Skip to main content

Compact Model of Superconductor-Ferromagnetic Transistors

  • Chapter
  • First Online:
Single Flux Quantum Integrated Circuit Design

Abstract

The superconductor-ferromagnetic transistor (SFT) is a novel cryogenic device with the potential to greatly enhance traditional single flux quantum circuits. Since SFT devices are under active development, compact models are necessary to include this device in the simulation of novel circuits. In this chapter, a simplified compact model of a three-terminal SFT device is described. The model fits the general I-V characteristics of existing devices with 7.4% mean absolute error, while also capturing the transient behavior of the device. The model has been implemented in Verilog-A and simulated in Cadence Spectre. The model enables the simulation of SFQ circuits containing SFT devices and is reconfigurable to support developments in SFT technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Jabbari, M. Bocko, E.G. Friedman, All-JJ logic based on bistable JJs. IEEE Trans. Appl. Supercond. 33(5), 1–7 (2023)

    Google Scholar 

  2. T. Jabbari, J. Kawa, E.G. Friedman, H-tree clock synthesis in RSFQ circuits, in Proceedings of the IEEE Baltic Electronics Conference (2020), pp. 1–5

    Google Scholar 

  3. T. Jabbari, G. Krylov, J Kawa, E.G. Friedman, Splitter trees in single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5), 1302606 (2021)

    Google Scholar 

  4. G. Krylov, E.G. Friedman, Sense amplifier for spin-based cryogenic memory cells. IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019). Art no. 1501804

    Google Scholar 

  5. I.P. Nevirkovets, O. Chernyashevskyy, G.V. Prokopenko, O.A. Mukhanov, J.B. Ketterson, Control of supercurrent in hybrid superconducting–ferromagnetic transistors. IEEE Trans. Appl. Supercond. 25(3), 1–5 (2015)

    Article  Google Scholar 

  6. S. Shafranjuk, I.P. Nevirkovets, O.A. Mukhanov, J.B. Ketterson, Control of superconductivity in a hybrid superconducting/ferromagnetic multilayer using nonequilibrium tunneling injection. Phys. Rev. Appl. 6(2), 024018 (2016)

    Google Scholar 

  7. G. Krylov, E.G. Friedman, Behavioral verilog-A model of superconductor-ferromagnetic transistor, in Proceedings of the IEEE International Symposium on Circuits and Systems (2018)

    Google Scholar 

  8. A.I. Buzdin, Proximity effects in superconductor-ferromagnet heterostructures. Rev. Mod. Phys. 77(3), 935–976 (2005)

    Article  Google Scholar 

  9. G. Krylov, E.G. Friedman, Design methodology for distributed large-scale ERSFQ bias networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(11), 2438–2447 (2020)

    Google Scholar 

  10. T. Jabbari, G. Krylov, E.G. Friedman, Logic locking in single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5) (2021)

    Google Scholar 

  11. Y. Mustafa, T. Jabbari, S. Köse, Emerging attacks on logic locking in SFQ circuits and related countermeasures. IEEE Trans. Appl. Supercond. 32(3), 1–8 (2022)

    Article  Google Scholar 

  12. T. Jabbari, R. Bairamkulov, J. Kawa, E. Friedman, Interconnect benchmark circuits for single flux quantum integrated circuits. IEEE Trans. Appl. Supercond. (2023). Under review

    Google Scholar 

  13. K. Gaj, Q.P. Herr, V. Adler, A. Krasniewski, E.G. Friedman, M.J. Feldman, Tools for the computer-aided design of multigigahertz superconducting digital circuits. IEEE Trans. Appl. Supercond. 9(1), 18–38 (1999)

    Article  Google Scholar 

  14. S.R. Whiteley, Josephson junctions in SPICE3, IEEE Trans. Magn. 27(2), 2902–2905 (1991)

    Article  Google Scholar 

  15. T. Jabbari, VLSI Complexity Single Flux Quantum Systems, Ph.D. Dissertation, University of Rochester, Rochester, New York, 2023

    Google Scholar 

  16. I.P. Nevirkovets, S.E. Shafraniuk, O. Chernyashevskyy, D.T. Yohannes, O.A. Mukhanov, J.B. Ketterson, Investigation of current gain in superconducting-ferromagnetic transistors with high-\(j_c\) acceptor. IEEE Trans. Appl. Supercond. 27(4), 1–4 (2017)

    Google Scholar 

  17. I.P. Nevirkovets, S.E. Shafraniuk, O. Chernyashevskyy, D.T. Yohannes, O.A. Mukhanov, J.B. Ketterson, Critical current gain in high-jc superconducting-ferromagnetic transistors. IEEE Trans. Appl. Supercond. 26(8), 1–7 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gleb Krylov , Tahereh Jabbari or Eby G. Friedman .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krylov, G., Jabbari, T., Friedman, E.G. (2024). Compact Model of Superconductor-Ferromagnetic Transistors. In: Single Flux Quantum Integrated Circuit Design. Springer, Cham. https://doi.org/10.1007/978-3-031-47475-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47475-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47474-3

  • Online ISBN: 978-3-031-47475-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics