Skip to main content

Wave Pipelining in DSFQ Circuits

  • Chapter
  • First Online:
Single Flux Quantum Integrated Circuit Design

Abstract

Dynamic SFQ (DSFQ) circuits are a promising circuit topology for asynchronous SFQ logic. The operation of DSFQ circuits, however, significantly differs from both CMOS logic and conventional synchronous RSFQ logic. Novel design methodologies are necessary to synthesize DSFQ circuits while increasing performance and decreasing area. The path balancing process, essential for RSFQ circuits, is less important for DSFQ. Path delay balancing, however, can increase the performance of DSFQ circuits by enabling wave pipelining. In this chapter, different path balancing approaches for DSFQ circuits are evaluated and compared to equivalent RSFQ circuits. A partial path balancing methodology is described and characterized, where path balancing is first applied to the critical paths. This methodology enables wave pipelining in DSFQ circuits and reduces the period between data waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019)

    Google Scholar 

  2. T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020)

    Google Scholar 

  3. T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759

    Google Scholar 

  4. R. Bairamkulov, T. Jabbari, E.G. Friedman, QuCTS – single flux quantum clock tree synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(10), 3346–3358 (2022)

    Article  Google Scholar 

  5. T. Jabbari, J. Kawa, E.G. Friedman, H-tree clock synthesis in RSFQ circuits, in Proceedings of the IEEE Baltic Electronics Conference (2020), pp. 1–5

    Google Scholar 

  6. T. Jabbari, G. Krylov, J Kawa, E.G. Friedman, Splitter trees in single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5), 1302606 (2021)

    Google Scholar 

  7. T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Resonance effects in single flux quantum interconnect, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2020), pp. 1–5

    Google Scholar 

  8. G. Krylov, E.G. Friedman, Partitioning RSFQ circuits for current recycling. IEEE Trans. Appl. Supercond. 31(5), 1–6 (2021)

    Article  Google Scholar 

  9. G. Krylov, E.G. Friedman, Design methodology for distributed large-scale ERSFQ bias networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(11), 2438–2447 (2020)

    Google Scholar 

  10. G. Krylov, E.G. Friedman, Asynchronous dynamic single flux quantum majority gates. IEEE Trans. Appl. Supercond. 30(5), 1–7 (2020). Art no. 1300907

    Google Scholar 

  11. H. Kumar, T. Jabbari, G. Krylov, K. Basu, E.G. Friedman, R. Karri, Toward increasing the difficulty of reverse engineering of RSFQ circuits. IEEE Trans. Appl. Supercond. 30(3), 1–13 (2020)

    Article  Google Scholar 

  12. Y. Mustafa, T. Jabbari, S. Köse, Emerging attacks on logic locking in SFQ circuits and related countermeasures. IEEE Trans. Appl. Supercond. 32(3), 1–8 (2022)

    Article  Google Scholar 

  13. G. Krylov, E.G. Friedman, Globally asynchronous, locally synchronous clocking and shared interconnect for large-scale SFQ systems. IEEE Trans. Appl. Supercond. 29(5), 1–5 (2019)

    Google Scholar 

  14. T. Jabbari, R. Bairamkulov, J. Kawa, E. Friedman, Interconnect benchmark circuits for single flux quantum integrated circuits. IEEE Trans. Appl. Supercond. (2023). Under review

    Google Scholar 

  15. RSFQ @ SUNY Stony Brook, June 2019 [Online]. Available: http://www.physics.sunysb.edu/Physics/RSFQ/index.html

  16. S.V. Rylov, Clockless dynamic SFQ and gate with high input skew tolerance. IEEE Trans. Appl. Supercond. 29(5), 1–5 (2019)

    Article  Google Scholar 

  17. Berkeley Logic Synthesis and Verification Group, ABC: A System for Sequential Synthesis and Verification [Online]. Available: http://www.eecs.berkeley.edu/~alanmi/abc/

  18. G. Pasandi, M. Pedram, PBMap: a path balancing technology mapping algorithm for single flux quantum logic circuits. IEEE Trans. Appl. Supercond. 29(4), 1–14 (2019)

    Article  Google Scholar 

  19. W.P. Burleson, M. Ciesielski, F. Klass, W. Liu, Wave-pipelining: a tutorial and research survey. IEEE Trans. Very Large Scale Integr. Syst. 6(3), 464–474 (1998)

    Article  Google Scholar 

  20. M. Dorojevets, C.L. Ayala, A.K. Kasperek, Data-flow microarchitecture for wide datapath RSFQ processors: design study. IEEE Trans. Appl. Supercond. 21(3), 787–791 (2011)

    Article  Google Scholar 

  21. S.S. Meher, J. Ravi, M. Celik, S. Miller, A. Sahu, A. Talalaevskii, A. Inamdar, Superconductor standard cell library for advanced EDA design. IEEE Trans. Appl. Supercond. 31(5), 1–7 (2021)

    Article  Google Scholar 

  22. B. Dimov, M. Khabipov, D. Balashov, C.M. Brandt, F. Buchholz, J. Niemeyer, F.H. Uhlmann, Tuning of the RSFQ gate speed by different Stewart-McCumber parameters of the Josephson junctions. IEEE Trans. Appl. Supercond. 15(2), 284–287 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gleb Krylov , Tahereh Jabbari or Eby G. Friedman .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krylov, G., Jabbari, T., Friedman, E.G. (2024). Wave Pipelining in DSFQ Circuits. In: Single Flux Quantum Integrated Circuit Design. Springer, Cham. https://doi.org/10.1007/978-3-031-47475-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47475-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47474-3

  • Online ISBN: 978-3-031-47475-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics