Skip to main content

SFQ Circuits for Quantum Computing

  • Chapter
  • First Online:
Single Flux Quantum Integrated Circuit Design

Abstract

Quantum computing is a novel approach to computation that can provide a significant speedup of computationally hard tasks by using special quantum algorithms. Significant scaling of the many cohesive components within a quantum computing system is necessary to achieve quantum advantage for practical tasks. An essential element of any quantum computer is the control and measurement system. Classical superconductive electronics and SFQ circuits in particular can be interfaced with superconductive quantum systems. The performance of SFQ control circuits in terms of fidelity and noise is currently approaching the state-of-the-art as set by conventional control methods. Classical superconductive circuits can be instrumental in the transition to larger scale quantum computers. SFQ circuits can enhance these systems by providing fast, repeated measurements, complex processing, and controlled feedback while introducing low noise and heat load.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. McDermott, M.G. Vavilov, B.L.T. Plourde, F.K. Wilhelm, P.J. Liebermann, O.A. Mukhanov, T.A. Ohki, Quantum–classical interface based on single flux quantum digital logic. Quant. Sci. Technol. 3(2), 024004 (2018)

    Google Scholar 

  2. S. Krinner, S. Storz, P. Kurpiers, P. Magnard, J. Heinsoo, R. Keller, J. Lütolf, C. Eichler, A. Wallraff, Engineering cryogenic setups for 100-qubit scale superconducting circuit systems. EPJ Quant. Technol. 6(2), 1–29 (2019)

    Google Scholar 

  3. G. Krylov, E.G. Friedman, Design methodology for distributed large-scale ERSFQ bias networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(11), 2438–2447 (2020)

    Google Scholar 

  4. P.W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings of the ACM Annual Symposium on Foundations of Computer Science (1994), pp. 124–134

    Google Scholar 

  5. L.K. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of the Annual ACM Symposium on Theory of Computing (1996), pp. 212–219

    Google Scholar 

  6. M. Brooks, Beyond quantum supremacy: the hunt for useful quantum computers. Nature 574, 19–21 (2019)

    Article  Google Scholar 

  7. F. Arute et al., Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)

    Article  Google Scholar 

  8. Y. Zhou, Z. Zhang, Z. Yin, S. Huai, X. Gu, X. Xu, J. Allcock, F. Liu, G. Xi, Q. Yu, H. Zhang, M. Zhang, H. Li, X. Song, Z. Wang, D. Zheng, S. An, Y. Zheng, S. Zhang, Rapid and unconditional parametric reset protocol for tunable superconducting qubits. Nat. Commun. 12(1), 5924 (2021)

    Google Scholar 

  9. J. Roffe, Quantum error correction: an introductory guide. Contemp. Phys. 60(3), 226–245 (2019)

    Article  Google Scholar 

  10. M. Kjaergaard, M. Schwartz, J. Braumuller, P. Krantz, J.I. Wang, S. Gustavsson, W.D. Oliver, Superconducting qubits: current state of play. Ann. Rev. Condens. Matter Phys. 11, 369–395 (2019)

    Article  Google Scholar 

  11. P. Krantz, M. Kjaergaard, F. Yan, T.P. Orlando, S. Gustavsson, W.D. Oliver, A quantum engineer’s guide to superconducting qubits. App. Phys. Rev. 6(2), 021318 (2019)

    Google Scholar 

  12. S.E. Rasmussen, K.S. Christensen, S.P. Pedersen, L.B. Kristensen, T. Bækkegaard, N.J.S. Loft, N.T. Zinner, Superconducting circuit companion—an introduction with worked examples. Phys. Rev. X Quant. 2, 040204 (2021)

    Google Scholar 

  13. M.A. Mannucci, N.S. Yanofsky, Quantum Computing for Computer Scientists (Cambridge University Press, Cambridge, 2012)

    Google Scholar 

  14. J.J. Burnett, A. Bengtsson, M. Scigliuzzo, D. Niepce, M. Kudra, P. Delsing, J. Bylander, Decoherence benchmarking of superconducting qubits. NPJ Quant. Inf. 5, 1–8 (2019)

    Google Scholar 

  15. C.D. Bruzewicz, Jo. Chiaverini, R. McConnell, J.M. Sage, Trapped-ion quantum computing: progress and challenges. Appl. Phys. Rev. 6(2), 021314 (2019)

    Google Scholar 

  16. G. Burkard, T.D. Ladd, J.M. Nichol, A. Pan, J.R. Petta, Semiconductor spin qubits. Preprint. arXiv:2112.08863 (2021)

    Google Scholar 

  17. J.D. Hidary, Quantum Computing: An Applied Approach, 2nd edn. (Springer, Berlin, 2021)

    Book  Google Scholar 

  18. J.R. Johansson, P.D. Nation, F. Nori, QuTiP 2: a python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184(4), 1234–1240 (2013)

    Article  Google Scholar 

  19. K. Luo, W. Huang, Z. Tao, L. Zhang, Y. Zhou, J. Chu, W. Liu, B. Wang, J. Cui, S. Liu, F. Yan, M. Yung, Y. Chen, T. Yan, D. Yu, Experimental realization of two qutrits gate with tunable coupling in superconducting circuits. Phys. Rev. Lett. 130, 030603 (2023)

    Article  Google Scholar 

  20. M. Neeley, M. Ansmann, R.C. Bialczak, M. Hofheinz, E. Lucero, A.D. O’Connell, D. Sank, H. Wang, J. Wenner, A.N. Cleland, M.R. Geller, J.M. Martinis, Emulation of a quantum spin with a superconducting phase qudit. Science 325(5941), 722–725 (2009)

    Article  Google Scholar 

  21. N.J. Glaser, F. Roy, S. Filipp, Controlled-controlled-phase gates for superconducting qubits mediated by a shared tunable coupler. Preprint. arXiv:2206.12392 (2022)

    Google Scholar 

  22. A. Blais, A.L. Grimsmo, S.M. Girvin, A. Wallraff, Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021)

    Article  MathSciNet  Google Scholar 

  23. Y. Nakamura, Y.A. Pashkin, J.S. Tsai, Coherent control of macroscopic quantum states in a single-cooper-pair box. Nature 398(6730), 786–788 (1999)

    Article  Google Scholar 

  24. J. Koch, T.M. Yu, J. Gambetta, A.A. Houck, D.I. Schuster, J. Majer, A. Blais, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Charge-insensitive qubit design derived from the cooper pair box. Phys. Rev. A 76, 042319 (2007)

    Article  Google Scholar 

  25. M.D. Hutchings, J.B. Hertzberg, Y. Liu, N.T. Bronn, G.A. Keefe, M. Brink, J.M. Chow, B.L.T. Plourde, Tunable superconducting qubits with flux-independent coherence. Phys. Rev. Appl. 8, 044003 (2017)

    Article  Google Scholar 

  26. M. Werninghaus, D.J. Egger, F. Roy, S. Machnes, F.K. Wilhelm, S. Filipp, Leakage reduction in fast superconducting qubit gates via optimal control. NPJ Quant. Inf. 7(1), 14 (2021)

    Google Scholar 

  27. Y. Chen, C. Neill, P. Roushan, N. Leung, M. Fang, R. Barends, J. Kelly, B. Campbell, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, A. Megrant, J.Y. Mutus, P.J.J. O’Malley, C.M. Quintana, D. Sank, A. Vainsencher, J. Wenner, T.C. White, M.R. Geller, A.N. Cleland, J.M. Martinis, Qubit architecture with high coherence and fast tunable coupling. Phys. Rev. Lett. 113, 220502 (2014)

    Article  Google Scholar 

  28. H.T. Friis, Noise figures of radio receivers. Proc. IRE 32(7), 419–422 (1944)

    Article  Google Scholar 

  29. E. Cha, N. Wadefalk, G. Moschetti, A. Pourkabirian, J. Stenarson, J. Grahn, A 300-µW cryogenic HEMT LNA for quantum computing, in Proceedings of the IEEE/MTT-S International Microwave Symposium (2020), pp. 1299–1302

    Google Scholar 

  30. Y. Peng, A. Ruffino, E. Charbon, A cryogenic broadband sub-1-dB NF CMOS low noise amplifier for quantum applications. IEEE J. Solid-State Circuits 56(7), 2040–2053 (2021)s

    Google Scholar 

  31. L. Chen, H. Li, Y. Lu, C.W. Warren, C.J. Križan, S. Kosen, M. Rommel, S. Ahmed, A. Osman, J. Biznárová, A.F. Roudsari, B. Lienhard, M. Caputo, K. Grigoras, L. Grönberg, J. Govenius, A.F. Kockum, P. Delsing, J. Bylander, G. Tancredi, Transmon qubit readout fidelity at the threshold for quantum error correction without a quantum-limited amplifier. NPJ Quant. Inf. 9(1), 26 (2023)

    Google Scholar 

  32. A. Roy, M. Devoret, Introduction to parametric amplification of quantum signals with josephson circuits. C. R. Phys. 17(7), 740–755 (2016)

    Article  Google Scholar 

  33. C. Macklin, K. O’Brien, D. Hover, M.E. Schwartz, V. Bolkhovsky, X. Zhang, W.D. Oliver, I. Siddiqi, A near-quantum-limited Josephson traveling-wave parametric amplifier. Science 350(6258), 307–310 (2015)

    Article  Google Scholar 

  34. J. Heinsoo, C.K. Andersen, A. Remm, S. Krinner, T. Walter, Y. Salathé, S. Gasparinetti, J. Besse, A. Potočnik, A. Wallraff, C. Eichler, Rapid high-fidelity multiplexed readout of superconducting qubits. Phys. Rev. Appl. 10, 034040 (2018)

    Article  Google Scholar 

  35. K. Peng, M. Naghiloo, J. Wang, G.D. Cunningham, Y. Ye, K.P. O’Brien, Floquet-mode traveling-wave parametric amplifiers. Phys. Rev. X Quant. 3, 020306 (2022)

    Google Scholar 

  36. M.J. Feldman, A technique to demonstrate energy level quantization in a SQUID. Phys. B Condens. Matter 284–288, 2127–2128 (2000)

    Article  Google Scholar 

  37. R.C. Rey-de Castro, M.F. Bocko, A.M. Herr, C.A. Mancini, M.J. Feldman, Design of an RSFQ control circuit to observe MQC on an rf-SQUID. IEEE Trans. Appl. Supercond. 11(1), 1014–1017 (2001)

    Article  Google Scholar 

  38. P. Rott, M.J. Feldman, Characterization of macroscopic quantum behavior using RSFQ circuitry. IEEE Trans. Appl. Supercond. 11(1), 1010–1013 (2001)

    Article  Google Scholar 

  39. V.K. Semenov, D.V. Averin, SFQ control circuits for Josephson Junction Qubits. IEEE Trans. Appl. Supercond. 13(2), 960–965 (2003)

    Article  Google Scholar 

  40. J. Hassel, P. Helistö, H. Seppä, J. Kunert, L. Fritzsch, H. Meyer, Rapid single flux quantum devices with selective dissipation for quantum information processing. Appl. Phys. Lett. 89(18), 182514 (2006)

    Google Scholar 

  41. T.A. Ohki, M. Wulf, M.F. Bocko, Picosecond on-chip qubit control circuitry. IEEE Trans. Appl. Supercond. 15(2), 837–840 (2005)

    Article  Google Scholar 

  42. M.G. Castellano, F. Chiarello, R. Leoni, G. Torrioli, P. Carelli, C. Cosmelli, M. Khabipov, A.B. Zorin, D. Balashov, Rapid single-flux quantum control of the energy potential in a double SQUID qubit circuit. Supercond. Sci. Technol. 20(6), 500–505 (2007)

    Article  Google Scholar 

  43. M.W. Johnson, P. Bunyk, F. Maibaum, E. Tolkacheva, A.J. Berkley, E.M. Chapple, R. Harris, J. Johansson, T. Lanting, I. Perminov, E. Ladizinsky, T. Oh, G. Rose, A scalable control system for a superconducting adiabatic quantum optimization processor. Supercond. Sci. Technol. 23(6), 065004 (2010)

    Google Scholar 

  44. G. Matsuda, Y. Yamanashi, N. Yoshikawa, Design of an SFQ microwave chopper for controlling quantum bits. IEEE Trans. Appl. Supercond. 17(2), 146–149 (2007)

    Article  Google Scholar 

  45. N. Takeuchi, D. Ozawa, Y. Yamanashi, N. Yoshikawa, On-chip RSFQ microwave pulse generator using a multi-flux-quantum driver for controlling superconducting qubits. Phys. C Supercond. Appl. 470(20), 1550–1554 (2010)

    Article  Google Scholar 

  46. Y. He, H. Shen, S. Michibayashi, X. Zou, X. Xie, L. Yan, W. Pan, N. Yoshikawa, Compact RSFQ microwave pulse generator based on an integrated RF module for controlling superconducting qubits. Appl. Phys. Lett. 120(6), 062601 (2022)

    Google Scholar 

  47. S. Razmkhah, A. Bozbey, P. Febvre, Superconductor modulation circuits for qubit control at microwave frequencies. Preprint. arXiv:2211.06667 (2022)

    Google Scholar 

  48. J.A. Brevik, N.E. Flowers-Jacobs, A.E. Fox, E.B. Golden, P.D. Dresselhaus, S.P. Benz, Josephson arbitrary waveform synthesis with multilevel pulse biasing. IEEE Trans. Appl. Supercond. 27(3), 1–7 (2017)

    Article  Google Scholar 

  49. S.P. Benz, C.A. Hamilton, C.J. Burroughs, T.E. Harvey, L.A. Christian, J.X. Przybysz, Pulse-driven Josephson digital/analog converter [voltage standard]. IEEE Trans. Appl. Supercond. 8(2), 42–47 (1998)

    Article  Google Scholar 

  50. A.J. Sirois, M. Castellanos-Beltran, A.E. Fox, S.P. Benz, P.F. Hopkins, Josephson microwave sources applied to quantum information systems. IEEE Trans. Quant. Eng. 1, 1–7 (2020)

    Article  Google Scholar 

  51. M.A. Castellanos-Beltran, D.I. Olaya, A.J. Sirois, C.A. Donnelly, P.D. Dresselhaus, S.P. Benz, P.F. Hopkins, Single-flux-quantum multiplier circuits for synthesizing gigahertz waveforms with quantum-based accuracy. IEEE Trans. Appl. Supercond. 31(3), 1–9 (2021)

    Article  Google Scholar 

  52. R. McDermott, M.G. Vavilov, Accurate qubit control with single flux quantum pulses. Phys. Rev. Appl. 2, 014007 (2014)

    Article  Google Scholar 

  53. E. Leonard, M.A. Beck, J. Nelson, B.G. Christensen, T. Thorbeck, C. Howington, A. Opremcak, I.V. Pechenezhskiy, K. Dodge, N.P. Dupuis, M.D. Hutchings, J. Ku, F. Schlenker, J. Suttle, C. Wilen, S. Zhu, M.G. Vavilov, B.L.T. Plourde, R. McDermott, Digital coherent control of a superconducting qubit. Phys. Rev. Appl. 11, 014009 (2019)

    Article  Google Scholar 

  54. K. Li, R. McDermott, M.G. Vavilov, Hardware-efficient qubit control with single-flux-quantum pulse sequences. Phys. Rev. Appl. 12, 014044 (2019)

    Article  Google Scholar 

  55. P.J. Liebermann, F.K. Wilhelm, Optimal qubit control using single-flux quantum pulses. Phys. Rev. Appl. 6, 024022 (2016)

    Article  Google Scholar 

  56. C. Liu, D.C. Harrison, S. Patel, C.D. Wilen, O. Rafferty, A. Shearrow, A. Ballard, V. Iaia, J. Ku, B.L.T. Plourde, R. McDermott, Quasiparticle poisoning of superconducting qubits from resonant absorption of pair-breaking photons. Preprint. arXiv:2203.06577 (2022)

    Google Scholar 

  57. C. Liu, A. Ballard, D. Olaya, D.R. Schmidt, J. Biesecker, T. Lucas, J. Ullom, S.n. Patel, O. Rafferty, A. Opremcak, K. Dodge, V. Iaia, T. McBroom, J.L. Dubois, P.F. Hopkins, S.P. Benz, B.L.T. Plourde, R. McDermott, Single flux quantum-based digital control of superconducting qubits in a multi-chip module. Preprint. arXiv:2301.05696 (2023)

    Google Scholar 

  58. M.R. Jokar, R. Rines, F.T. Chong, Practical implications of SFQ-based two-qubit gates, in Proceedings of the IEEE International Conference on Quantum Computing and Engineering (2021), pp. 402–412

    Google Scholar 

  59. A. Lupaşcu, S. Saito, T. Picot, P.C. De Groot, C.J.P.M. Harmans, J.E. Mooij, Quantum non-demolition measurement of a superconducting two-level system. Nat. Phys. 3(2), 119–123 (2007)

    Article  Google Scholar 

  60. D.V. Averin, K. Rabenstein, V.K. Semenov, Rapid ballistic readout for flux qubits. Phys. Rev. B 73, 094504 (2006)

    Article  Google Scholar 

  61. A. Herr, A. Fedorov, A. Shnirman, E. Il’ichev, G. Schön, Design of a ballistic fluxon qubit readout. Supercond. Sci. Technol. 20(11), S450–S454 (2007)

    Article  Google Scholar 

  62. K.G. Fedorov, A.V. Shcherbakova, M.J. Wolf, D. Beckmann, A.V. Ustinov, Fluxon readout of a superconducting qubit. Phys. Rev. Lett. 112, 160502 (2014)

    Article  Google Scholar 

  63. C. Howington, A. Opremcak, R. McDermott, A. Kirichenko, O.A. Mukhanov, B.L.T. Plourde, Interfacing superconducting qubits with cryogenic logic: readout. IEEE Trans. Appl. Supercond. 29(5), 1–5 (2019)

    Article  Google Scholar 

  64. Google Quantum AI, Suppressing quantum errors by scaling a surface code logical qubit. Nature 614(7949), 676–681 (2023)

    Article  Google Scholar 

  65. S. Krinner, N. Lacroix, A. Remm, A.D. Paolo, E. Genois, C. Leroux, C. Hellings, S. Lazar, F. Swiadek, J. Herrmann, G.J. Norris, C.K. Andersen, M. Müller, A. Blais, C. Eichler, A. Wallraff, Realizing repeated quantum error correction in a distance-three surface code. Nature 605(7911), 669–674 (2022)

    Article  Google Scholar 

  66. A.G. Fowler, M. Mariantoni, J.M. Martinis, A.N. Cleland, Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012)

    Article  Google Scholar 

  67. A. Holmes, M.R. Jokar, G. Pasandi, Y. Ding, M. Pedram, F.T. Chong, NISQ+: boosting quantum computing power by approximating quantum error correction, in Proceedings of the ACM/IEEE International Symposium on Computer Architecture (2020), pp. 556–569

    Google Scholar 

  68. Y. Ueno, M. Kondo, M. Tanaka, Y. Suzuki, Y. Tabuchi, QULATIS: a quantum error correction methodology toward lattice surgery, in Proceedings of the IEEE International Symposium on High-Performance Computer Architecture (2022), pp. 274–287

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gleb Krylov , Tahereh Jabbari or Eby G. Friedman .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krylov, G., Jabbari, T., Friedman, E.G. (2024). SFQ Circuits for Quantum Computing. In: Single Flux Quantum Integrated Circuit Design. Springer, Cham. https://doi.org/10.1007/978-3-031-47475-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47475-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47474-3

  • Online ISBN: 978-3-031-47475-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics