Skip to main content

Prospects of Hydrogen Medicine Based on Its Protective Effects on Mitochondrial Function

  • Chapter
  • First Online:
Molecular Hydrogen in Health and Disease

Abstract

Mitochondria originated from aerobic bacteria in endosymbiosis. Through this symbiosis, eukaryotes acquired an efficient energy-producing system, but at the cost of exposure to oxidative stress from reactive oxygen species (ROS). Molecular hydrogen (H2) was recently identified as an antioxidant that selectively reduces ROS, such as hydroxyl radicals and peroxynitrite, which are strong oxidants, and its clinical applications are progressing. This paper investigated the efficacy of H2 on experimental models and several human chronic inflammatory diseases and demonstrated that its exerted effects via the protection of mitochondrial function. H2 protection may be exerted by regulation of mitochondrial ROS. Since mitochondrial dysfunction has been detected in many common diseases, such as metabolic and neurodegenerative diseases, the development of technologies and substances that protect or activate mitochondrial function will be necessary for the future of medicine. H2 may be positioned as a candidate in future medicine due to its effects on mitochondrial function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roger AG, Muñoz-Gómez SA, Kamikawa R (2017) The origin and diversification of mitochondria. Curr Biol 27:R1177–R1192

    Article  CAS  PubMed  Google Scholar 

  2. Ohta S (2014) Molecular hydrogen as a preventive and therapeutic medical gas: Initiation, development and potential of hydrogen medicine. Pharmacol Ther 144:1–11

    Article  CAS  PubMed  Google Scholar 

  3. Ohta S (2015) Molecular hydrogen as a novel antioxidant: overview of the advantages of hydrogen for medical applications. Methods Enzymol 555:289–317

    Article  CAS  PubMed  Google Scholar 

  4. Ohsawa I, Ishikawa M, Takahashi K et al (2007) Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 13:688–694

    Article  CAS  PubMed  Google Scholar 

  5. Nogueira JE, Passaglia P, Mota CMD et al (2018) Molecular hydrogen reduces acute exercise-induced inflammatory and oxidative stress status. Free Radic Biol Med 129:186–193

    Article  CAS  PubMed  Google Scholar 

  6. Wang D, Wang L, Zhang Y, Zhao Y, Chen G (2018) Hydrogen gas inhibits lung cancer progression through targeting SMC3. Biomed Pharmacol 104:788–797

    Article  CAS  Google Scholar 

  7. Hirano Si, Ichikawa Y. Sato B, Takefuji Y, Satoh F (2021) Molecular hydrogen as a potential clinically applicable radioprotective agent. Int J Mol Sci 22:4566

    Google Scholar 

  8. Kawamura T, Wakabayashi N, Shigemura N et al (2013) Hydrogen gas reduces hyperoxic lung injury via the Nrf2 pathway in vivo. Am J Physiol Lung Cell Mol Physiol 304:L646–L656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li S, Takahara T, Que W, et al (2021) Hydrogen-rich water protects liver injury in nonalcoholic steatohepatitis though HO-1 enhancement via IL-10 and Sirt 1 signaling. Am J Physiol Gastrointest Liver Physiol 320:G450–63

    Google Scholar 

  10. Iuchi K, Imoto A, Kamimura N et al (2016) Molecular hydrogen regulates gene expression by modifying the free radical chain reaction-dependent generation of oxidized phospholipid mediators. Sci Rep 6:18971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ohta S (2021) Development of hydrogen medicine and biology: potential for various applications in diverse fields. Curr Pharm Des 27:583–584

    Article  CAS  PubMed  Google Scholar 

  12. Hirano Si, Yamamoto H, Ichikawa Y, Sato B, Takefuji Y, Satoh F (2021) Molecular hydrogen as a novel antitumor agent: possible mechanisms underlying gene expression. Int J Mol Sci 22:8721

    Google Scholar 

  13. Setsukinai KI, Urano Y, Kakinuma K, Majima HJ, Nagano T (2003) Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J Biol Chem 278:3170–3175

    Article  CAS  PubMed  Google Scholar 

  14. Halliwell B, Gutteridge JMC (2015) Chapter 10. Reactive species in disease: friends or foes? In: Free radicals in biology and medicine, 5th edn. Oxford University Press, Oxford, pp 511–638

    Google Scholar 

  15. Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273:59–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cutler RG (1983) Superoxide dismutase, longevity and specific metabolic rate. A reply. Gerontology 29:113–120

    Article  CAS  PubMed  Google Scholar 

  17. Ngo V, Duennwald ML (2022) Nrf2 and oxidative stress: a general overview of mechanisms and implications in human disease. Antioxidants (Basel) 11:2345

    Article  CAS  PubMed  Google Scholar 

  18. Levine AJ, Oren M (2009) The first 30 years of p53: growing ever more complex. Nat Rev Cancer 9:749–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zerbes RM, van der Klei IJ, Veenhuis M, Pfanner M, van der Laan M, Bohnert M (2012) Mitofilin complexes: conserved organizers of mitochondrial membrane architecture. Bio Chem 393:1247

    Article  CAS  Google Scholar 

  20. Gorman GS, Chinnery PF, DiMauro S, et al (2016) Mitochondrial diseases. Nat Rev Dis Primers 2:16080

    Google Scholar 

  21. Emma F, Montini G, Parikh SM, Salviati L (2016) Mitochondrial dysfunction in inherited renal disease and acute kidney injury. Nat Rev Nephrol 12:267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Archer SL (2013) Mitochondrial dynamics–mitochondrial fission and fusion in human diseases. N Engl J Med 369:2236

    Article  CAS  PubMed  Google Scholar 

  23. Rahman J, Rahman S (2018) Mitochondrial medicine in the omics era. Lancet 391:2560

    Article  CAS  PubMed  Google Scholar 

  24. Guerrero-Molina MP, Morales-Conejo M, Delmiro A et al (2023) High-dose oral glutamine supplementation reduces elevated glutamate levels in cerebrospinal fluid in patients with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes syndrome. Eur J Neurol 30:538–547

    Article  PubMed  Google Scholar 

  25. Murakami Y, Ito M, Ohsawa I (2017) Molecular hydrogen protects against oxidative stress-induced SH-SY5Y neuroblastoma cell death through the process of mitohormesis. PLoS ONE 12:e0176922

    Article  Google Scholar 

  26. Cui Y, Zhang H, Ji M et al (2014) Hydrogen-rich saline attenuates neuronal ischemia–reperfusion injury by protecting mitochondrial function in rats. J Surg Res 192:564–572

    Article  CAS  PubMed  Google Scholar 

  27. Zhang CS, Han Q, Song ZW, Jia HY, Shao TP, Chen YP (2021) Hydrogen gas post-conditioning attenuates early neuronal pyroptosis in a rat model of subarachnoid hemorrhage through the mitoKATP signaling pathway. Exp Ther Med 22:836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang Y, Li H, Yang C et al (2016) Treatment with hydrogen-rich saline delays disease progression in a mouse model of amyotrophic lateral sclerosis. Neurochem Res 41:770–778

    Article  CAS  PubMed  Google Scholar 

  29. Lin CL, Huang WN, Li HH et al (2015) Hydrogen-rich water attenuates amyloid β-induced cytotoxicity through upregulation of Sirt1-FoxO3a by stimulation of AMP-activated protein kinase in SK-N-MC cells. Chem Biol Interact 240:12–21

    Article  CAS  PubMed  Google Scholar 

  30. Yoshida A, Asanuma H, Sasaki H et al (2012) H2 mediates cardioprotection via involvements of K(ATP) channels and permeability transition pores of mitochondria in dogs. Cardiovasc Drugs Ther 26:217–226

    Article  CAS  PubMed  Google Scholar 

  31. Yu YS, Zheng H (2012) Chronic hydrogen-rich saline treatment reduces oxidative stress and attenuates left ventricular hypertrophy in spontaneous hypertensive rats. Mol Cell Biochem 365:233–242

    Article  CAS  PubMed  Google Scholar 

  32. Xie K, Wang Y, Yin L et al (2021) Hydrogen gas alleviates sepsis-induced brain injury by improving mitochondrial biogenesis through the activation of PGC-α in mice. Shock 55:100–109

    Article  CAS  PubMed  Google Scholar 

  33. Jiao Y, Yu Y, Li B et al (2020) Protective effects of hydrogen-rich saline against experimental diabetic peripheral neuropathy via activation of the mitochondrial ATP-sensitive potassium channel channels in rats. Mol Med Rep 21:282–290

    CAS  PubMed  Google Scholar 

  34. Liu Q, Li BS, Song YJ et al (2016) Hydrogen rich saline protects against mitochondrial dysfunction and apoptosis in mice with obstructive jaundice. Mol Med Rep 13:3588–3596

    Article  CAS  PubMed  Google Scholar 

  35. Wallet SM, Puri V, Gibson FC (2018) Linkage of infection to adverse systemic complication: periodontal disease, toll-like receptors, and other pattern recognition systems. Vaccines 6:21

    Article  PubMed  PubMed Central  Google Scholar 

  36. Elliott EI, Sutterwala FS (2015) Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev 265:35–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Juliana C, Fernandes-Alnemri T, Kang S, Farias A, Qin F, Alnemri ES (2012) Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J Biol Chem 287:36617–36622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hirano Si, Ichikawa Y, Sato B, Yamamoto H, Takefuji Y, Satoh F (2021) Potential therapeutic application of hydrogen in chronic inflammatory disease: Possible inhibiting role on mitochondrial stress. Int J Mol Sci 22:2549

    Google Scholar 

  39. Ren JD, Wu XB, Jiang R, Hao DP, Liu Y (2016) Molecular hydrogen inhibits lipopolysaccharide-triggered NLRP3 inflammasome activation in macrophages by targeting the mitochondrial reactive oxygen species. Biochim Biophys Acta 1863:50–55

    Article  CAS  PubMed  Google Scholar 

  40. Ren JD, Ma J. Hou J, et al (2014) Hydrogen-rich saline inhibits NLRP3 inflammasome activation and attenuates experimental acute pancreatitis in mice. Mediat Inflamm 2014:930894

    Google Scholar 

  41. Shao A, Wu H, Hong Y et al (2016) Hydrogen-rich saline attenuated subarachnoid hemorrhage-induced early brain injury in rats by suppressing inflammatory response: possible involvement of NF- kB pathway and NLRP3 inflammasome. Mol Neurobiol 53:3462–3476

    Article  CAS  PubMed  Google Scholar 

  42. Wang C, Li J, Yang R, Zhang JH, Cao YP, Sun XJ (2011) Hydrogen-rich saline reduces oxidative stress and inflammation by inhibit of JNK and NF-kB activation in a rat model of amyloid-beta-induced Alzheimer’s disease. Neurosci Lett 491:127–132

    Article  CAS  PubMed  Google Scholar 

  43. Liu Q, Shen WF, Sun HY et al (2010) Hydrogen-rich saline protects liver injury in rats with obstructive jaundice. Liver Int 30:958–968

    Article  CAS  PubMed  Google Scholar 

  44. Itoh T, Hamada N, Terazawa R et al (2011) Molecular hydrogen inhibits lipopolysaccharide/interferon -induced nitric oxide production of signal transduction in macrophages. Biochem Biophys Res Commun 411:143–149

    Article  CAS  PubMed  Google Scholar 

  45. Tao B, Liu L, Wang W, Jiang J, Zhang J (2016) Effects of hydrogen-rich saline on aquaporin 1,5 in septic rat lungs. J Surg Res 202:291–298

    Article  CAS  PubMed  Google Scholar 

  46. Guan WJ, Wei CH, Chen AL et al (2020) Hydrogen/oxygen mixed gas inhalation improves disease severity and dyspnea in patients with Coronavirus disease 2019 in a recent multicenter, open-label clinical trial. J Thorac Dis 12:3448–3452

    Article  PubMed  PubMed Central  Google Scholar 

  47. Poenaru S, Abdallah SJ, Corrales-Medina V, Cowan J (2021) COVID-19 and post-infectious myalgic encephalomyelitis/chronic fatigue syndrome: a narrative review. Ther Adv Infectious Dis 8:1–16

    Google Scholar 

  48. Nath A (2020) Long-haul COVID. Neurology 95:559–560

    Article  CAS  PubMed  Google Scholar 

  49. Botek M, Kreˇjcí J, Valenta M et al (2022) Molecular hydrogen positively affects physical and respiratory function in acute post-COVID-19 patients: a new perspective in rehabilitation. Int J Environ Res Public Health 19:1992

    Google Scholar 

  50. Fukuda K, Straus SE, Sharpe MC, Dobbins JG, Komaroff A (1994) The chronic fatigue syndrome: a comprehensive approach to its definition and study. International chronic fatigue syndrome study group. Ann Intern Med 121:953–9

    Google Scholar 

  51. Boles RG, Zaki EA, Kerr JR, Das K, Biswas S, Gardner A (2015) Increased prevalence of two mitochondrial DNA polymorphisms in function disease: are we describing different parts of an energy-deleted elephant? Mitochondrion 23:1–6

    Article  CAS  PubMed  Google Scholar 

  52. Billing-Ross P, Germain A, Ye K, Keinan A, Gu Z, Hanson MR (2016) Mitochondrial DNA variants correlate with symptoms in myalgic encephalomyelitis/chronic fatigue syndrome. J Transl Med 14:19

    Article  PubMed  PubMed Central  Google Scholar 

  53. Missailidis D, Annesley SJ, Allan CY et al (2020) An isolated complex v inefficiency and dysregulated mitochondrial function in immortalized lymphocytes from ME/CFS patients. Int J Mol Sci 21:3

    Article  Google Scholar 

  54. Holden S, Maksoud R, Eaton-Fitch N, Cabanas H, Staines D, Marshall-Gradisnik S (2020) A systematic review of mitochondrial abnormalities in myalgic encephalomyelitis/chronic fatigue syndrome/systemic exertion intolerance disease. J Transl Med 18:290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tomas C, Brown A, Strassheim V, Elson J, Newton J, Manning P (2017) Cellular bioenergetics is impaired in patients with chronic fatigue syndrome. PLoS ONE 12:e018802

    Article  Google Scholar 

  56. Castro-Marrero J, Sáez-Francàs N, Segundo MJ (2016) Effect of coenzyme Q10 plus nicotinamide adenine dinucleotide supplementation on maximum heart rate after exercise testing in chronic fatigue syndrome—a randomized, controlled, double-blind trial. Clin Nutr 35:826–834

    Article  CAS  PubMed  Google Scholar 

  57. Hirano S, Ichikawa Y, Sato B, Takefuji Y, Satoh F (2022) Molecular hydrogen as a medical gas for the treatment of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): possible efficacy based on a literature review. Front Neurol 13:841310

    Google Scholar 

  58. Hirano S, Ichikawa Y, Sato B, Takefuji Y, Satoh F (2024) Successful treatment of myalgic encephalomyelitis/chronic fatigue syndrome using the hydrogen gas: four case reports. Med Gas Res 14: 84–86

    Google Scholar 

  59. Jin Z, Zhao P, Gong W, Ding W, He Q (2023) Fe-porphyrin: a redox-related biosensor of hydrogen molecule. Nano Res 16:2020–2025

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Kang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hirano, Si., Ichikawa, Y., Sato, B., Takefuji, Y., Li, XK., Satoh, F. (2024). Prospects of Hydrogen Medicine Based on Its Protective Effects on Mitochondrial Function. In: Slezak, J., Kura, B. (eds) Molecular Hydrogen in Health and Disease. Advances in Biochemistry in Health and Disease, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-031-47375-3_3

Download citation

Publish with us

Policies and ethics