Skip to main content

Turbulence Control: From Model-Based to Machine Learned

  • Chapter
  • First Online:
Fluids Under Control

Abstract

Flow analysis, modeling, and control are at the heart of engineering applications: aeronautics, airborne and ground transport, wind power generation, and industrial processes, to cite a few examples (Brunton and Noack (Appl Mech Rev 67(5):050801:01–48, 2015)). Fluid flows are characterized by high dimensionality, nonlinearity, multiscale, and time delays, which pose challenges to existing theories and methods for analysis, modeling, and control. Methods of big data, machine learning, and artificial intelligence are revolutionizing these fields and are going toward full automation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Arthur, S. Vassilvitskii, k-means++: The advantages of careful seeding, in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, USA (Society for Industrial and Applied Mathematics, Philadelphia, 2006), pp. 1027–1035

    Google Scholar 

  2. S. Asai, H. Yamato, Y. Sunada, K. Rinoie, Designing machine learning control law of dynamic bubble burst control plate for stall suppression, in 2019 AIAA SciTech Forum, San Diego, CA (2021). Paper 1899

    Google Scholar 

  3. A.-L. Barabási, Network science. Philos. Trans. R. Soc. A 371(1987), 20120375 (2013)

    Google Scholar 

  4. D. Barkley, Linear analysis of the cylinder wake mean flow. EPL (Europhys. Lett.) 75(5), 750 (2006)

    Google Scholar 

  5. M. Brameier, W. Banzhaf, Linear Genetic Programming (Springer Science & Business Media, Berlin, 2006)

    Google Scholar 

  6. S.L. Brunton, B.R. Noack, Closed-loop turbulence control: Progress and challenges. Appl. Mech. Rev. 67(5), 050801:01–48 (2015)

    Google Scholar 

  7. S.L. Brunton, B.R. Noack, P. Koumoutsakos, Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 52, 477–508 (2020)

    Article  MathSciNet  Google Scholar 

  8. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Courier Corporation, Singapore, 2013)

    Google Scholar 

  9. G.Y. Cornejo Maceda, Y. Li, F. Lusseyran, M. Morzyński, B.R. Noack, Stabilization of the fluidic pinball with gradient-enriched machine learning control. J. Fluid Mech. 917, A42 (2021)

    Article  MathSciNet  Google Scholar 

  10. G.Y. Cornejo Maceda, F. Lusseyran, B.R. Noack, xMLC—A Toolkit for Machine Learning Control. Machine Learning Tools in Fluid Mechanics, vol. 2, 1st edn. (Technische Universität Braunschweig, Braunschweig, 2022)

    Google Scholar 

  11. G.Y. Cornejo Maceda, E. Varon, F. Lusseyran, B.R. Noack, Stabilization of a multi-frequency open cavity flow with gradient-enriched machine learning control. J Fluid Mech 955, A20 (2023)

    Article  Google Scholar 

  12. A. Debien, K.A.F.F. von Krbek, N. Mazellier, T. Duriez, L. Cordier, B.R. Noack, M.W. Abel, A. Kourta, Closed-loop separation control over a sharp-edge ramp using genetic programming. Exp. Fluids 57(3), 40:1–19 (2016)

    Google Scholar 

  13. N. Deng, B.R. Noack, M. Morzyński, L.R. Pastur, Low-order model for successive bifurcations of the fluidic pinball. J. Fluid Mech. 884, A37 (2020)

    Article  MathSciNet  Google Scholar 

  14. N. Deng, L.R. Pastur, L.S. Tuckerman, B.R. Noack, Coinciding local bifurcations in the Navier-Stokes equations. EPL (Europhys. Lett.) 135(2), 24002 (2021)

    Google Scholar 

  15. N. Deng, B.R. Noack, M. Morzyński, L.R. Pastur, Cluster-based hierarchical network model of the fluidic pinball–Cartographing transient and post-transient, multi-frequency, multi-attractor behaviour. J. Fluid Mech. 934, A24 (2022)

    Article  MathSciNet  Google Scholar 

  16. A.I. Diveev, N.J. Mendez Florez, Synthesis of a mobile robot spatial stabilization system based on machine learning control by symbolic regression. RUDN J. Eng. Res. 22(2), 129–138 (2021)

    Google Scholar 

  17. D.C. Dracopoulos, Evolutionary Learning Algorithms for Neural Adaptive Control (Springer, Berlin, 1997)

    Book  Google Scholar 

  18. T. Duriez, S.L. Brunton, B.R. Noack, Machine Learning Control—Taming Nonlinear Dynamics and Turbulence. Fluid Mechanics and Its Applications, vol. 116 (Springer, Berlin, 2017)

    Google Scholar 

  19. D. Fan, L. Yang, Z.C. Wang, M.S. Triantafyllou, G.M. Karniadakis, Reinforcement learning for bluff body active flow control in experiments and simulations. Proc. Natl. Acad. Sci. USA 117(42), 26091–26098 (2020)

    Article  Google Scholar 

  20. D. Fernex, B.R. Noack, R. Semaan, Cluster-based network modeling–from snapshots to complex dynamical systems. Sci. Adv. 7(25), eabf5006 (2021)

    Google Scholar 

  21. N. Gautier, J.-L. Aider, T. Duriez, B.R. Noack, M. Segond, M.W. Abel, Closed-loop separation control using machine learning. J. Fluid Mech. 770, 424–441 (2015)

    Article  Google Scholar 

  22. A. Hervé, D. Sipp, P.J. Schmid, M. Samuelides, A physics-based approach to flow control using system identification. J. Fluid Mech. 702, 26–58 (2012)

    Article  Google Scholar 

  23. C. Hou, N. Deng, B.R. Noack, Trajectory-optimized cluster-based network model for the sphere wake. Phys. Fluids 34(8), 085110 (2022)

    Google Scholar 

  24. R. Ishar, E. Kaiser, M. Morzynski, M. Albers, P. Meysonnat, W. Schröder, B.R. Noack, Metric for attractor overlap. J. Fluid Mech. 874, 720–752 (2019)

    Article  MathSciNet  Google Scholar 

  25. E. Kaiser, B.R. Noack, L. Cordier, A. Spohn, M. Segond, M. Abel, G. Daviller, J. Östh, S. Krajnović, R. Niven, Cluster-based reduced-order modelling of a mixing layer. J. Fluid Mech. 754, 365–414 (2014)

    Article  Google Scholar 

  26. E. Kaiser, R. Li, B.R. Noack, On the control landscape topology, in The 20th World Congress of the International Federation of Automatic Control (IFAC), Toulouse, France (2017), pp. 1–4

    Google Scholar 

  27. M.B. Kane, Machine learning control for floating offshore wind turbine individual blade pitch control, in 2020 American Control Conference (ACC) (2020), pp. 237–241

    Google Scholar 

  28. C. Lee, J. Kim, D. Babcock, R. Goodman, Application of neural networks to turbulence control for drag reduction. Phys. Fluids 9(6), 1740–1747 (1997)

    Article  Google Scholar 

  29. R. Li, B.R. Noack, L. Cordier, J. Borée, E. Kaiser, F. Harambat, Linear genetic programming control for strongly nonlinear dynamics with frequency crosstalk. Arch. Mech. 70(6), 505–534 (2018)

    MathSciNet  Google Scholar 

  30. R. Li, J. Borée, B.R. Noack, L. Cordier, F. Harambat, Drag reduction mechanisms of a car model at moderate yaw by bi-frequency forcing. Phys. Rev. Fluids 4(3), 034604 (2019)

    Google Scholar 

  31. H. Li, J. Tan, Z. Gao, B.R. Noack, Machine learning open-loop control of a mixing layer. Phys. Fluids 32, 111701:1–7 (2020)

    Google Scholar 

  32. H. Li, D. Fernex, R. Semaan, J. Tan, M. Morzyński, B.R. Noack, Cluster-based network model. J. Fluid Mech. 906, A21 (2021)

    Article  MathSciNet  Google Scholar 

  33. S. Li, W. Li, B.R. Noack, Machine-learned control-oriented flow estimation for multi-actuator multi-sensor systems exemplified for the fluidic pinball. J. Fluid Mech. 952, A36 (2022)

    Article  Google Scholar 

  34. Q. Lin, Fully automated control-oriented reduced-order modeling exemplified for the fluidic pinball. Master’s Thesis, Harbin Institute of Technology, 2021

    Google Scholar 

  35. N. Maehara, Y. Shimoda, Application of the genetic algorithm and downhill simplex methods (Nelder–Mead methods) in the search for the optimum chiller configuration. Appl. Therm. Eng. 61(2), 433–442 (2013)

    Article  Google Scholar 

  36. M. Morzynski, K. Afanasiev, F. Thiele, Solution of the eigenvalue problems resulting from global non-parallel flow stability analysis. Comput. Methods. Appl. Mech. Engrg 169(1), 161–176 (1999)

    Article  Google Scholar 

  37. A. Nair, C.-A. Yeh, E. Kaiser, B.R. Noack, S.L. Brunton, K. Taira, Cluster-based feedback control of turbulent post-stall separated flows. J. Fluid Mech. 875, 345–375 (2019)

    Article  MathSciNet  Google Scholar 

  38. B.R. Noack, Closed-loop turbulence control—From human to machine learning (and retour), in ed. by Y. Zhou, M. Kimura, G. Peng, A.D. Lucey, L. Hung, Proceedings of the 4th Symposium on Fluid Structure-Sound Interactions and Control (FSSIC), Tokyo, Japan (Springer, Berlin, 2019), pp. 23–32

    Google Scholar 

  39. B.R. Noack, M. Morzyński, The fluidic pinball—a toolkit for multiple-input multiple-output flow control (version 1.0). Technical Report, Tech. Rep. 02/2017. Chair of Virtual Engineering, Poznan University of Technology, Poland (2017)

    Google Scholar 

  40. V. Parezanović, L. Cordier, A. Spohn, T. Duriez, B.R. Noack, J.-P. Bonnet, M. Segond, M. Abel, S.L. Brunton, Frequency selection by feedback control in a turbulent shear flow. J. Fluid Mech. 797, 247–283 (2016)

    Article  Google Scholar 

  41. P.-Y. Passaggia, A. Quansah, N. Mazellier, G.Y. Cornejo Maceda, A. Kourta, Real-time feedback stall control of an airfoil at large Reynolds numbers using linear genetic programming. Phys. Fluids 34(4), 045108 (2022)

    Google Scholar 

  42. J. Rabault, M. Kuchta, A. Jensen, U. Réglade, N. Cerardi, Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control. J. Fluid Mech. 865, 281–302 (2019)

    Article  MathSciNet  Google Scholar 

  43. F. Ren, C. Wang, H. Tang, Active control of vortex-induced vibration of a circular cylinder using machine learning. Phys. Fluids 31(9), 093601 (2019)

    Google Scholar 

  44. F. Ren, H.-B. Hu, H. Tang, Active flow control using machine learning: a brief review. J. Hydrodyn. 32(2), 247–253 (2020)

    Article  Google Scholar 

  45. C.W. Rowley, S.T. Dawson, Model reduction for flow analysis and control. Annu. Rev. Fluid Mech. 49, 387–417 (2017)

    Article  MathSciNet  Google Scholar 

  46. R. Semaan, P. Oswald, G.Y. Cornejo Maceda, B.R. Noack, Aerodynamic optimization of a generic light truck under unsteady conditions using gradient-enriched machine learning control. Exp. Fluids 64, 59 (2023)

    Article  Google Scholar 

  47. S. Strogatz, M. Friedman, A.J. Mallinckrodt, S. McKay, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Comput. Phys. 8(5), 532–532 (1994)

    Article  Google Scholar 

  48. K. Taira, S.L. Brunton, S.T. Dawson, C.W. Rowley, T. Colonius, B.J. McKeon, O.T. Schmidt, S. Gordeyev, V. Theofilis, L.S. Ukeiley, Modal analysis of fluid flows: an overview. AIAA J. 55, 4013–4041 (2017)

    Article  Google Scholar 

  49. H. Tang, J. Rabault, A. Kuhnle, Y. Wang, T. Wang, Robust active flow control over a range of Reynolds numbers using an artificial neural network trained through deep reinforcement learning. Phys. Fluids 32, 053605 (2020)

    Article  Google Scholar 

  50. L.S. Tuckerman, D. Barkley, Bifurcation analysis for timesteppers in Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems (Springer, Berlin, 2000), pp. 453–466

    Book  Google Scholar 

  51. Q.L. Wang, L. Yan, G. Hu, C. Li, Y. Xiao, H. Xiong, J. Rabault, B.R. Noack, Cluster-based control for net drag reduction of the fluidic pinball. Phys. Fluids 35, 023601:1–16 (2023)

    Google Scholar 

  52. Z. Wu, D. Fan, Y. Zhou, R. Li, B.R. Noack, Jet mixing enhancement using machine learning control. Exp. Fluids 59, 131:1–17 (2018)

    Google Scholar 

  53. Y. Zhou, D. Fan, B. Zhang, R. Li, B.R. Noack, Artificial intelligence control of a turbulent jet. J. Fluid Mech. 897, 1–46 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under grants 12172109, 12172111, 12202121, and 12302293, by the China Postdoctoral Science Foundation under grants 2023M730866 and 2023T160166, by the Guangdong Basic and Applied Basic Research Foundation under grant 2022A1515011492, and by the Shenzhen Science and Technology Program under grant JCYJ20220531095605012.

We appreciate the support from Marek Morzyński for the numerical simulations, and valuable discussions with Dehui Huang, Chang Hou, Yiqing (Anne) Li, Yanting Liu, François Lusseyran, Luc R. Pastur, Wei Sun, Xin Wang, and last but not least our unforgettable HIT master students (2019–2021) Bingxi Huang, Wenpeng Li, Qixin (Kiki) Lin, Ruixuan (Rick) Shen and Shangyan (Shane) Xie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd R. Noack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deng, N., Cornejo Maceda, G.Y., Noack, B.R. (2024). Turbulence Control: From Model-Based to Machine Learned. In: Bodnár, T., Galdi, G.P., Nečasová, Š. (eds) Fluids Under Control. Advances in Mathematical Fluid Mechanics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-47355-5_4

Download citation

Publish with us

Policies and ethics