Skip to main content

Repeater Insertion in SFQ Interconnect

  • Chapter
  • First Online:
Single Flux Quantum Integrated Circuit Design

Abstract

Superconductive passive transmission lines (PTL) are widely used for signal routing in large scale rapid single flux quantum (RSFQ) circuits. Due to the imperfect matching of the transmission lines between the driver and receiver, single flux quantum (SFQ) pulses are partially reflected. The round trip propagation time of these reflections can coincide with the following SFQ pulse, resulting in a decrease in bias margins or incorrect circuit behavior. This resonant effect depends upon the length of the PTL and the clock frequency of the signal. A methodology to reduce and manage this effect is the focus of this chapter. A closed-form expression describing the dependence of the resonance frequency on the length of the PTL is presented. This expression describes a set of forbidden lengths for PTL interconnect segments in RSFQ circuits. The methodology and algorithm insert active PTL-based repeaters into long superconductive interconnect while ensuring the length of the line segment is outside the forbidden region while increasing bias margins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Jabbari, F. Shanehsazzadeh, H. Zandi, M. Banzet, J. Schubert, M. Fardmanesh, Effects of the design parameters on characteristics of the inductances and JJs in HTS RSFQ circuits. IEEE Trans. Appl. Supercond. 28(7), 1–4 (2018)

    Article  Google Scholar 

  2. D.S. Holmes, A.L. Ripple, M.A. Manheimer, Energy-efficient superconducting computing—power budgets and requirements. IEEE Trans. Appl. Supercond. 23(3), 1701610 (2013)

    Google Scholar 

  3. M.A. Manheimer, Cryogenic computing complexity program: phase 1 introduction. IEEE Trans. Appl. Supercond. 25(3), 1–4 (2015)

    Article  Google Scholar 

  4. T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019)

    Google Scholar 

  5. T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020)

    Google Scholar 

  6. T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759

    Google Scholar 

  7. T. Jabbari, J. Kawa, E.G. Friedman, H-tree clock synthesis in RSFQ circuits, in Proceedings of the IEEE Baltic Electronics Conference (2020), pp. 1–5

    Google Scholar 

  8. T. Jabbari, G. Krylov, J Kawa, E.G. Friedman, Splitter trees in single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5), 1302606 (2021)

    Google Scholar 

  9. T. Jabbari, E.G. Friedman, Flux mitigation in wide superconductive striplines. IEEE Trans. Appl. Supercond. 32(3), 1–6 (2022)

    Article  Google Scholar 

  10. T. Jabbari, E.G. Friedman, Stripline topology for flux mitigation. IEEE Trans. Appl. Supercond. 335, 1–4 (2023)

    Google Scholar 

  11. T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Resonance effects in single flux quantum interconnect, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2020), pp. 1–5

    Google Scholar 

  12. T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022)

    Google Scholar 

  13. S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, A. Wynn, D.E. Oates, L.M. Johnson, M.A. Gouker, Advanced fabrication processes for superconducting very large-scale integrated circuits. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)

    Article  Google Scholar 

  14. T. Jabbari, E.G. Friedman, Inductive and capacitive coupling noise in superconductive VLSI circuits. IEEE Trans. Appl. Supercond. 33(9), 3800707 (2023)

    Google Scholar 

  15. T. Van Duzer, C.W. Turner, Principles of Superconductive Devices and Circuits, 2nd edn. (Prentice Hall, Hoboken, 1999)

    Google Scholar 

  16. R.L. Kautz, Picosecond pulses on superconducting striplines. J. Appl. Phys. 49(1), 308–314 (1978)

    Article  MathSciNet  Google Scholar 

  17. Y. Hashimoto, S. Yorozu, Y. Kameda, A. Fujimaki, H. Terai, N. Yoshikawa, Design and investigation of gate-to-gate passive interconnections for SFQ logic circuits. IEEE Trans. Appl. Supercond. 15(3), 3814–3820 (2005)

    Article  Google Scholar 

  18. L. Schindler, P. l. Roux, C.J. Fourie, Impedance matching of passive transmission line receivers to improve reflections between RSFQ logic cells. IEEE Trans. Appl. Supercond. 30(2), 1–7 (2020)

    Google Scholar 

  19. S. Razmkhah, A. Bozbey, Design of the passive transmission lines for different stripline widths and impedances. IEEE Trans. Appl. Supercond. 26(8), 1–6 (2016)

    Article  Google Scholar 

  20. K. Gaj, E.G. Friedman, M.J. Feldman, Timing of multi-gigahertz rapid single flux quantum digital circuits. J. VLSI Sig. Process. Syst. 16(2/3), 247–276 (1997)

    Article  Google Scholar 

  21. D.K. Brock, RSFQ technology: circuits and systems. Int. J. High Speed Electron. Syst. 11(1), 307–362 (2001)

    Article  Google Scholar 

  22. T. Jabbari, R. Bairamkulov, J. Kawa, E. Friedman, Interconnect benchmark circuits for single flux quantum integrated circuits. IEEE Trans. Appl. Supercond. (2023). Under review

    Google Scholar 

  23. E.G. Friedman, Clock distribution design in VLSI circuits, in Proceedings of the IEEE International Symposium on Circuits and Systems (1993), pp. 1475–1478

    Google Scholar 

  24. E.G. Friedman, Clock distribution networks in synchronous digital integrated circuits. Proc. IEEE 89(5), 665–692 (2001)

    Article  Google Scholar 

  25. S. Narayana, V.K. Semenov, Y.A. Polyakov, V. Dotsenko, S.K. Tolpygo, Design and testing of high-speed interconnects for superconducting multi-chip modules. Supercond. Sci. Technol. 25(10), 1–10 (2012)

    Article  Google Scholar 

  26. J.L. Neves, E.G. Friedman, Topological design of clock distribution networks based on non-zero clock skew specifications, in Proceedings of the IEEE Midwest Symposium on Circuits and Systems (1993), pp. 468–471

    Google Scholar 

  27. J. Rosenfeld, E.G. Friedman, Design methodology for global resonant H-tree clock distribution networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 15(2), 135–148 (2007)

    Google Scholar 

  28. Y. Hashimoto, S. Yorozu, Y. Kameda, A. Fujimaki, H. Terai, N. Yoshikawa, Development of passive interconnection technology for SFQ circuits. IEICE Trans. Electron. E88-C(2), 198–207 (2005)

    Article  Google Scholar 

  29. T. Ortlepp, F.H. Uhlmann, Impedance matching of microstrip inductors in digital superconductive electronics. IEEE Trans. Appl. Supercond. 19(3), 644–648 (2009)

    Article  Google Scholar 

  30. Y.I. Ismail, E.G. Friedman, J.L. Neves, Repeater insertion in tree structured inductive interconnect. IEEE Trans. Circuits Syst. II Analog Digital Signal Process. 48(5), 471–481 (2001)

    Article  Google Scholar 

  31. Y. Hashimoto, S. Yorozu, Y. Kameda, V.K. Semenov, A design approach to passive interconnects for single flux quantum logic circuits. IEEE Trans. Appl. Supercond. 13(2), 535–538 (2003)

    Article  Google Scholar 

  32. M. Tanaka et al., Demonstration of a single-flux-quantum microprocessor using passive transmission lines. IEEE Trans. Appl. Supercond. 15(2), 400–404 (2005)

    Article  Google Scholar 

  33. V. Adler, E.G. Friedman, Uniform repeater insertion in RC trees. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 47(10), 1515–1523 (2000)

    Article  Google Scholar 

  34. A. Shukla, D. Kirichenko, A. Sahu, B. Chonigman, A. Inamdar, Investigation of passive transmission lines for the MIT-LL SFQ5EE process. IEEE Trans. Appl. Supercond. 29(5), 1–7 (2019)

    Article  Google Scholar 

  35. P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R.S. Williams, K. Yelick, Exascale computing study: technology challenges in achieving exascale systems, in Defense Advanced Research Projects Agency Information Processing Techniques Office, Technical Report, vol. 15 (2008)

    Google Scholar 

  36. N. Joukov, Y. Hashimoto, V.K. Semenov, Matching Josephson junctions with microstrip lines for SFQ pulses and weak signals. IIEICE Trans. Electron. E85-C(3), 636–640 (2002)

    Google Scholar 

  37. M.A. El-Moursy, E.G. Friedman, Optimum wire sizing of RLC interconnect with repeaters. Integr. VLSI J. 38(2), 205–225 (2004)

    Article  Google Scholar 

  38. D. Lee, M. Kim, I.L. Markov, Low-power clock trees for CPUs, in Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (2010), pp. 444–451

    Google Scholar 

  39. N. Takeuchi, Y. Yamanashi, Y. Saito, N. Yoshikawa, 3D simulation of superconducting microwave devices with an electromagnetic-field simulator. Phys. C Supercond. 469(15–20), 1662–1665 (2009)

    Article  Google Scholar 

  40. W. Chang, The inductance of a superconducting strip transmission line. J. Appl. Phys. 50, 8129–8134 (1979)

    Article  Google Scholar 

  41. H.R. Mohebbi, A.H. Majedi, CAD model for circuit parameters of superconducting-based hybrid planar transmission lines. Supercond. Sci. Technol. 22(12), 125028 (2009)

    Google Scholar 

  42. S.M. Anlage, H.J. Snortland, M.R. Beasley, A current controlled variable delay superconducting transmission line. IEEE Trans. Magn. 25(2), 1388–1391 (1989)

    Article  Google Scholar 

  43. N.A. Joukov, D.E. Kirichenko, A.Y. Kidiyarova-Shevchenko, M.Y. Kupriyanov, Matching of rapid single flux quantum digital circuits and superconductive microstrip lines, in Journal of Physics Conference Series (2000), pp. 745–748

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gleb Krylov , Tahereh Jabbari or Eby G. Friedman .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krylov, G., Jabbari, T., Friedman, E.G. (2024). Repeater Insertion in SFQ Interconnect. In: Single Flux Quantum Integrated Circuit Design. Springer, Cham. https://doi.org/10.1007/978-3-031-47475-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47475-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47474-3

  • Online ISBN: 978-3-031-47475-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics