Skip to main content

Physics and Devices of Superconductive Electronics

  • Chapter
  • First Online:
Single Flux Quantum Integrated Circuit Design

Abstract

In this chapter, the phenomenon of superconductivity is introduced. A theoretical framework for the analysis of low-temperature superconductive materials—the London, Ginzburg-Landau, and Bardeen-Cooper-Schrieffer theories—is described. The defining features of superconductive materials are discussed, along with different types of materials and characteristics. The properties of these materials are emphasized in relation to superconductive electronics. As compared to conventional transistor-based circuits, superconductive electronics utilize a different set of basic devices as building blocks of larger circuits. These basic devices are introduced in this chapter. The properties and dynamic behavior of Josephson junctions are discussed with intuitive analogies describing both the dynamic behavior and classic circuit models. Important cryogenic devices commonly used in superconductive electronics are also briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.K. Onnes, Investigations into the properties of substances at low temperatures, which have led, amongst Other things, to the preparation of liquid helium, in Nobel Lecture, vol. 4 (1913)

    Google Scholar 

  2. D.A. Buck, The cryotron – a superconductive computer component. Proc. IRE 44(4), 482–493 (1956)

    Article  Google Scholar 

  3. B.D. Josephson, Possible new effects in superconductive tunneling. Phys. Lett. 1(7), 251–253 (1962)

    Article  Google Scholar 

  4. J.G. Bednorz, K.A. Müller, Possible high \(T_c\) superconductivity in the Ba–La–Cu–O system. Zeitschrift für Phy. B Condens. Matter 64(2), 189–193 (1986)

    Google Scholar 

  5. T. Jabbari, F. Shanehsazzadeh, H. Zandi, M. Banzet, J. Schubert, M. Fardmanesh, Effects of the design parameters on characteristics of the inductances and JJs in HTS RSFQ circuits. IEEE Trans. Appl. Supercond. 28(7), 1–4 (2018)

    Article  Google Scholar 

  6. F. Shanehsazzadeh, T. Jabbari, F. Qaderi, M. Fardmanesh, Integrated monolayer planar flux transformer and resonator tank circuit for high- T\({ }_C\) RF-SQUID magnetometer. IEEE Trans. Appl. Supercond. 27(4), 1–4 (2017)

    Google Scholar 

  7. G.N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski, Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79(6), 705–707 (2001)

    Article  Google Scholar 

  8. T. Jabbari, M. Bocko, E.G. Friedman, All-JJ logic based on bistable JJs. IEEE Trans. Appl. Supercond. 33(5), 1–7 (2023)

    Google Scholar 

  9. F. London, H. London, The electromagnetic equations of the supraconductor. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 149(866), 71–88 (1935)

    Google Scholar 

  10. V.L. Ginzburg, On superconductivity and superfluidity, in Nobel Lecture (2003)

    Google Scholar 

  11. P.C. Hohenberg, A.P. Krekhov, An introduction to the Ginzburg–Landau theory of phase transitions and nonequilibrium patterns. Phys. Rep. 572, 1–42 (2015)

    Article  MathSciNet  Google Scholar 

  12. V.L. Ginzburg, Superfluidity and superconductivity in astrophysics. Comments Astrophys. Space Phys. 1, 81–86 (1969)

    Google Scholar 

  13. J. Bardeen, L.N. Cooper, R. Schrieffer, Theory of superconductivity. Phys. Rev. 108(5), 1175–1204 (1957)

    Article  MathSciNet  Google Scholar 

  14. L.N. Cooper, Bound electron Pairs in a degenerate fermi gas. Phys. Rev. 104, 1189–1190 (1956)

    Article  Google Scholar 

  15. V.F. Weisskopf, The Formation of Cooper Pairs and the Nature of Superconducting Currents (European Council for Nuclear Research (CERN), Switzerland, 1979)

    Google Scholar 

  16. B.V. Svistunov, E.S. Babaev, N.V. Prokof’ev, Superfluid States of Matter (CRC Press, Boca Raton, 2015)

    Book  Google Scholar 

  17. W. Meissner, R. Ochsenfeld, Ein Neuer Effekt bei Eintritt der Supraleitfähigkeit. Naturwissenschaften 21(44), 787–788 (1933)

    Article  Google Scholar 

  18. L.H. Greene, High-temperature superconductors: playgrounds for broken symmetries. AIP Conf. Proc. 795(1), 70–82 (2005)

    Article  Google Scholar 

  19. S.A. Kivelson, D.S. Rokhsar, Bogoliubov quasiparticles, spinons, and spin-charge decoupling in superconductors. Phys. Rev. B 41, 11693–11696 (1990)

    Article  Google Scholar 

  20. A.I. Golovashkin, N.P. Shabanova, Temperature dependence of critical magnetic fields and electronic characteristics of Nb3Ge films. Soviet Phys. JETP 55(3), 503–508 (1982)

    Google Scholar 

  21. A.B. Pippard, Field variation of the superconducting penetration depth. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 203(1073), 210–223 (1950)

    Google Scholar 

  22. J.E. Sonier, The Magnetic Penetration Depth and the Vortex Core Radius in Type-II Superconductors, Ph.D. Dissertation, University of British Columbia, Vancouver 1998

    Google Scholar 

  23. A.A. Abrikosov, Nobel lecture: type-II superconductors and the vortex lattice. Rev. Mod. Phys. 76, 975–979 (2004)

    Article  Google Scholar 

  24. R.A. French, Intrinsic type-2 superconductivity in pure niobium. Cryogenics 8(5), 301–308 (1968)

    Article  Google Scholar 

  25. H.A. Boorse, D.B. Cook, M.W. Zemansky, Superconductivity of lead. Phys. Rev. 78, 635–636 (1950)

    Article  Google Scholar 

  26. I.S. Khukhareva, The superconducting properties of thin aluminum films. Soviet Phys. JETP 16, 828–832 (1963)

    Google Scholar 

  27. G. Behrens, W. Campbell, D. Williams, S. White, Guidelines for the design of cryogenic systems. NRAO Electronic Division Internal Report, No. 306 (1997)

    Google Scholar 

  28. A. Schilling, M. Cantoni, J.D. Guo, H.R. Ott, Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system. Nature 363(6424), 56–58 (1993)

    Article  Google Scholar 

  29. A.R. Kerr, Surface impedance of superconductors and normal conductors in EM simulators. National Radio Astronomy Observatory, Electronics Division Internal Report, No. 302 (1996)

    Google Scholar 

  30. T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022)

    Google Scholar 

  31. K.K. Likharev, Dynamics of Josephson Junctions and Circuits (Gordon and Breach Science Publishers, London, 1986)

    Google Scholar 

  32. J. Clarke, Supercurrents in lead-copper-lead sandwiches. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 308(1495), 447–471 (1969)

    Google Scholar 

  33. K.K. Likharev, Superconducting weak links. Rev. Mod. Phys. 51, 101–159 (1979)

    Article  Google Scholar 

  34. S.K. Tolpygo, Superconductor digital electronics: scalability and energy efficiency issues. Low Temp. Phys. 42(5), 361–379 (2016)

    Article  Google Scholar 

  35. R. Gross, A. Marx, F. Deppe, Applied Superconductivity: Josephson Effect and Superconducting Electronics (Walter De Gruyter Incorporated, Berlin, 2016)

    Google Scholar 

  36. W.C. Stewart, Current-voltage characteristics of Josephson junctions. Appl. Phys. Lett. 12(8), 277–280 (1968)

    Article  Google Scholar 

  37. D.E. McCumber, Effect of AC impedance on DC voltage-current characteristics of superconductor weak-link junctions. J. Appl. Phys. 39(7), 3113–3118 (1968)

    Article  Google Scholar 

  38. C.M. Natarajan, M.G. Tanner, R.H. Hadfield, Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25(6), 063001 (2012)

    Google Scholar 

  39. E.E. Wollman, V.B. Verma, A.E. Lita, W.H. Farr, M.D. Shaw, R.P. Mirin, S.W. Nam, Kilopixel array of superconducting nanowire single-photon detectors. Opt. Express 27(24), 35279–35289 (2019)

    Article  Google Scholar 

  40. A.N. McCaughan, K.K. Berggren, A superconducting-nanowire three-terminal electrothermal device. Nano Lett. 14(10), 5748–5753 (2014)

    Article  Google Scholar 

  41. G. Krylov, E.G. Friedman, Sense amplifier for spin-based cryogenic memory cells. IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019). Art no. 1501804

    Google Scholar 

  42. I. Salameh, E.G. Friedman, S. Kvatinsky, Superconductive logic using 2\(\phi \) Josephson junctions with half flux quantum pulses. IEEE Trans. Circuits Syst. II Express Briefs 69(5), 2533–2537 (2022)

    Google Scholar 

  43. I.P. Nevirkovets, O. Chernyashevskyy, G.V. Prokopenko, O.A. Mukhanov, J.B. Ketterson, Control of supercurrent in hybrid superconducting–ferromagnetic transistors. IEEE Trans. Appl. Supercond. 25(3), 1–5 (2015)

    Article  Google Scholar 

  44. I.P. Nevirkovets, O. Chernyashevskyy, G.V. Prokopenko, O.A. Mukhanov, J.B. Ketterson, Superconducting-ferromagnetic transistor. IEEE Trans. Appl. Supercond. 24(4), 1–6 (2014)

    Article  Google Scholar 

  45. S. Faris, S. Raider, W. Gallagher, R. Drake, Quiteron. IEEE Trans. Magn. 19(3), 1293–1295 (1983)

    Article  Google Scholar 

  46. S. Shafranjuk, I.P. Nevirkovets, O.A. Mukhanov, J.B. Ketterson, Control of superconductivity in a hybrid superconducting/ferromagnetic multilayer using nonequilibrium tunneling injection. Phys. Rev. Appl. 6(2), 024018 (2016)

    Google Scholar 

  47. G. Krylov, E.G. Friedman, Behavioral verilog-A model of superconductor-ferromagnetic transistor, in Proceedings of the IEEE International Symposium on Circuits and Systems (2018)

    Google Scholar 

  48. A.I. Buzdin, Proximity effects in superconductor-ferromagnet heterostructures. Rev. Mod. Phys. 77(3), 935–976 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gleb Krylov , Tahereh Jabbari or Eby G. Friedman .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krylov, G., Jabbari, T., Friedman, E.G. (2024). Physics and Devices of Superconductive Electronics. In: Single Flux Quantum Integrated Circuit Design. Springer, Cham. https://doi.org/10.1007/978-3-031-47475-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47475-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47474-3

  • Online ISBN: 978-3-031-47475-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics