Skip to main content

Introduction

  • Chapter
  • First Online:
Single Flux Quantum Integrated Circuit Design

Abstract

In this chapter, superconductive electronics are introduced as a promising beyond-CMOS technology. The history of superconductive electronic circuits is briefly reviewed, highlighting similarities and differences in the development of semiconductor-based electronics. Modern computing systems are often categorized based on the total power consumption. The increasing importance of large-scale, stationary computing systems is emphasized. The advantages of superconductive electronics for this important application area are described. Additional application areas, such as space-based electronics and quantum computing, are also introduced. Finally, the rest of this book is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.K. Onnes, Investigations into the properties of substances at low temperatures, which have led, amongst Other things, to the preparation of liquid helium, in Nobel Lecture, vol. 4 (1913)

    Google Scholar 

  2. T. Jenkins, A brief history of…semiconductors. Phys. Educ. 40(5), 430 (2005)

    Google Scholar 

  3. J. Bardeen, W.H. Brattain, The transistor, a semi-conductor triode. Phys. Rev. 74(2), 230 (1948)

    Google Scholar 

  4. L.J. Lilienfeld, Method and apparatus for controlling electric currents. U.S. Patent, No. 1,745,175A, 22 Oct 1925

    Google Scholar 

  5. D.A. Buck, The cryotron – a superconductive computer component. Proc. IRE 44(4), 482–493 (1956)

    Article  Google Scholar 

  6. Cryotrons May Lead to Computers Cubic Foot in Size. The New York Times, p. 1 (1957)

    Google Scholar 

  7. K.K. Likharev, Superconductor digital electronics, Physica C 482, 6–18 (2012)

    Article  Google Scholar 

  8. J.S Kilby, Miniaturized electronic circuits. U.S. Patent, No. 3,138,743, 23 June (1964)

    Google Scholar 

  9. J. Bremer, The invention of superconducting integrated circuit. IEEE Hist. Center Newsl. 75, 6–7 (2007)

    Google Scholar 

  10. D.L. Shell, The share 709 system: a cooperative effort. J. ACM 6(2), 123–127 (1959)

    Article  Google Scholar 

  11. J. Raymond, D.K. Banerji, Using a microprocessor in an intelligent graphics terminal. Computer 9(4), 18–25 (1976)

    Article  Google Scholar 

  12. G.E. Moore, Cramming more components onto integrated circuits. Electronics 38(8), 114–117 (1965)

    Google Scholar 

  13. B.D. Josephson, Possible new effects in superconductive tunneling. Phys. Lett. 1(7), 251–253 (1962)

    Article  Google Scholar 

  14. H.H. Zappe, K.R. Grebe, Dynamic behavior of Josephson tunnel junctions in the subnanosecond range. J. Appl. Phys. 44(2), 865–874 (1973)

    Article  Google Scholar 

  15. R.L. Van Tuyl, C.A. Liechti, R.E. Lee, E. Gowen, GaAs MESFET logic with 4-GHz clock rate. IEEE J. Solid-State Circuits 12(5), 485–496 (1977)

    Article  Google Scholar 

  16. L. Esaki, New phenomenon in narrow germanium \(p{-}n\) junctions. Phys. Rev. 109, 603–604 (1958)

    Google Scholar 

  17. Y. Hazoni, A fast flip-flop circuit utilizing tunnel-diodes. Nucl. Instrum. Methods 13, 95–96 (1961)

    Article  Google Scholar 

  18. W.J. Gallagher, E.P. Harris, M.B. Ketchen, Superconductivity at IBM – a centennial review: part I – superconducting computer and device applications, in Proceedings of the IEEE/CSC ESAS European Superconductivity News Forum, vol. 21 (2012), pp. 1–34

    Google Scholar 

  19. H. Nakagawa, I. Kurosawa, M. Aoyagi, S. Kosaka, Y. Hamazaki, Y. Okada, S. Takada, A 4-bit Josephson computer ETL-JC1. IEEE Trans. Appl. Supercond. 1(1), 37–47 (1991)

    Article  Google Scholar 

  20. D.C. Brock, Will the NSA finally build its superconducting spy computer? IEEE Spectr. 8 (2016)

    Google Scholar 

  21. J.G. Bednorz, K.A. Müller, Possible high \(T_c\) superconductivity in the Ba–La–Cu–O system. Zeitschrift für Phy. B Condens. Matter 64(2), 189–193 (1986)

    Google Scholar 

  22. T. Jabbari, F. Shanehsazzadeh, H. Zandi, M. Banzet, J. Schubert, M. Fardmanesh, Effects of the design parameters on characteristics of the inductances and JJs in HTS RSFQ circuits. IEEE Trans. Appl. Supercond. 28(7), 1–4 (2018)

    Article  Google Scholar 

  23. H. Toepfer, T. Ortlepp, H.F. Uhlmann, D. Cassel, M. Siegel, Design of HTS RSFQ circuits. Phys. C: Supercond. 392–396, 1420–1425 (2003)

    Article  Google Scholar 

  24. K.K. Likharev, V.K. Semenov, RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans. Appl. Supercond. 1(1), 3–28 (1991)

    Article  Google Scholar 

  25. M. Hosoya, W. Hioe, J. Casas, R. Kamikawai, Y. Harada, Y. Wada, H. Nakane, R. Suda, E. Goto, Quantum flux parametron: a single quantum flux device for Josephson supercomputer. IEEE Trans. Appl. Supercond. 1(2), 77–89 (1991)

    Article  Google Scholar 

  26. A. Rufenacht, N. Flowers-Jacobs, S. Benz, Impact of the latest generation of Josephson voltage standards in AC and DC electric metrology. Metrologia 55(5), S152–S173 (2018)

    Article  Google Scholar 

  27. D.S. Holmes, A.L. Ripple, M.A. Manheimer, Energy-efficient superconducting computing—power budgets and requirements. IEEE Trans. Appl. Supercond. 23(3), 1701610 (2013)

    Google Scholar 

  28. M.A. Manheimer, Cryogenic computing complexity program: phase 1 introduction. IEEE Trans. Appl. Supercond. 25(3), 1–4 (2015)

    Article  Google Scholar 

  29. R.K. Cavin, P. Lugli, V.V. Zhirnov, Science and engineering beyond Moore’s Law. Proc. IEEE 100(Special Centennial Issue), 1720–1749 (2012)

    Google Scholar 

  30. H. Esmaeilzadeh, E. Blem, R.S. Amant, K. Sankaralingam, D. Burger, Dark silicon and the end of multicore scaling, in Proceedings of the ACM/IEEE Annual International Symposium on Computer Architecture (2011), pp. 365–376

    Google Scholar 

  31. J.A. Hutchby, G.I. Bourianoff, V.V. Zhirnov, J.E. Brewer, Extending the road beyond CMOS. IEEE Circuits Devices Magn. 18(2), 28–41 (2002)

    Article  Google Scholar 

  32. IBM Unveils 400 Qubit-Plus Quantum Processor and Next-Generation IBM Quantum System Two, November (2022) [Online]. Available: https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two

  33. V.V. Dotsenko, A. Sahu, B. Chonigman, J. Tang, A.E. Lehmann, V. Gupta, A. Talalevskii, S. Ruotolo, S. Sarwana, R.J. Webber, D. Gupta, Integrated cryogenic electronics testbed (ICE-T) for evaluation of superconductor and cryo-semiconductor integrated circuits, in IOP Conference Series: Materials Science and Engineering, vol. 171 (2017), p. 012145

    Google Scholar 

  34. J. Ekin, Experimental Techniques for Low-Temperature Measurements: Cryostat Design, Material Properties and Superconductor Critical-Current Testing (Oxford University Press, Oxford, 2006)

    Book  Google Scholar 

  35. R.L. Patterson, A. Hammoud, M. Elbuluk, Assessment of electronics for cryogenic space exploration missions. Cryogenics 46(2–3), 231–236 (2006)

    Article  Google Scholar 

  36. O.A. Mukhanov, Energy-efficient single flux quantum technology. IEEE Trans. Appl. Supercond. 21(3), 760–769 (2011)

    Article  Google Scholar 

  37. S. Whiteley, E. Mlinar, G. Krylov, T. Jabbari, E.G. Friedman, J. Kawa, An SFQ digital circuit technology with fully-passive transmission line interconnect, in Proceedings of the Applied Superconductivity Conference (2020)

    Google Scholar 

  38. T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019)

    Google Scholar 

  39. T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020)

    Google Scholar 

  40. W. Chen, A.V. Rylyakov, V. Patel, J.E. Lukens, K.K. Likharev, Rapid single flux quantum T-flip flop operating up to 770 GHz. IEEE Trans. Appl. Supercond. 9(2), 3212–3215 (1999)

    Article  Google Scholar 

  41. O.A. Mukhanov, D. Gupta, A.M. Kadin, V.K. Semenov, Superconductor analog-to-digital converters. Proc. IEEE 92(10), 1564–1584 (2004)

    Article  Google Scholar 

  42. N. Takeuchi, Y. Yamanashi, N. Yoshikawa, Reversible logic gate using adiabatic superconducting devices. Sci. Rep. 4, 6354 (2014)

    Article  Google Scholar 

  43. T. Jabbari, E.G. Friedman, SFQ/DQFP interface circuits. IEEE Trans. Appl. Supercond. 33(5), 1–5 (2023)

    Google Scholar 

  44. J.M. Lockhart, SQUID readout and ultra-low magnetic fields for gravity probe-B (GP-B). Proc. SPIE Cryog. Opt. Syst. Instrum. II 619, 148–156 (1986)

    Google Scholar 

  45. G.N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski, Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79(6), 705–707 (2001)

    Article  Google Scholar 

  46. R. McDermott, M.G. Vavilov, B.L.T. Plourde, F.K. Wilhelm, P.J. Liebermann, O.A. Mukhanov, T.A. Ohki, Quantum–classical interface based on single flux quantum digital logic. Quant. Sci. Technol. 3(2), 024004 (2018)

    Google Scholar 

  47. U. Ghoshal, T. Van Duzer, Superconductivity researchers seek to remove computational bottlenecks: wide communication bandwidths and fast switching make superconductive technology look attractive in computer applications. Comput. Phys. 6(6), 585–593 (1992)

    Article  Google Scholar 

  48. D.E. Nikonov, I.A. Young, Benchmarking of beyond-CMOS exploratory devices for logic integrated circuits. IEEE J. Explor. Solid-State Comput. Devices Circuits 1, 3–11 (2015)

    Article  Google Scholar 

  49. A. Gara, M.A. Blumrich, D. Chen, G.L. Chiu, P. Coteus, M.E. Giampapa, R.A. Haring, P. Heidelberger, D. Hoenicke, G.V. Kopcsay, T.A. Liebsch, M. Ohmacht, B.D. Steinmacher-Burow, T. Takken, P. Vranas, Overview of the blue gene/L system architecture. IBM J. Res. Dev. 49(2/3), 195–212 (2005)

    Article  Google Scholar 

  50. N. Zhuldassov, R. Bairamkulov, E.G. Friedman, Thermal optimization of hybrid cryogenic computing systems. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 31(9), 1339–1346 (2023)

    Google Scholar 

  51. S. Krinner, S. Storz, P. Kurpiers, P. Magnard, J. Heinsoo, R. Keller, J. Lütolf, C. Eichler, A. Wallraff, Engineering cryogenic setups for 100-qubit scale superconducting circuit systems. EPJ Quant. Technol. 6(2), 1–29 (2019)

    Google Scholar 

  52. T. Jabbari, M. Bocko, E.G. Friedman, All-JJ logic based on bistable JJs. IEEE Trans. Appl. Supercond. 33(5), 1–7 (2023)

    Google Scholar 

  53. T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Resonance effects in single flux quantum interconnect, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2020), pp. 1–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gleb Krylov , Tahereh Jabbari or Eby G. Friedman .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krylov, G., Jabbari, T., Friedman, E.G. (2024). Introduction. In: Single Flux Quantum Integrated Circuit Design. Springer, Cham. https://doi.org/10.1007/978-3-031-47475-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47475-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47474-3

  • Online ISBN: 978-3-031-47475-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics