Skip to main content

Intermittent Claudication

  • Chapter
  • First Online:
Evidence-based Therapy in Vascular Surgery

Abstract

Supervised exercise training is the preferred initial treatment strategy for all patients with intermittent claudication (IC). When daily life activities are compromised despite exercise therapy, revascularization should be considered. If revascularization is needed, endovascular therapy is the first choice in stenoses/occlusions. Compared with endovascular therapy, open surgery may be associated with longer hospital stays and higher complication rates but results in more durable patency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aboyans V, Ricco JB, Bartelink MEL, et al. 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS): document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries. Endorsed by: the European Stroke Organization (ESO) the task force for the diagnosis and treatment of peripheral arterial diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur Heart J. 2018;39:763–816.

    Article  PubMed  Google Scholar 

  2. Gerhard-Herman MD, Gornik HL, Barrett C, et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J Am Coll Cardiol. 2017;69:e71–e126.

    Article  PubMed  Google Scholar 

  3. Conte MS, Pomposelli FB, Clair DG, Society for Vascular Surgery Lower Extremity Guidelines Writing Group, et al. Society for vascular surgery practice guidelines for atherosclerotic occlusive disease of the lower extremities: management of asymptomatic disease and claudication. J Vasc Surg. 2015;61(3 Suppl):2S–41S.

    Article  Google Scholar 

  4. Woo K, Siracuse JJ, Klingbeil K, Society for Vascular Surgery Appropriateness Committee, et al. Society for Vascular Surgery appropriate use criteria for management of intermittent claudication. J Vasc Surg. 2022;76:3–22.

    Article  Google Scholar 

  5. Stoner MC, Calligaro KD, Chaer RA, Dietzek AM, Farber A, Guzman RJ, Hamdan AD, Landry GJ, Yamaguchi DJ, Society for Vascular Surgery. Reporting standards of the society for vascular surgery for endovascular treatment of chronic lower extremity peripheral artery disease. J Vasc Surg. 2016;64:e1–e21.

    Article  PubMed  Google Scholar 

  6. Treat-Jacobson D, MM MD, Bronas UG, Campia U, Collins TC, Criqui MH, Gardner AW, Hiatt WR, Regensteiner JG, Rich K, American Heart Association Council on Peripheral Vascular Disease; Council on Quality of Care and Outcomes Research; and Council on Cardiovascular and Stroke Nursing. Optimal exercise programs for patients with peripheral artery disease: a scientific statement from the American Heart Association. Circulation. 2019;139:e10–33.

    Article  PubMed  Google Scholar 

  7. Alimi Y, Hauguel A, Casbas L, Magnan PE, Pin JL, Sabatier J, Régnard O, Gouëffic Y, French Society of Vascular and Endovascular Surgery (SCVE). French guidelines for the management of ambulatory endovascular procedures for lower extremity peripheral artery disease. Ann Vasc Surg. 2019;59:248–58.

    Article  PubMed  Google Scholar 

  8. Jansen SC, Abaraogu UO, Lauret GJ, Fakhry F, Fokkenrood HJ, Teijink JA. Modes of exercise training for intermittent claudication. Cochrane Database Syst Rev. 2020a;8(8):CD009638.

    PubMed  Google Scholar 

  9. Pymer S, Ibeggazene S, Palmer J, Tew GA, Ingle L, Smith GE, Chetter IC, Harwood AE. An updated systematic review and meta-analysis of home-based exercise programs for individuals with intermittent claudication. J Vasc Surg. 2021;74:2076–85.

    Article  Google Scholar 

  10. Shirasu T, Takagi H, Yasuhara J, Kuno T, Kent KC, Farivar BS, Tracci MC, Clouse WD. Long-term outcomes of exercise therapy versus revascularization in patients with intermittent claudication. Ann Surg. 2023;278:172–8.

    Article  PubMed  Google Scholar 

  11. Thanigaimani S, Phie J, Sharma C, Wong S, Ibrahim M, Huynh P, Moxon J, Jones R, Golledge J. Network meta-analysis comparing the outcomes of treatments for intermittent claudication tested in randomized controlled trials. J Am Heart Assoc. 2021;10:e019672.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Klaphake S, Fakhry F, Rouwet EV, et al. Long-term follow-up of a randomized clinical trial comparing endovascular revascularization plus supervised exercise with supervised exercise only for intermittent claudication. Ann Surg. 2022;276:e1035–43. https://doi.org/10.1097/SLA.0000000000004712.

  13. Koelemay MJW, van Reijen NS, van Dieren S, Frans FA, Vermeulen EJG, HCJL B, Reekers JA, SUPER Study Collaborators, SUPER Study Data Safety Monitoring Committee. Randomised clinical trial of supervised exercise therapy vs. endovascular revascularisation for intermittent claudication caused by iliac artery obstruction: the SUPER study. Eur J Vasc Endovasc Surg. 2022;63:421–9.

    Article  PubMed  Google Scholar 

  14. van Reijen NS, van Dieren S, Frans FA, Reekers JA, Metz R, Buscher HCJL, Koelemay MJW, SUPER-Study Collaborators. Cost effectiveness of endovascular revascularisation vs. exercise therapy for intermittent claudication due to iliac artery obstruction. Eur J Vasc Endovasc Surg. 2022;63:430–7.

    Article  PubMed  Google Scholar 

  15. Djerf H, Svensson M, Nordanstig J, Gottsäter A, Falkenberg M, Lindgren H. Editor’s choice—cost effectiveness of primary stenting in the superficial femoral artery for intermittent claudication: two year results of a randomised multicentre trial. Eur J Vasc Endovasc Surg. 2021;62:576–82.

    Article  PubMed  Google Scholar 

  16. Djerf H, Millinger J, Falkenberg M, Jivegård L, Svensson M, Nordanstig J. Absence of long-term benefit of revascularization in patients with intermittent claudication: five-year results from the IRONIC randomized controlled trial. Circ Cardiovasc Interv. 2020;13:e008450.

    Article  PubMed  Google Scholar 

  17. Brown T, Forster RB, Cleanthis M, Mikhailidis DP, Stansby G, Stewart M. Cilostazol for intermittent claudication. Cochrane Database Syst Rev. 2021;6(6):CD003748, 1426, 1427.

    PubMed  Google Scholar 

  18. Broderick C, Forster R, Abdel-Hadi M, Salhiyyah K. Pentoxifylline for intermittent claudication. Cochrane Database Syst Rev. 2020;10(10):CD005262.

    PubMed  Google Scholar 

  19. Kamoen V, Vander Stichele R, Campens L, De Bacquer D, Van Bortel L, de Backer TL. Propionyl-L-carnitine for intermittent claudication. Cochrane Database Syst Rev. 2021;12(12):CD010117.

    PubMed  Google Scholar 

  20. Bauersachs RM, Szarek M, Brodmann M, VOYAGER PAD Committees and Investigators, et al. Total ischemic event reduction with rivaroxaban after peripheral arterial revascularization in the VOYAGER PAD trial. J Am Coll Cardiol. 2021;78:317–26.

    Article  CAS  PubMed  Google Scholar 

  21. Debus ES, Nehler MR, Govsyeyev N, et al. Effect of rivaroxaban and aspirin in patients with peripheral artery disease undergoing surgical revascularization: insights from the VOYAGER PAD trial. Circulation. 2021;144:1104–16.

    Article  CAS  PubMed  Google Scholar 

  22. Jansen SCP, van Nistelrooij LPJ, Scheltinga MRM, Rouwet EV, Teijink JAW, Vahl A. Successful implementation of the exercise first approach for intermittent claudication in The Netherlands is associated with few lower limb revascularisations. Eur J Vasc Endovasc Surg. 2020b;60:881–7.

    Article  PubMed  Google Scholar 

  23. Hicks CW, Holscher CM, Wang P, Black JH 3rd, Abularrage CJ, Makary MA. Overuse of early peripheral vascular interventions for claudication. J Vasc Surg. 2020;71:121–30.

    Article  PubMed  Google Scholar 

  24. Bath J, Lawrence PF, Neal D, Zhao Y, Smith JB, Beck AW, Conte M, Schermerhorn M, Woo K. Endovascular interventions for claudication do not meet minimum standards for the society for vascular surgery efficacy guidelines. J Vasc Surg. 2021;73:1693–700.

    Article  PubMed  Google Scholar 

  25. Siracuse JJ, Woodson J, Ellis RP, Farber A, Roddy SP, Kalesan B, Levin SR, Osborne NH, Srinivasan J. Intermittent claudication treatment patterns in the commercially insured non-medicare population. J Vasc Surg. 2021;74:499–504.

    Article  PubMed  Google Scholar 

  26. Reitz KM, Althouse AD, Meyer J, Arya S, Goodney PP, Shireman PK, Hall DE, Tzeng E. Association of smoking with postprocedural complications following open and endovascular Interventions for intermittent claudication. JAMA Cardiol. 2022;7:45–54.

    Article  PubMed  Google Scholar 

  27. Sridharan ND, Boitet A, Smith K, Noorbakhsh K, Avgerinos E, Eslami MH, Makaroun M, Chaer R. Cost-effectiveness analysis of drug-coated therapies in the superficial femoral artery. J Vasc Surg. 2018;67:343–52.

    Article  PubMed  Google Scholar 

  28. Katsanos K, Spiliopoulos S, Kitrou P, Krokidis M, Karnabatidis D. Risk of death following application of paclitaxel-coated balloons and stents in the Femoropopliteal artery of the leg: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 2018;7:e011245.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nordanstig J, James S, Andersson M, et al. Mortality with paclitaxel-coated devices in peripheral artery disease. N Engl J Med. 2020;383:2538–46.

    Article  CAS  PubMed  Google Scholar 

  30. Secemsky EA, Shen C, Schermerhorn M, Yeh RW. Longitudinal assessment of safety of Femoropopliteal endovascular treatment with paclitaxel-coated devices among medicare beneficiaries: the SAFE-PAD study. JAMA Intern Med. 2021;181:1071–80.

    Article  PubMed  Google Scholar 

  31. Bertges DJ, Sedrakyan A, Sun T, Eslami MH, Schermerhorn M, Goodney PP, Beck AW, Cronenwett JL, Eldrup-Jorgensen J. Mortality after paclitaxel coated balloon angioplasty and stenting of superficial femoral and popliteal artery in the vascular quality initiative. Circ Cardiovasc Interv. 2020;13:e008528.

    Article  Google Scholar 

  32. Behrendt CA, Sedrakyan A, Peters F, Kreutzburg T, Schermerhorn M, Bertges DJ, Larena-Avellaneda A, L’Hoest H, Kölbel T, Debus ES. Editor’s choice—Long term survival after Femoropopliteal artery revascularisation with paclitaxel coated devices: a propensity score matched cohort analysis. Eur J Vasc Endovasc Surg. 2020;59:587–96.

    Article  PubMed  Google Scholar 

  33. Gutierrez JA, Rao SV, Jones WS, Secemsky EA, Aday AW, Gu L, Schulteis RD, Krucoff MW, White R, Armstrong EJ, Banerjee S, Tsai S, Patel MR, Swaminathan RV. Survival and causes of death among veterans with lower extremity revascularization with paclitaxel-coated devices: insights from the veterans health administration. J Am Heart Assoc. 2021;10:e018149.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hess CN, Patel MR, Bauersachs RM, et al. Safety and effectiveness of paclitaxel drug-coated devices in peripheral artery revascularization: insights from VOYAGER PAD. J Am Coll Cardiol. 2021;78:1768–78.

    Article  PubMed  Google Scholar 

  35. Katsanos K, Spiliopoulos S, Teichgräber U, Kitrou P, Del Giudice C, Björkman P, Bisdas T, de Boer S, Krokidis M, Karnabatidis D. Editor’s choice—risk of major amputation following application of paclitaxel coated balloons in the lower limb arteries: a systematic review and meta-analysis of randomised controlled trials. Eur J Vasc Endovasc Surg. 2022;63:60–71.

    Article  PubMed  Google Scholar 

  36. Oresanya L, Mazzei M, Bashir R, Farooqui A, Athappan G, Roth S, Choi ET, van Bemmelen P. Systematic review and meta-analysis of high-pressure intermittent limb compression for the treatment of intermittent claudication. J Vasc Surg. 2018;67:620–8.

    Article  PubMed  Google Scholar 

  37. Geraghty AJ, Welch K. Antithrombotic agents for preventing thrombosis after infrainguinal arterial bypass surgery. Cochrane Database Syst Rev. 2011;6:CD000536.

    Google Scholar 

  38. Bedenis R, Lethaby A, Maxwell H, Acosta S, Prins MH. Antiplatelet agents for preventing thrombosis after peripheral arterial bypass surgery. Cochrane Database Syst Rev. 2015;2015:CD000535.

    PubMed  Google Scholar 

  39. Bonaca MP, Bauersachs RM, Anand SS, et al. Rivaroxaban in peripheral artery disease after revascularization. N Engl J Med. 2020;382:1994–2004.

    Article  CAS  PubMed  Google Scholar 

  40. Liang NL, Baril DT, Avgerinos ED, Leers SA, Makaroun MS, Chaer RA. Comparative effectiveness of anticoagulation on midterm infrainguinal bypass graft patency. J Vasc Surg. 2017;66:499–505.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Obi AT, Thompson JR, Beaulieu RJ, Sutzko DC, Osborne N, Albright J, Gallagher KA, Henke PK. Bleeding and thrombotic outcomes associated with postoperative use of direct oral anticoagulants after open peripheral artery bypass procedures. J Vasc Surg. 2020;72:1996–2005.

    Article  Google Scholar 

  42. Belkin N, Stoecker JB, Jackson BM, Damrauer SM, Glaser J, Kalapatapu V, Golden MA, Wang GJ. Effects of dual antiplatelet therapy on graft patency after lower extremity bypass. J Vasc Surg. 2021;73:930–9.

    Article  PubMed  Google Scholar 

  43. Suckow BD, Kraiss LW, Schanzer A, Stone DH, Kalish J, RR DM, Cronenwett JL, Goodney PP, Vascular Study Group of New England. Statin therapy after infrainguinal bypass surgery for critical limb ischemia is associated with improved 5-year survival. J Vasc Surg. 2015;61:126–33.

    Article  Google Scholar 

  44. Stavroulakis K, Borowski M, Torsello G, Bisdas T. Association between statin therapy and amputation-free survival in patients with critical limb ischemia in the CRITISCH registry. J Vasc Surg. 2017;66:1534–42.

    Article  Google Scholar 

  45. Peters F, Kuchenbecker J, Kreutzburg T, Marschall U, Debus ES, Behrendt CA. Long-term effectiveness and safety of initiating statin therapy after index revascularization in patients with peripheral arterial occlusive disease. J Am Heart Assoc. 2020;9(22):e018338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Arya S, Khakharia A, Binney ZO, DeMartino RR, Brewster LP, Goodney PP, Wilson PWF. Association of statin dose with amputation and survival in patients with peripheral artery disease. Circulation. 2018a;137:1435–46.

    Article  CAS  PubMed Central  Google Scholar 

  47. Stone NJ, Robinson JG, Lichtenstein AH, American College of Cardiology/American Heart Association Task Force on Practice Guidelines, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. Circulation. 2014;129(25 Suppl 2):S1–45.

    Google Scholar 

  48. Moore JL, McFarland GE, Novak Z, Patterson MA, Haverstock B, Passman MA, Spangler EL, Pearce BJ, Beck AW. Effects of statin and antiplatelet therapy noncompliance and intolerance on patient outcomes following vascular surgery. J Vasc Surg. 2020;71:1358–69.

    Article  PubMed  Google Scholar 

  49. Shannon AH, Mehaffey JH, Cullen JM, Hawkins RB, Roy R, Upchurch GR Jr, Robinson WP. Preoperative beta blockade is associated with increased rates of 30-day major adverse cardiac events in critical limb ischemia patients undergoing infrainguinal revascularization. J Vasc Surg. 2019;69:1167–72.

    Article  PubMed  Google Scholar 

  50. Scali S, Patel V, Neal D, Bertges D, Ho K, Jorgensen JE, Cronenwett J, Beck A. Preoperative β-blockers do not improve cardiac outcomes after major elective vascular surgery and may be harmful. J Vasc Surg. 2015;62:166–76.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bodewes TCF, Darling JD, O’Donnell TFX, Deery SE, Shean KE, Mittleman MA, Moll FL, Schermerhorn ML. Long-term mortality benefit of renin-angiotensin system inhibitors in patients with chronic limb-threatening ischemia undergoing vascular intervention. J Vasc Surg. 2018;67:800–8.

    Article  PubMed  Google Scholar 

  52. Khan SZ, O’Brien-Irr MS, Rivero M, Blochle R, Cherr GS, Dryjski ML, Dosluoglu HH, Lukan J, Rowe VL, Harris LM. Improved survival with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in chronic limb-threatening ischemia. J Vasc Surg. 2020;72:2130–8.

    Article  PubMed  Google Scholar 

  53. Singh N, Zeng C, Lewinger JP, Wolfson AM, Shavelle D, Weaver F, Garg PK. Preoperative hemoglobin A1c levels and increased risk of adverse limb events in diabetic patients undergoing infrainguinal lower extremity bypass surgery in the vascular quality initiative. J Vasc Surg. 2019;70:1225–34.

    Article  PubMed  Google Scholar 

  54. McGinigle KL, Kindell DG, Strassle PD, Crowner JR, Pascarella L, Farber MA, Marston WA, Arya S, Kalbaugh CA. Poor glycemic control is associated with significant increase in major limb amputation and adverse events in the 30-day postoperative period after infrainguinal bypass. J Vasc Surg. 2020;72:987–94.

    Article  PubMed  Google Scholar 

  55. Arya S, Binney ZO, Khakharia A, Long CA, Brewster LP, Wilson PW, Jordan WD Jr, Duwayri Y. High hemoglobin A1c associated with increased adverse limb events in peripheral arterial disease patients undergoing revascularization. J Vasc Surg. 2018b;67:217–28.

    Article  PubMed  Google Scholar 

  56. Bodewes TCF, Pothof AB, Darling JD, Deery SE, Jones DW, Soden PA, Moll FL, Schermerhorn ML. Preoperative anemia associated with adverse outcomes after infrainguinal bypass surgery in patients with chronic limb-threatening ischemia. J Vasc Surg. 2017;66:1775–85.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tan TW, Farber A, Hamburg NM, Eberhardt RT, Rybin D, Doros G, Eldrup-Jorgensen J, Goodney PP, Cronenwett JL, Kalish JA, Vascular Study Group of New England. Blood transfusion for lower extremity bypass is associated with increased wound infection and graft thrombosis. J Am Coll Surg. 2013;216:1005–14.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Barbosa FT, Jucá MJ, Castro AA, Cavalcante JC. Neuraxial anaesthesia for lower-limb revascularization. Cochrane Database Syst Rev. 2013;7:CD007083.

    Google Scholar 

  59. Singh N, Sidawy AN, Dezee K, Neville RF, Weiswasser J, Arora S, Aidinian G, Abularrage C, Adams E, Khuri S, Henderson WG. The effects of the type of anesthesia on outcomes of lower extremity infrainguinal bypass. J Vasc Surg. 2006;44:964–8; discussion 968–70.

    Article  PubMed  Google Scholar 

  60. Ghanami RJ, Hurie J, Andrews JS, Harrington RN, Corriere MA, Goodney PP, Hansen KJ, Edwards MS. Anesthesia-based evaluation of outcomes of lower-extremity vascular bypass procedures. Ann Vasc Surg. 2013;27:199–207.

    Article  PubMed  Google Scholar 

  61. Sgroi MD, McFarland G, Mell MW. Utilization of regional versus general anesthesia and its impact on lower extremity bypass outcomes. J Vasc Surg. 2019;69:1874–9.

    Article  PubMed  Google Scholar 

  62. Roberts DJ, Nagpal SK, Kubelik D, Brandys T, Stelfox HT, Lalu MM, Forster AJ, McCartney CJ, McIsaac DI. Association between neuraxial anaesthesia or general anaesthesia for lower limb revascularisation surgery in adults and clinical outcomes: population based comparative effectiveness study. BMJ. 2020;371:m4104.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kikuchi S, Yamaguchi T, Miyake K, Uchida D, Koya A, Iida T, Kurosawa A, Sasakawa T, Kunisawa T, Azuma N. Effectiveness and safety of ultrasound guided lower extremity nerve blockade in infragenicular bypass grafting for high risk patients with chronic limb threatening ischaemia. Eur J Vasc Endovasc Surg. 2019;58:206–13.

    Article  PubMed  Google Scholar 

  64. Vos CG, de Vries JPM. Is regional anaesthesia during bypass surgery in high risk patients with chronic limb threatening ischaemia the columbus egg? Eur J Vasc Endovasc Surg. 2019;58:214.

    Article  PubMed  Google Scholar 

  65. Bosanquet DC, Glasbey JC, Stimpson A, Williams IM, Twine CP. Systematic review and meta-analysis of the efficacy of perineural local anaesthetic catheters after major lower limb amputation. Eur J Vasc Endovasc Surg. 2015;50:241–9.

    Article  CAS  PubMed  Google Scholar 

  66. Laloo R, Ambler GK, Locker D, Twine CP, Bosanquet DC. Systematic review and meta-analysis of the effect of perineural catheters in major lower limb amputations. Eur J Vasc Endovasc Surg. 2021;62:295–303.

    Article  PubMed  Google Scholar 

  67. McGinigle KL, Eldrup-Jorgensen J, McCall R, Freeman NL, Pascarella L, Farber MA, Marston WA, Crowner JR. A systematic review of enhanced recovery after surgery for vascular operations. J Vasc Surg. 2019;70:629–40.

    Article  PubMed  Google Scholar 

  68. Witcher A, Axley J, Novak Z, et al. Implementation of an enhanced recovery program for lower extremity bypass. J Vasc Surg. 2021;73:554–63.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Sebastian Debus .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Debus, E.S., Grundmann, R.T. (2023). Intermittent Claudication. In: Evidence-based Therapy in Vascular Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-47397-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47397-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47396-8

  • Online ISBN: 978-3-031-47397-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics