M. Tokuda, Q. Liu, X. Meng, S.R. Whiteley, T. Van Duzer, Characterization of 4 K CMOS devices and circuits for hybrid Josephson-CMOS systems. IEEE Trans. Appl. Supercond. 15(2), 267–271 (2005)

    Article  Google Scholar 

  58. W.F. Clark, B. El-Kareh, R.G. Pires, S.L. Titcomb, R.L. Anderson, Low temperature CMOS - a brief review. IEEE Trans. Compon. Hybrids Manuf. Technol. 15(3), 397–404 (1992)

    Article  Google Scholar 

  59. H. Suzuki, A. Inoue, T. Imamura, S. Hasuo, A Josephson driver to interface Josephson junctions to semiconductor transistors, in Proceedings of the IEEE International Electron Devices Meeting (1988), pp. 290–293

    Google Scholar 

  60. T. Ortlepp, S.R. Whiteley, L. Zheng, X. Meng, T. Van Duzer, High-speed hybrid superconductor-to-semiconductor interface circuit with ultra-low power consumption. IEEE Trans. Appl. Supercond. 23(3), 1400104 (2013)

    Google Scholar 

  61. T. Van Duzer, L. Zheng, S.R. Whiteley, H. Kim, J. Kim, X. Meng, T. Ortlepp, 64-kb hybrid Josephson-CMOS 4 Kelvin RAM with 400 ps access time and 12 mW read power. IEEE Trans. Appl. Supercond. 23(3), 1700504 (2013)

    Google Scholar 

  62. H.P. Wong, S. Salahuddin, Memory leads the way to better computing. Nat. Nanotechnol. 10(3), 191–194 (2015)

    Article  Google Scholar 

  63. L. Ye, D.B. Gopman, L. Rehm, D. Backes, G. Wolf, T. Ohki, A.F. Kirichenko, I.V. Vernik, O.A. Mukhanov, A.D. Kent, Spin-transfer switching of orthogonal spin-valve devices at cryogenic temperatures. J. Appl. Phys. 115(17), 17C725 (2014)

    Google Scholar 

  64. L. Liu, C.-F. Pai, Y. Li, H.W. Tseng, D.C. Ralph, R.A. Buhrman, Spin-torque switching with the giant spin hall effect of tantalum. Science 336(6081), 555–558 (2012)

    Article  Google Scholar 

  65. M. Nguyen, G.J. Ribeill, M.V. Gustafsson, S. Shi, S.V. Aradhya, A.P. Wagner, L.M. Ranzani, L. Zhu, R. Baghdadi, B. Butters, E. Toomey, M. Colangelo, P.A. Truitt, A. Jafari-Salim, D. McAllister, D. Yohannes, S.R. Cheng, R. Lazarus, O. Mukhanov, K.K. Berggren, R.A. Buhrman, G.E. Rowlands, T.A. Ohki, Cryogenic memory architecture integrating spin hall effect based magnetic memory and superconductive cryotron devices. Sci. Rep. 10(1), 248 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gleb Krylov , Tahereh Jabbari or Eby G. Friedman .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krylov, G., Jabbari, T., Friedman, E.G. (2024). Principals of Superconductive Circuits. In: Single Flux Quantum Integrated Circuit Design. Springer, Cham. https://doi.org/10.1007/978-3-031-47475-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47475-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47474-3

  • Online ISBN: 978-3-031-47475-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics