Skip to main content

Superconductive IC Manufacturing

  • Chapter
  • First Online:
Single Flux Quantum Integrated Circuit Design

Abstract

Manufacturing integrated circuits is a complex and intricate process, both for semiconductor and superconductive electronics. Despite the minimum feature size and number of layers in modern SCE technology being less deeply scaled as compared to semiconductor technologies, numerous challenges exist in manufacturing superconductive electronics. The materials used during the different fabrication steps interact in complex mechanical, chemical, and electrical ways, requiring adjustments to the manufacturing process. These issues are exacerbated by the high sensitivity of superconductive circuits to process variations. In this chapter, the different steps and materials used in the manufacturing process of superconductive circuits are described. Challenges unique to superconductive electronics are highlighted. Important features of modern superconductive fabrication technologies are discussed and compared to the fabrication of semiconductor-based integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Jabbari, F. Shanehsazzadeh, H. Zandi, M. Banzet, J. Schubert, M. Fardmanesh, Effects of the design parameters on characteristics of the inductances and JJs in HTS RSFQ circuits. IEEE Trans. Appl. Supercond. 28(7), 1–4 (2018)

    Article  Google Scholar 

  2. K.K. Likharev, V.K. Semenov, RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans. Appl. Supercond. 1(1), 3–28 (1991)

    Article  Google Scholar 

  3. S. Whiteley, E. Mlinar, G. Krylov, T. Jabbari, E.G. Friedman, J. Kawa, An SFQ digital circuit technology with fully-passive transmission line interconnect, in Proceedings of the Applied Superconductivity Conference (2020)

    Google Scholar 

  4. T. Jabbari, E.G. Friedman, Global interconnects in VLSI complexity single flux quantum systems, in Proceedings of the Workshop on System-Level Interconnect: Problems and Pathfinding Workshop (2020), pp. 1–7

    Google Scholar 

  5. T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020)

    Google Scholar 

  6. T. Jabbari, M. Bocko, E.G. Friedman, All-JJ logic based on bistable JJs. IEEE Trans. Appl. Supercond. 33(5), 1–7 (2023)

    Google Scholar 

  7. T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759

    Google Scholar 

  8. T. Jabbari, J. Kawa, E.G. Friedman, H-tree clock synthesis in RSFQ circuits, in Proceedings of the IEEE Baltic Electronics Conference (2020), pp. 1–5

    Google Scholar 

  9. T. Jabbari, G. Krylov, J Kawa, E.G. Friedman, Splitter trees in single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5), 1302606 (2021)

    Google Scholar 

  10. T. Jabbari, E.G. Friedman, Flux mitigation in wide superconductive striplines. IEEE Trans. Appl. Supercond. 32(3), 1–6 (2022)

    Article  Google Scholar 

  11. T. Jabbari, E.G. Friedman, Stripline topology for flux mitigation. IEEE Trans. Appl. Supercond. 335, 1–4 (2023)

    Google Scholar 

  12. T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Resonance effects in single flux quantum interconnect, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2020), pp. 1–5

    Google Scholar 

  13. T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022)

    Google Scholar 

  14. S.K. Tolpygo, Superconductor digital electronics: scalability and energy efficiency issues. Low Temp. Phys. 42(5), 361–379 (2016)

    Article  Google Scholar 

  15. C.M. Natarajan, M.G. Tanner, R.H. Hadfield, Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25(6), 063001 (2012)

    Google Scholar 

  16. G. Krylov, E.G. Friedman, Sense amplifier for spin-based cryogenic memory cells. IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019). Art no. 1501804

    Google Scholar 

  17. G. Krylov, E.G. Friedman, Behavioral verilog-A model of superconductor-ferromagnetic transistor, in Proceedings of the IEEE International Symposium on Circuits and Systems (2018)

    Google Scholar 

  18. S.K Tolpygo, V. Bolkhovsky, R. Rastogi, S. Zarr, A.L. Day, E. Golden, T.J. Weir, A. Wynn, L.M. Johnson, Advanced fabrication processes for superconductor electronics: current status and new developments. IEEE Trans. Appl. Supercond. 29(5), 1–13 (2019)

    Google Scholar 

  19. T. Ando, S. Nagasawa, N. Takeuchi, N. Tsuji, F. China, M. Hidaka, Y. Yamanashi, N. Yoshikawa, Three-dimensional adiabatic quantum-flux-parametron fabricated using a double-active-layered niobium process. Supercond. Sci. Technol. 30(7), 075003 (2017)

    Google Scholar 

  20. D.T. Yohannes, R.T. Hunt, J.A. Vivalda, D. Amparo, A. Cohen, I.V. Vernik, A.F. Kirichenko, Planarized, extendible, multilayer fabrication process for superconducting electronics. IEEE Trans. Appl. Supercond. 25(3), 1–5 (2015)

    Article  Google Scholar 

  21. D. Yohannes, S. Sarwana, S.K. Tolpygo, A. Sahu, Y.A. Polyakov, V.K. Semenov, Characterization of HYPRES’ 4.5 \(kA/cm^2\) & 8 \(kA/cm^2\)\(Nb/AlO_x/Nb\) fabrication processes. IEEE Trans. Appl. Supercond. 15(2), 90–93 (2005)

    Google Scholar 

  22. G. Krylov, E.G. Friedman, Partitioning RSFQ circuits for current recycling. IEEE Trans. Appl. Supercond. 31(5), 1–6 (2021)

    Article  Google Scholar 

  23. S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, A. Wynn, D.E. Oates, L.M. Johnson, M.A. Gouker, Advanced fabrication processes for superconducting very large-scale integrated circuits. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)

    Article  Google Scholar 

  24. F. Bedard, N. Welker, G.R. Gotter, M.A. Escavage, J.T. Pinkston, Superconducting Technology Assessment (National Security Agency, Office of Corporate Assessments, Fort Meade, Maryland, 2005)

    Google Scholar 

  25. J.M. Murduck, Fabrication of Superconducting Devices and Circuits. Frontiers of Thin Film Technology (Elsevier, Amsterdam, 2001)

    Book  Google Scholar 

  26. Y. Tarutani, M. Hirano, U. Kawabe, Niobium-based integrated circuit technologies. Proc. IEEE 77(8), 1164–1176 (1989)

    Article  Google Scholar 

  27. E.L. Wolf, Introduction to refractory Josephson junctions, in Josephson Junctions: History, Devices, and Applications, ed. by E.L. Wolf, G.B. Arnold, M.A. Gurvitch, J.F. Zasadzinski, Chapter 2 (Pan Stanford Publishing Pte. Ltd., Singapore, 2017), pp. 17–46

    Google Scholar 

  28. M.A. Gurvitch, The trace that launched a thousand chips: development of Nb/Al–Oxide–Nb technology, in Josephson Junctions: History, Devices, and Applications, ed. by E.L. Wolf, G.B. Arnold, M.A. Gurvitch, J. F. Zasadzinski, Chapter 5 (Pan Stanford Publishing Pte. Ltd., Singapore, 2017), pp. 83–146

    Google Scholar 

  29. A.L. Robinson, New superconductors for a supercomputer. Science 215(4528), 40–43 (1982)

    Article  Google Scholar 

  30. I. Ames, An overview of materials and process aspects of Josephson integrated circuit fabrication. IBM J. Res. Develop. 24(2), 188–194 (1980)

    Article  Google Scholar 

  31. I. Giaever, Energy gap in superconductors measured by electron tunneling. Phys. Rev. Lett. 5, 147–148 (1960)

    Article  Google Scholar 

  32. I.P. Litikov, O.A. Mukhanov, Loop self-testing of Josephson junction digital structures, in Avtomatika i Vychislitelnaya Tekhnika [Soviet Automatics and Computers], No. 1 (1988), pp. 70–78

    Google Scholar 

  33. D. Shen, R. Zhu, W. Xu, J. Chang, Z. Ji, G. Sun, C. Cao, J. Chen, Character and fabrication of Al/\(Al_2 O_3\)/Al tunnel junctions for qubit application. Chin. Sci. Bull. 57(4), 409–412 (2012)

    Google Scholar 

  34. D.R.W. Yost, M.E. Schwartz, J. Mallek, D. Rosenberg, C. Stull, J.L. Yoder, G. Calusine, M. Cook, R. Das, A.L. Day, E.B. Golden, D.K. Kim, A. Melville, B.M. Niedzielski, W. Woods, A.J. Kerman, W.D. Oliver, Solid-state qubits integrated with superconducting through-silicon vias. NPJ Quant. Inf. 6(1), 1–7 (2020)

    Google Scholar 

  35. M. Gurvitch, M.A. Washington, H.A. Huggins, High quality refractory Josephson tunnel junctions utilizing thin aluminum layers. Appl. Phys. Lett. 42(5), 472–474 (1983)

    Article  Google Scholar 

  36. Y. Uzawa, S. Saito, W. Qiu, K. Makise, T. Kojima, Z. Wang, Optical and tunneling studies of energy gap in superconducting niobium nitride films. J. Low Temp. Phys. 199, 143–148 (2020)

    Article  Google Scholar 

  37. M.M.T.M. Dierichs, B.J. Feenstra, A. Skalare, C.E. Honingh, J. Mees, H.v.d. Stadt, Th. de Graauw, Evaluation of niobium transmission lines up to the superconducting gap frequency. Appl. Phys. Lett. 63(2), 249–251 (1993)

    Google Scholar 

  38. K. Steinberg, M. Scheffler, M. Dressel, Quasiparticle response of superconducting aluminum to electromagnetic radiation. Phys. Rev. B 77, 214517 (2008)

    Article  Google Scholar 

  39. J.C. Villegier, Refractory niobium nitride NbN Josephson junctions and applications, in Josephson Junctions: History, Devices, and Applications, Chapter 6, ed. by E.L. Wolf, G.B. Arnold, M.A. Gurvitch, J.F. Zasadzinski (Pan Stanford Publishing Pte. Ltd., Singapore, 2017), pp. 147–183

    Google Scholar 

  40. M. Radparvar, Superconducting niobium and niobium nitride processes for medium-scale integration applications. Cryogenics 35, 535–540 (1995)

    Article  Google Scholar 

  41. S.K. Tolpygo, Scalability of superconductor electronics: limitations imposed by AC clock and flux bias transformers. IEEE Trans. Appl. Supercond. 33(2), 1–19 (2023)

    Article  Google Scholar 

  42. L.A. Abelson, G.L. Kerber, Superconductor integrated circuit fabrication technology. Proc. IEEE 92(10), 1517–1533 (2004)

    Article  Google Scholar 

  43. G. Krylov, E.G. Friedman, Design methodology for distributed large-scale ERSFQ bias networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(11), 2438–2447 (2020)

    Google Scholar 

  44. G. Krylov, E.G. Friedman, Asynchronous dynamic single flux quantum majority gates. IEEE Trans. Appl. Supercond. 30(5), 1–7 (2020). Art no. 1300907

    Google Scholar 

  45. D.C. Rorer, D.G. Onn, H. Meyer, Thermodynamic properties of molybdenum in its superconducting and normal state. Phys. Rev. 138, A1661–A1668 (1965)

    Article  Google Scholar 

  46. T.H. Geballe, B.T. Matthias, E. Corenzwit, G.W. Hull, Superconductivity in molybdenum. Phys. Rev. Lett. 8, 313–313 (1962)

    Article  Google Scholar 

  47. D. Yohannes, A. Kirichenko, S. Sarwana, S.K. Tolpygo, Parametric testing of HYPRES superconducting integrated circuit fabrication processes. IEEE Trans. Appl. Supercond. 17(2), 181–186 (2007)

    Article  Google Scholar 

  48. S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, L.M. Johnson, M.A. Gouker, W.D. Oliver, Fabrication process and properties of fully-planarized deep-submicron Nb/Al–\(\mathrm {AlO}_{\mathrm {x}}/\mathrm {Nb}\) Josephson junctions for VLSI circuits. IEEE Trans. Appl. Supercond. 25(3), 1–12 (2015)

    Google Scholar 

  49. T. Jabbari, E.G. Friedman, Inductive and capacitive coupling noise in superconductive VLSI circuits. IEEE Trans. Appl. Supercond. 33(9), 3800707 (2023)

    Google Scholar 

  50. M. Hatzakis, B.J. Canavello, J.M. Shaw, Single-step optical lift-off process. IBM J. Res. Develop. 24(4), 452–460 (1980)

    Article  Google Scholar 

  51. J.M. Meckbach, M. Merker, S.J. Buehler, K. Ilin, B. Neumeier, U. Kienzle, E. Goldobin, R. Kleiner, D. Koelle, M. Siegel, Sub-\(\mu \mathrm {m}\) Josephson junctions for superconducting quantum devices. IEEE Trans. Appl. Supercond. 23(3), 1100504 (2013)

    Google Scholar 

  52. D. Berkoh, S. Kulkarni, Challenges in lift-off process using CAMP negative photoresist in III–V IC fabrication. IEEE Trans. Semicond. Manuf. 32(4), 513–517 (2019)

    Article  Google Scholar 

  53. T. May, M. Schubert, G. Wende, U. Hubner, L. Fritzsch, H.-G. Meyer, Cross-type submicron Josephson junctions using SNS technology for Josephson voltage standard applications. IEEE Trans. Appl. Supercond. 13(2), 142–145 (2003)

    Article  Google Scholar 

  54. M. Bal, J. Long, R. Zhao, H. Wang, S. Park, C.R.H. McRae, T. Zhao, R.E. Lake, V. Monarkha, S. Simbierowicz, D. Frolov, R. Pilipenko, S. Zorzetti, A. Romanenko, C. Liu, R. McDermott, D.P. Pappas, Overlap junctions for superconducting quantum electronics and amplifiers. Appl. Phys. Lett. 118(11), 112601 (2021)

    Google Scholar 

  55. W.L. McMillan, Tunneling model of the superconducting proximity effect. Phys. Rev. 175, 537–542 (1968)

    Article  Google Scholar 

  56. S.K. Tolpygo, D. Amparo, Electrical stress effect on Josephson tunneling through ultrathin AlOx barrier in Nb/Al/AlOx/Nb junctions. J. Appl. Phys. 104(6), 063904 (2008)

    Google Scholar 

  57. H. Kumar, T. Jabbari, G. Krylov, K. Basu, E.G. Friedman, R. Karri, Toward increasing the difficulty of reverse engineering of RSFQ circuits. IEEE Trans. Appl. Supercond. 30(3), 1–13 (2020)

    Article  Google Scholar 

  58. Y. Mustafa, T. Jabbari, S. Köse, Emerging attacks on logic locking in SFQ circuits and related countermeasures. IEEE Trans. Appl. Supercond. 32(3), 1–8 (2022)

    Article  Google Scholar 

  59. T. Jabbari, H. Zandi, F. Foroughi, A. Bozbey, M. Fardmanesh, Investigation of readout cell configuration and parameters on functionality and stability of bi-directional RSFQ TFF. IEEE Trans. Appl. Supercond. 26(3), 1–5 (2016)

    Article  Google Scholar 

  60. G. Krylov, E.G. Friedman, Bias distribution in ERSFQ VLSI circuits, in Proceedings of the IEEE International Symposium on Circuits and Systems (2020), pp. 1–5

    Google Scholar 

  61. G. Krylov, E.G. Friedman, Bias networks for high complexity energy efficient single flux quantum circuits, in Proceedings of the Government Microcircuit Applications & Critical Technology Conference (2020)

    Google Scholar 

  62. T. Jabbari, H. Zandi, M. Fardmanesh, Frequency limitation due to switching transition of the bias current in bidirectional RSFQ logic. J. Supercond. Novel Magn. 30, 3619–3624 (2017)

    Article  Google Scholar 

  63. R.E. Miller, W.H. Mallison, A.W. Kleinsasser, K.A. Delin, E.M. Macedo, Niobium trilayer Josephson tunnel junctions with ultrahigh critical current densities. Appl. Phys. Lett. 63(10), 1423–1425 (1993)

    Article  Google Scholar 

  64. S.K. Tolpygo, V. Bolkhovsky, D.E. Oates, R. Rastogi, S. Zarr, A.L. Day, T.J. Weir, A. Wynn, L.M. Johnson, Superconductor electronics fabrication process with MoNx kinetic inductors and self-shunted Josephson junctions. IEEE Trans. Appl. Supercond. 28(4), 1–12 (2018)

    Article  Google Scholar 

  65. V.F. Pavlidis, I. Savidis, E.G. Friedman, Three-Dimensional Integrated Circuit Design, 2nd edn. (Morgan Kaufmann, Burlington, 2017)

    Google Scholar 

  66. H. Jun, J. Cho, K. Lee, H. Son, K. Kim, H. Jin, K. Kim, HBM (high bandwidth memory) DRAM technology and architecture, in Proceedings of the IEEE International Memory Workshop (2017)

    Google Scholar 

  67. C. Monzio Compagnoni, A. Goda, A.S. Spinelli, P. Feeley, A.L. Lacaita, A. Visconti, Reviewing the evolution of the NAND flash technology. Proc. IEEE 105(9), 1609–1633 (2017)

    Article  Google Scholar 

  68. B. Vaisband, 3-D ICs as a Platform for Heterogeneous Systems Integration, Ph.D. Dissertation, University of Rochester, Rochester, New York, 2017

    Google Scholar 

  69. S.K. Tolpygo, V. Bolkhovsky, R. Rastogi, S. Zarr, A.L. Day, E. Golden, T.J. Weir, A. Wynn, L.M. Johnson, Planarized fabrication process with two layers of SIS Josephson junctions and integration of SIS and SFS \(\pi \)-junctions. IEEE Trans. Appl. Supercond. 29(5), 1–8 (2019)

    Google Scholar 

  70. G. Krylov, E.G. Friedman, Design for testability of SFQ circuits. IEEE Trans. Appl. Supercond. 27(8), 1–7 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gleb Krylov , Tahereh Jabbari or Eby G. Friedman .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krylov, G., Jabbari, T., Friedman, E.G. (2024). Superconductive IC Manufacturing. In: Single Flux Quantum Integrated Circuit Design. Springer, Cham. https://doi.org/10.1007/978-3-031-47475-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47475-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47474-3

  • Online ISBN: 978-3-031-47475-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics