Skip to main content

All-JJ Logic Based on Bistable JJs

  • Chapter
  • First Online:
Single Flux Quantum Integrated Circuit Design

Abstract

The all-JJ logic family is a promising area and power-efficient, scalable single flux quantum (SFQ) technology for application to exascale supercomputers. All-JJ superconductive logic is based on a superconductor-ferromagnet-superconductor (SFS) bistable JJ, enabling nanometer feature sizes in VLSI complexity superconductive systems. In this chapter, a mechanical analogy is proposed to describe the dynamic behavior of these bistable JJs. Novel all-JJ logic gates, such as TFF, DFF, OR, AND, and NOT gates, are presented here. All-JJ circuits are composed of bistable JJs, standard JJs, and bias currents, not requiring large inductors within the storage loops. All-JJ logic cells exhibit less delay and power than standard SFQ cells with the same critical current density. All-JJ systems can operate at high frequencies due to the small capacitance of the SFS JJ. A complex all-JJ circuit from the suite of ISCAS’85 benchmark circuits is also characterized. This complex all-JJ circuit exhibits less delay and power as compared to standard SFQ logic. The bias current in a conventional benchmark circuit and all-JJ benchmark circuit is, respectively, 22 mA and 13 mA. The delay of each cell within the conventional benchmark circuit and all-JJ benchmark circuit is, respectively, approximately 20 and 8 ps. A parasitic inductance in series with the JJs disturbs the current distribution within the all-JJ circuits while degrading the margins. To suppress the effects of this parasitic inductance on SFS JJs, small linear inductors are added to manage the current distribution and improve the parameter margins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Jabbari, F. Shanehsazzadeh, H. Zandi, M. Banzet, J. Schubert, M. Fardmanesh, Effects of the design parameters on characteristics of the inductances and JJs in HTS RSFQ circuits. IEEE Trans. Appl. Supercond. 28(7), 1–4 (2018)

    Article  Google Scholar 

  2. K.K. Likharev, V.K. Semenov, RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans. Appl. Supercond. 1(1), 3–28 (1991)

    Article  Google Scholar 

  3. T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019)

    Google Scholar 

  4. T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Global signaling for large scale RSFQ circuits, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2019), pp. 1–6

    Google Scholar 

  5. T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020)

    Google Scholar 

  6. T. Jabbari, M. Bocko, E.G. Friedman, All-JJ logic based on bistable JJs. IEEE Trans. Appl. Supercond. 33(5), 1–7 (2023)

    Google Scholar 

  7. T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759

    Google Scholar 

  8. R. Bairamkulov, T. Jabbari, E.G. Friedman, QuCTS – single flux quantum clock tree synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(10), 3346–3358 (2022)

    Article  Google Scholar 

  9. T. Jabbari, G. Krylov, J Kawa, E.G. Friedman, Splitter trees in single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5), 1302606 (2021)

    Google Scholar 

  10. T. Jabbari, E.G. Friedman, Flux mitigation in wide superconductive striplines. IEEE Trans. Appl. Supercond. 32(3), 1–6 (2022)

    Article  Google Scholar 

  11. T. Jabbari, E.G. Friedman, Stripline topology for flux mitigation. IEEE Trans. Appl. Supercond. 335, 1–4 (2023)

    Google Scholar 

  12. T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Resonance effects in single flux quantum interconnect, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2020), pp. 1–5

    Google Scholar 

  13. T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022)

    Google Scholar 

  14. I. Salameh, E.G. Friedman, S. Kvatinsky, Superconductive logic using 2\(\phi \) Josephson junctions with half flux quantum pulses. IEEE Trans. Circuits Syst. II Express Briefs 69(5), 2533–2537 (2022)

    Google Scholar 

  15. T. Jabbari, E.G. Friedman, Inductive and capacitive coupling noise in superconductive VLSI circuits. IEEE Trans. Appl. Supercond. 33(9), 3800707 (2023)

    Google Scholar 

  16. T. Jabbari, G. Krylov, E.G. Friedman, Logic locking in single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5) (2021)

    Google Scholar 

  17. Y. Mustafa, T. Jabbari, S. Köse, Emerging attacks on logic locking in SFQ circuits and related countermeasures. IEEE Trans. Appl. Supercond. 32(3), 1–8 (2022)

    Article  Google Scholar 

  18. T. Van Duzer, C.W. Turner, Principles of Superconductive Devices and Circuits, 2nd edn. (Prentice Hall, Hoboken, 1999)

    Google Scholar 

  19. Y. Ando, R. Sato, M. Tanaka, K. Takagi, N. Takagi, A. Fujimaki, Design and demonstration of an 8-bit bit-serial RSFQ microprocessor: CORE e4. IEEE Trans. Appl. Supercond. 26(5), 1301205 (2016)

    Google Scholar 

  20. S.S. Meher, C. Kanungo, A. Shukla, A. Inamdar, Parametric approach for routing power nets and passive transmission lines as part of digital cells. IEEE Trans. Appl. Supercond. 29(5), 1–7 (2019)

    Article  Google Scholar 

  21. T.V. Filippova, A. Sahua, A.F. Kirichenkoa, I.V. Vernika, M. Dorojevetsb, C.L. Ayalab, O.A. Mukhanov, 20 GHz operation of an asynchronous wave-pipelined RSFQ arithmetic-logic unit. Physics Procedia 36, 59–65 (2012)

    Article  Google Scholar 

  22. T. Jabbari, R. Bairamkulov, J. Kawa, E. Friedman, Interconnect benchmark circuits for single flux quantum integrated circuits. IEEE Trans. Appl. Supercond. (2023). Under review

    Google Scholar 

  23. I.I. Soloviev, V.I. Ruzhickiy, S.V. Bakurskiy, N.V. Klenov, M.Yu. Kupriyanov, A.A. Golubov, O.V. Skryabina, V.S. Stolyarov, Superconducting circuits without inductors based on bistable Josephson junctions. Phys. Rev. Appl. 16(014052), 1–11 (2021)

    Google Scholar 

  24. M.J.A. Stoutimore, A.N. Rossolenko, V.V. Bolginov, V.A. Oboznov, A.Y. Rusanov, D.S. Baranov, N. Pugach, S.M. Frolov, V.V. Ryazanov, D.J. Van Harlinge, Second-harmonic current-phase relation in Josephson junctions with ferromagnetic barriers. Phys. Rev. Lett. 121(177702), 1–5 (2018)

    Google Scholar 

  25. A. Pal, Z.H. Barber, J.W.A. Robinson, M.G. Blamire, Pure second harmonic current-phase relation in spin-filter Josephson junctions. Nat. Commun. 5(3340), 1–5 (2014)

    Google Scholar 

  26. T. Jabbari, VLSI Complexity Single Flux Quantum Systems, Ph.D. Dissertation, University of Rochester, Rochester, New York, 2023

    Google Scholar 

  27. M. Weides, M. Kemmler, H. Kohlstedt, R. Waser, D. Koelle, R. Kleiner, E. Goldobin, 0-\(\pi \) Josephson tunnel junctions with ferromagnetic barrier. Phys. Rev. Lett. 97(24), 247001 (2006)

    Google Scholar 

  28. S.K. Tolpygo, E.B. Golden, T.J. Weir, V. Bolkhovsky, Inductance of superconductor integrated circuit features with sizes down to 120 nm. Supercond. Sci. Technol. 34(8), 1–24 (2021)

    Article  Google Scholar 

  29. S.V. Polonsky, V.K. Semenov, P.I. Bunyk, A.F. Kirichenko, A.Y. Kidiyarov-Shevchenko, O.A. Mukhanov, P.N. Shevchenko, D.F. Schneider, D.Y. Zinoviev, K.K. Likharev, New RSFQ circuits (Josephson junction digital devices). IEEE Trans. Appl. Supercond. 3(1), 2566–2577 (1993)

    Article  Google Scholar 

  30. G. Krylov, E.G Friedman, Inductive noise coupling in multilayer superconductive ICs. Microelectron. J. 126(105336), 1–5 (2022)

    Google Scholar 

  31. N. Pompeo, K. Torokhtii, C. Cirillo, A.V. Samokhvalov, E.A. Ilyina, C. Attanasio, A.I. Buzdin, E. Silva, Thermodynamic nature of the 0\(-\pi \) quantum transition in superconductor/ferromagnet/superconductor trilayers. Phys. Rev. B 90, 064510 (2014)

    Google Scholar 

  32. E.C. Gingrich, B.M. Niedzielski, J.A. Glick, Y. Wang, D.L. Miller, R. Loloee, W.P. Pratt Jr, N.O. Birge, Controllable 0–\(\pi \) Josephson junctions containing a ferromagnetic spin valve. Nat. Phys. 12, 564–567 (2016)

    Google Scholar 

  33. G. Krylov, E.G. Friedman, Single Flux Quantum Integrated Circuit Design (Springer Publishers, New York City, 2022)

    Book  Google Scholar 

  34. A.M. Kadin, Introduction to Superconducting Circuits (John Wiley & Sons, Hoboken, 1999)

    Google Scholar 

  35. A.S. Vasenko, A.A. Golubov, M.Y. Kupriyanov, M. Weides, Properties of tunnel Josephson junctions with a ferromagnetic interlayer. Phys. Rev. B 77(134507), 1–9 (2008)

    Google Scholar 

  36. ISCAS85 Benchmark Circuits, February (2022) [Online]. Available: https://www.filebox.ece.vt.edu/~mhsiao/iscas85.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gleb Krylov , Tahereh Jabbari or Eby G. Friedman .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krylov, G., Jabbari, T., Friedman, E.G. (2024). All-JJ Logic Based on Bistable JJs. In: Single Flux Quantum Integrated Circuit Design. Springer, Cham. https://doi.org/10.1007/978-3-031-47475-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47475-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47474-3

  • Online ISBN: 978-3-031-47475-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics