Skip to main content

Stripline Topology for Flux Mitigation

  • Chapter
  • First Online:
Single Flux Quantum Integrated Circuit Design

Abstract

The increasing complexity of modern single flux quantum (SFQ) circuits has increased the importance of flux trapping and trapped magnetic fields within SFQ systems. This trapped flux reduces margins while damaging the operability of superconductive circuits. In this chapter, an area-efficient stripline topology is introduced to prevent flux from being trapped within striplines. The topology is composed of coupled narrow lines rather than wide striplines. The topology uses a fingered narrow line configuration. The fingered narrow line topology enhances the scalability of SFQ systems while not requiring additional area. The topology decreases the length of the striplines by exploiting the mutual inductance between narrow parallel lines. The topology requires less area while preventing flux from being trapped within wide superconductive striplines. Due to the stripline configuration, residual current is eliminated in VLSI complexity SFQ circuits. The fingered narrow line topology also reduces coupling capacitance between striplines. The topology is compatible with automated routing of large-scale SFQ integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.K. Likharev, Superconductor digital electronics, Physica C 482, 6–18 (2012)

    Article  Google Scholar 

  2. T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019)

    Google Scholar 

  3. T. Jabbari, E.G. Friedman, Global interconnects in VLSI complexity single flux quantum systems, in Proceedings of the Workshop on System-Level Interconnect: Problems and Pathfinding Workshop (2020), pp. 1–7

    Google Scholar 

  4. T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020)

    Google Scholar 

  5. T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759

    Google Scholar 

  6. T. Jabbari, E.G. Friedman, Flux mitigation in wide superconductive striplines. IEEE Trans. Appl. Supercond. 32(3), 1–6 (2022)

    Article  Google Scholar 

  7. T. Jabbari, E.G. Friedman, Stripline topology for flux mitigation. IEEE Trans. Appl. Supercond. 335, 1–4 (2023)

    Google Scholar 

  8. T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022)

    Google Scholar 

  9. S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, A. Wynn, D.E. Oates, L.M. Johnson, M.A. Gouker, Advanced fabrication processes for superconducting very large-scale integrated circuits. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)

    Article  Google Scholar 

  10. T. Jabbari, E.G. Friedman, Inductive and capacitive coupling noise in superconductive VLSI circuits. IEEE Trans. Appl. Supercond. 33(9), 3800707 (2023)

    Google Scholar 

  11. S.S. Meher, C. Kanungo, A. Shukla, A. Inamdar, Parametric approach for routing power nets and passive transmission lines as part of digital cells. IEEE Trans. Appl. Supercond. 29(5), 1–7 (2019)

    Article  Google Scholar 

  12. S.K. Tolpygo, V.K. Semenov, Increasing integration scale of superconductor electronics beyond one million Josephson junctions. J. Phys. Conf. Ser. 1559(1), 012002 (2020)

    Google Scholar 

  13. T. Jabbari, R. Bairamkulov, J. Kawa, E. Friedman, Interconnect benchmark circuits for single flux quantum integrated circuits. IEEE Trans. Appl. Supercond. (2023). Under review

    Google Scholar 

  14. V.K. Semenov, M.M. Khapaev, How moats protect superconductor films from flux trapping. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)

    Article  Google Scholar 

  15. B. Chonigman, A. Shukla, M. Habib, V. Gupta, D. Kirichenko A. Talalaevskii, A. Sahu, A. Inamdar, D. Gupta, Optimization of passive transmission lines for single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5), 1–6 (2021)

    Article  Google Scholar 

  16. C.J. Fourie, K. Jackman, Experimental verification of moat design and flux trapping analysis. IEEE Trans. Appl. Supercond. 31(5), 13005073 (2021)

    Google Scholar 

  17. M.A. Washington, I.A. Fulton, Observation of flux trapping threshold in narrow superconducting thin-films. Appl. Phys. Lett. 40(9), 848–850 (1982)

    Article  Google Scholar 

  18. G. Krylov, J. Kawa, E.G. Friedman, Design automation of superconductive digital circuits a review. IEEE Nanotechnol. Magn. 15(6), 54–67 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gleb Krylov , Tahereh Jabbari or Eby G. Friedman .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krylov, G., Jabbari, T., Friedman, E.G. (2024). Stripline Topology for Flux Mitigation. In: Single Flux Quantum Integrated Circuit Design. Springer, Cham. https://doi.org/10.1007/978-3-031-47475-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47475-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47474-3

  • Online ISBN: 978-3-031-47475-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics