Skip to main content

Flux Mitigation in Wide Superconductive Striplines

  • Chapter
  • First Online:
Single Flux Quantum Integrated Circuit Design

Abstract

The increasing complexity of modern superconductive circuits and single flux quantum (SFQ) circuits in particular have made the issue of flux trapping of growing importance. The use of wide superconductive striplines for signal routing has exacerbated this issue. Trapping residual magnetic fields in these striplines degrades performance while reducing margins, damaging the operability of superconductive circuits. In this chapter, an area-efficient topology for striplines is introduced to manage flux trapping in large-scale SFQ circuits. This topology is composed of narrow parallel lines in series with small resistors. The topology decreases the length of the striplines by exploiting the mutual inductance between the narrow parallel lines. The topology requires significantly less area while preventing flux trapping within wide superconductive striplines. The narrow parallel line topology also reduces coupling capacitance between striplines. The approach is compatible with automated routing of large-scale SFQ integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019)

    Google Scholar 

  2. T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020)

    Google Scholar 

  3. T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759

    Google Scholar 

  4. T. Jabbari, E.G. Friedman, Flux mitigation in wide superconductive striplines. IEEE Trans. Appl. Supercond. 32(3), 1–6 (2022)

    Article  Google Scholar 

  5. A. Mitrovic, E.G. Friedman, Thermal modeling of rapid single flux quantum circuit structures. IEEE Trans. Electron. Devices 69(5), 2718–2724 (2022)

    Article  Google Scholar 

  6. T. Jabbari, E.G. Friedman, Stripline topology for flux mitigation. IEEE Trans. Appl. Supercond. 335, 1–4 (2023)

    Google Scholar 

  7. T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Resonance effects in single flux quantum interconnect, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2020), pp. 1–5

    Google Scholar 

  8. T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022)

    Google Scholar 

  9. S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, A. Wynn, D.E. Oates, L.M. Johnson, M.A. Gouker, Advanced fabrication processes for superconducting very large-scale integrated circuits. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)

    Article  Google Scholar 

  10. T. Jabbari, E.G. Friedman, Inductive and capacitive coupling noise in superconductive VLSI circuits. IEEE Trans. Appl. Supercond. 33(9), 3800707 (2023)

    Google Scholar 

  11. T. Van Duzer, C.W. Turner, Principles of Superconductive Devices and Circuits, 2nd edn. (Prentice Hall, Hoboken, 1999)

    Google Scholar 

  12. S.S. Meher, C. Kanungo, A. Shukla, A. Inamdar, Parametric approach for routing power nets and passive transmission lines as part of digital cells. IEEE Trans. Appl. Supercond. 29(5), 1–7 (2019)

    Article  Google Scholar 

  13. S.K. Tolpygo, V.K. Semenov, Increasing integration scale of superconductor electronics beyond one million Josephson junctions. J. Phys. Conf. Ser. 1559(1), 012002 (2020)

    Google Scholar 

  14. RSFQ @ SUNY Stony Brook, June 2019 [Online]. Available: http://www.physics.sunysb.edu/Physics/RSFQ/index.html

  15. S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, C.J. Galbraith, L.M. Johnson, M.A. Gouker, V.K. Semenov, Inductance of circuit structures for MIT LL superconductor electronics fabrication process with 8 niobium layers. IEEE Trans. Appl. Supercond. 25(3), 1–5 (2015)

    Google Scholar 

  16. V.K. Semenov, M.M. Khapaev, How moats protect superconductor films from flux trapping. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)

    Article  Google Scholar 

  17. L.C. Müller, H.R. Gerber, C.J. Fourie, Review and comparison of RSFQ asynchronous methodologies. J. Phys. Conf. Ser. 97, 012109 (2007)

    Article  Google Scholar 

  18. T. Jabbari, VLSI Complexity Single Flux Quantum Systems, Ph.D. Dissertation, University of Rochester, Rochester, New York, 2023

    Google Scholar 

  19. S.K. Tolpygo, E.B. Golden, T.J. Weir, V. Bolkhovsky, Inductance of superconductor integrated circuit features with sizes down to 120 nm. Supercond. Sci. Technol. 34(8), 1–24 (2021)

    Article  Google Scholar 

  20. S. Narayana, Y.A. Polyakov, V.K. Semenov, Evaluation of flux trapping in superconducting circuits. IEEE Trans. Appl. Supercond. 19(3), 640–643 (2009)

    Article  Google Scholar 

  21. C.J. Fourie, K. Jackman, Experimental verification of moat design and flux trapping analysis. IEEE Trans. Appl. Supercond. 31(5), 13005073 (2021)

    Google Scholar 

  22. K. Jackman, C.J. Fourie, Flux trapping experiments to verify simulation models. Supercond. Sci. Technol. 33(10), 105001 (2020)

    Google Scholar 

  23. M.A. Washington, I.A. Fulton, Observation of flux trapping threshold in narrow superconducting thin-films. Appl. Phys. Lett. 40(9), 848–850 (1982)

    Article  Google Scholar 

  24. K.H. Kuit, J.R. Kirtley, W. van der Veur, C.G. Molenaar, F.J.G. Roesthuis, A.G.P. Troeman, J.R. Clem, H. Hilgenkamp, H. Rogalla, J. Flokstra, Vortex trapping and expulsion in thin-film YBa\({ }_2\)Cu\({ }_3\)O\({ }_{7\delta }\) strips. Phys. Rev. B 77(134504), 1–8 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gleb Krylov , Tahereh Jabbari or Eby G. Friedman .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter

Krylov, G., Jabbari, T., Friedman, E.G. (2024). Flux Mitigation in Wide Superconductive Striplines. In: Single Flux Quantum Integrated Circuit Design. Springer, Cham. https://doi.org/10.1007/978-3-031-47475-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47475-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47474-3

  • Online ISBN: 978-3-031-47475-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics