Skip to main content

Interconnect Routing for Large-Scale SFQ Circuits

  • Chapter
  • First Online:
Single Flux Quantum Integrated Circuit Design

Abstract

The increasing complexity of modern rapid single flux quantum (RSFQ) circuits has made on-chip signal routing an issue of growing importance. In this chapter, several methods for routing large-scale RSFQ circuits are described, and a process is presented for determining when to use passive microstrip transmission lines (PTL) and active Josephson transmission lines (JTL). The effect of the size of the JTL inductor and Josephson junctions on the length of a JTL chain for a target delay is also discussed. The dependence of the JTL inductance on the physical layout is evaluated, and the effects of the primary PTL parameters on delay are characterized. A novel PTL driver and receiver configuration is also proposed. Trade-offs among the number of JJs, inductance, and length of a PTL stripline in the receiver and driver circuits are reported. The energy dissipation is evaluated for two different interconnects. A trade-off between the PTL circuits and an optimized JTL in terms of energy dissipation and delay is discussed. Guidelines for choosing the optimal element values are determined, and a simulated bias margin of \(\pm 29\%\) for the bias current of the receiver operating at 20 GHz in a 10 kA/cm\({ }^2\) technology for a 1 mm transmission line is achieved. Summarizing, guidelines and design trade-offs appropriate for automated layout and synthesis are provided for driving long interconnect in SFQ VLSI circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Jabbari, F. Shanehsazzadeh, H. Zandi, M. Banzet, J. Schubert, M. Fardmanesh, Effects of the design parameters on characteristics of the inductances and JJs in HTS RSFQ circuits. IEEE Trans. Appl. Supercond. 28(7), 1–4 (2018)

    Article  Google Scholar 

  2. T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019)

    Google Scholar 

  3. T. Jabbari, E.G. Friedman, Global interconnects in VLSI complexity single flux quantum systems, in Proceedings of the Workshop on System-Level Interconnect: Problems and Pathfinding Workshop (2020), pp. 1–7

    Google Scholar 

  4. T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020)

    Google Scholar 

  5. T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759

    Google Scholar 

  6. R. Bairamkulov, T. Jabbari, E.G. Friedman, QuCTS – single flux quantum clock tree synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(10), 3346–3358 (2022)

    Article  Google Scholar 

  7. T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Resonance effects in single flux quantum interconnect, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2020), pp. 1–5

    Google Scholar 

  8. T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022)

    Google Scholar 

  9. S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, A. Wynn, D.E. Oates, L.M. Johnson, M.A. Gouker, Advanced fabrication processes for superconducting very large-scale integrated circuits. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)

    Article  Google Scholar 

  10. T. Van Duzer, C.W. Turner, Principles of Superconductive Devices and Circuits, 2nd edn. (Prentice Hall, Hoboken, 1999)

    Google Scholar 

  11. A. Fujimaki, M. Tanaka, T. Yamada, Y. Yamanashi, H. Park, N. Yoshikawa, Bit-serial single flux quantum microprocessor CORE. IEICE Trans. Electron. 91(3), 342–349 (2008)

    Article  Google Scholar 

  12. Y. Hashimoto, S. Yorozu, Y. Kameda, A. Fujimaki, H. Terai, N. Yoshikawa, Design and investigation of gate-to-gate passive interconnections for SFQ logic circuits. IEEE Trans. Appl. Supercond. 15(3), 3814–3820 (2005)

    Article  Google Scholar 

  13. H. Suzuki, S. Nagasawa, K. Miyahara, Y. Enomoto, Characteristics of driver and receiver circuits with a passive transmission line in RSFQ circuits. IEEE Trans. Appl. Supercond. 10(3), 1637–1641 (2000)

    Article  Google Scholar 

  14. S. Razmkhah, A. Bozbey, Design of the passive transmission lines for different stripline widths and impedances. IEEE Trans. Appl. Supercond. 26(8), 1–6 (2016)

    Article  Google Scholar 

  15. D.K. Brock, RSFQ technology: circuits and systems. Int. J. High Speed Electron. Syst. 11(1), 307–362 (2001)

    Article  Google Scholar 

  16. Y. Kameda, S. Yorozu, Y. Hashimoto, A new design methodology for single-flux-quantum (SFQ) logic circuits using passive-transmission-line (PTL) wiring. IEEE Trans. Appl. Supercond. 17(2), 508–511 (2007)

    Article  Google Scholar 

  17. S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, C.J. Galbraith, L.M. Johnson, M.A. Gouker, V.K. Semenov, Inductance of circuit structures for MIT LL superconductor electronics fabrication process with 8 niobium layers. IEEE Trans. Appl. Supercond. 25(3), 1–5 (2015)

    Google Scholar 

  18. K. Gaj, Q.P. Herr, V. Adler, A. Krasniewski, E.G. Friedman, M.J. Feldman, Tools for the computer-aided design of multigigahertz superconducting digital circuits. IEEE Trans. Appl. Supercond. 9(1), 18–38 (1999)

    Article  Google Scholar 

  19. C.J. Fourie, Digital superconducting electronics design tools - status and roadmap. IEEE Trans. Appl. Supercond. 28(5), 1–12 (2018)

    Article  Google Scholar 

  20. S.K. Tolpygo, E.B. Golden, T.J. Weir, V. Bolkhovsky, Inductance of superconductor integrated circuit features with sizes down to 120 nm. Supercond. Sci. Technol. 34(8), 1–24 (2021)

    Article  Google Scholar 

  21. Y.I. Ismail, E.G. Friedman, J.L. Neves, Repeater insertion in tree structured inductive interconnect. IEEE Trans. Circuits Syst. II Analog Digital Signal Process. 48(5), 471–481 (2001)

    Article  Google Scholar 

  22. H. Engseth, S. Intiso, M.R. Rafique, E. Tolkacheva, A. Kidiyarova-Shevchenko, A high frequency test bench for rapid single-flux-quantum circuits. Supercond. Sci. Technol. 19(5), S376–S380 (2006)

    Article  Google Scholar 

  23. Y. Yamanashi, M. Tanaka, A. Akimoto, H. Park, Y. Kamiya, N. Irie, N. Yoshikawa, A. Fujimaki, H. Terai, Y. Hashimoto, Design and implementation of a pipelined bit-serial SFQ microprocessor, CORE1\(\beta \). IEEE Trans. Appl. Supercond. 17(2), 474–477 (2007)

    Google Scholar 

  24. Y. Hashimoto, S. Nagasawa, T. Satoh, K. Hinode, H. Suzuki, T. Miyazaki, M. Hidaka, N. Yoshikawa, H. Terai, A. Fujimaki, Superconductive single-flux-quantum circuit/system technology and 40 Gb/s switch system demonstration, in Proceedings of the IEEE International Solid-State Circuits Conference (2008), pp. 532–533

    Google Scholar 

  25. K. Nakamiya, N. Yoshikawa, A. Fujimaki, H. Terai, Y. Hashimoto, Direct measurements of propagation delay of single-flux-quantum circuits by time-to-digital converters. IEICE Electron. Express 5(9), 332–337 (2008)

    Article  Google Scholar 

  26. D.T. Yohannes, A. Inamdar, S.K. Tolpygo, Multi-J\({ }_c\) (Josephson critical current density) process for superconductor integrated circuits. IEEE Trans. Appl. Supercond. 19(3), 149–153 (2009)

    Google Scholar 

  27. Y. Hashimoto, S. Yorozu, Y. Kameda, V.K. Semenov, A design approach to passive interconnects for single flux quantum logic circuits. IEEE Trans. Appl. Supercond. 13(2), 535–538 (2003)

    Article  Google Scholar 

  28. M. Tanaka et al., Demonstration of a single-flux-quantum microprocessor using passive transmission lines. IEEE Trans. Appl. Supercond. 15(2), 400–404 (2005)

    Article  Google Scholar 

  29. V. Adler, E.G. Friedman, Uniform repeater insertion in RC trees. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 47(10), 1515–1523 (2000)

    Article  Google Scholar 

  30. A. Shukla, D. Kirichenko, A. Sahu, B. Chonigman, A. Inamdar, Investigation of passive transmission lines for the MIT-LL SFQ5EE process. IEEE Trans. Appl. Supercond. 29(5), 1–7 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gleb Krylov , Tahereh Jabbari or Eby G. Friedman .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter

Krylov, G., Jabbari, T., Friedman, E.G. (2024). Interconnect Routing for Large-Scale SFQ Circuits. In: Single Flux Quantum Integrated Circuit Design. Springer, Cham. https://doi.org/10.1007/978-3-031-47475-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47475-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47474-3

  • Online ISBN: 978-3-031-47475-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics