Skip to main content

The Pulps (Fibers) Characteristics

  • Chapter
  • First Online:
Eucalyptus Kraft Pulp Refining
  • 12 Accesses

Abstract

The characteristics of the pulps, in particular their chemical and anatomical characteristics, are discussed in this chapter with special attention to the relationships between the characteristics of the fibers and the definition of the properties of the pulps that characterize the desired properties in papers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bloom, J. M. ā€“ Paper before print: the history and impact of paper in the islamic world. Yale University Press, citado por O Estado de SĆ£o Paulo em ā€œA influĆŖncia muƧulmana na divulgaĆ§Ć£o do papelā€ (01/27/2002)

    Google ScholarĀ 

  2. Cotterill, P. P. and Brolin, A. ā€“ Improving Eucalytpus wood, pulp and paper quality by genetic selection. In: Conference on Silviculture and Improvement of Eucalypts. IUFRO, Salvador: 24-29/08/1997 Volume 1 pgs. 1ā€“13.

    Google ScholarĀ 

  3. Cotterill, P. and Macrae, S. ā€“ Improving eucalyptus pulp and paper quality using genetic selection and good organization. Tappi Journal, 80 (6):82-89 (1997).

    Google ScholarĀ 

  4. Schmidt, E. A. ā€“ A practical model relating kraft pulping costs to hardwood chemical properties and morphology. Appita Journal, 58 (3): 218ā€“224 (2005).

    Google ScholarĀ 

  5. Johansson, A. ā€“ Correlations between fibre properties and paper properties. Masterā€™s Thesis in Pulp Technology. Royal Institute of Technology, Stockholm, 2011 49 pgs www.diva-poal.org/smash/get/diva2D:505453/FULLTEXT01

  6. Sorieul, M.; Dickson, A.; Hill, S. J. and Pearson, H. ā€“ Plant fibre: molecular structure and biomechanical properties, of a complex living material, influencing Its deconstruction towards a biobased composite. Materials, 9 (618): 1ā€“36; (2016).

    Google ScholarĀ 

  7. Valente, C. A.; de Sousa, A. P. M. de; Furtado, F. P. and Carvalho, A. P. ā€“ Improvement program for Eucalyptus globulus at Portucel: technological component. Appita Journal, 45 (6): 403ā€“407 (1992).

    Google ScholarĀ 

  8. Lammi, L. and Svedman, M. ā€“ Tailoring pulp quality in the pulping process. In 2o SeminĆ”rio de DeslignificaĆ§Ć£o. ABTCP, RibeirĆ£o Preto: 02-03/09/1999 Paper 2 8 pgs.

    Google ScholarĀ 

  9. Hubbe. M. A ā€“ Flocculation and redispersion of cellulosic fiber suspensions: a review of effects of hydrodiynamic shear and polyeledtolytes. BioResources, 2 (2): 296ā€“331 (2002).

    Google ScholarĀ 

  10. Chevalier-Billosta, V.; Joseleau, J.-P.; Cochaux, A. and Ruel, K. ā€“ Tying together the ultrastructural modifications of wood fibre induced by pulping processes with the mechanical properties of paper. Cellulose, 14:141 ā€“152 (2007).

    Google ScholarĀ 

  11. Almgren, K. M. ā€“ Wood-fibre composites: Stress transfer and hygroexpansion. Doctoral Thesis No. 9 KTH Fibre and Polymer Technology School of Chemical Sciences and Engineering Royal Institute of Technology, Stockholm, 2010 51 pgs www.diva-portal.org/smash/get/diva2:309582/FULLTEXT01

  12. FahlĆ©n J, SalmĆ©n L. ā€“ Cross-sectional structure of the secondary wall of wood fibers as affected by processing. In: 11th International Symposium on Wood and Pulping Chemistry. Nice, 2001 pg. 585.

    Google ScholarĀ 

  13. ƅkerholm, M. ā€“ Ultrastructural aspects of pulp fibers as studied by dynamic FT-IR spectroscopy. Doctoral Thesis. Royal Institute of Technology. Stockholm, 2003 71 pgs http://www.diva-portal.org/smash/get/diva2:9438/FULLTEXT01.pdf.

  14. Arjas, A. ā€“ Printability and runnability. World Pulp and Paper Technology: 157ā€“158. (1994).

    Google ScholarĀ 

  15. Annergren, G. ā€“ Fundamentals of pulp fiber quality and paper properties. In: Pulping Conference. TAPPI, Orlando. 1999 pgs: 29ā€“39

    Google ScholarĀ 

  16. Antolovich, E. ā€“ Method of treating bleached pulp on a washer with calcium ions to remove sodium ions. U.S. Patent no 5,273,625 (1993) https://patents.justia.com/patent/5273625.

  17. Beghello, L. ā€“ The tendency of fibers to build flocs. Abo Akademi University. 1998 58 pgs. http://web.abo.fi/fak/tkf/pap/newpaf/luciano-thesis.pdf

  18. Lundqvist, S.O.; Grahn, T.; Hedenberg, O.; Hansen, P. ā€“ Visions and tools for forest and mill integration. Part 2: Some new approaches under development at STFI for prediction of paper properties. Eurofiber Seminar, STFI, Oral presentation. (2003). http://www.stfi.se/upload/3439/02_d14-3_stfi-lundqvist2_Part%202x.pdf

  19. Lyytikainen, K.; Saukkonen, E.; Kajanto, I. and Kayhko, J. ā€“ The effect of hemicellulose extraction on fibre charge properties and retention behavior of kraft pulp fibres, Bioresources, 6 (1): 219ā€“231 (2011).

    Google ScholarĀ 

  20. Magaton, A. S.; Colodette, J. L.; Gouvea, A. F. G.; Gomide, J. L.; Muguet, M. C. S. and Pedrazzin, C. ā€“ Eucalyptus wood quality and its impact on kraft pulp production and use. Tappi Journal, 8 (8): 32ā€“39 (2009).

    Google ScholarĀ 

  21. Paavilainen, L. ā€“ European prospects for using nonwood fibers. Pulp and Paper International, 40 (6): 61 (1998).

    Google ScholarĀ 

  22. Paavilainen, L. ā€“ Quality ā€“ competitiveness of Asian short-fibre raw materials in different paper grades. Papperi Ja Puu, 82 (3): 156 (1998).

    Google ScholarĀ 

  23. Foelkel, C. ā€“ Madeiras para uso celulĆ³sico-papeleiro: formaĆ§Ć£o, ultraestrutura, quĆ­mica e topoquĆ­mica. Eucalyptus Newsletter (84) 645 pgs (2020) http://www.eucalyptus.com.br/news/pt_dez2020.pdf

  24. Kibblewhite, R. P.; Bawden, A. D. and Hughes, M. C. ā€“ Hardwood market kraft fibre and pulp qualities. Appita, 44 (5): 325ā€“332 (1991).

    Google ScholarĀ 

  25. Joutsimo, O. P. and Asikainen, S. ā€“ Effect of fiber wall pore structure on pulp sheet density of softwood kraft pulp fibers. BioResources, 8 (2):2719ā€“2737 (2013).

    Google ScholarĀ 

  26. Setasith, S, ā€“ Effect of compressive and abrasive refining on structural changes in fiber and paper. Masterā€™s Thesis. Aalto University. Espoo, 2014 84 pgs https://aaltodoc.aalto.fi/bitstream/handle/123456789/13458/master_Setasith_Suchart_2014.pdf?sequence=1&isAllowed=y

  27. Ora, M. and Maloney. T. C. ā€“ The effect of moisture and structure on wet web strength and its variation ā€“ a pilot scale approach using dry and rewetted mill made papers. In: 15th Fundamental Research Symposyum, Cambridge, 2013 pgs. 71ā€“100.

    Google ScholarĀ 

  28. Ko, Y. C. and Park, J. M. ā€“ Engineering cellulose fibers for high-value added Products for pulp & paper industry. Journal of Korea TAPPI, 47 (6): 22ā€“40 (2015)

    Google ScholarĀ 

  29. Omholt, I. ā€“ The effects of curl and microcompressions on the combination of sheet properties. In: International Paper Physics Conference. TAPPI, San Diego, 1999 pg 499ā€“515.

    Google ScholarĀ 

  30. Lindqvist, H. ā€“ Improvement of wet and dry web properties in papermaking by controlling water and fiber quality. Academic Dissertation, ƅbo Akademi University. ƅbo., 2013 85 pgs

    Google ScholarĀ 

  31. Bektals, I.; Tutus, A. and Eroglu H. ā€“ A study of the suitability of calabrian pine (Pinus brutia Ten.) for pulp and paper manufacture. Turkish Journal of Agriculture and Forestry 23 (3): 589ā€“597 (1999).

    Google ScholarĀ 

  32. Pikulik, I. I. ā€“ Wet pressing ā€“ operating aspects. In: TECH95 Theory and Practice of Papermaking Course. CPPA, Ottawa, 1995 Section C3 29 pgs.

    Google ScholarĀ 

  33. Tiikkaja, E. ā€“ Fibre properties and paper machine runnability. In: Engineering/Process and Product Quality Conference & Trade Fair. TAPPI, Anaheim, 1999 Volume 3 pgs. 1241ā€“1242.

    Google ScholarĀ 

  34. Tiikkaja, E.; Kauppinen, M. and Glorigiano, P. ā€“ Fibre dimensions, their effect on paper properties and required measuring accuracy. In: XXXI Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1998 pgs. 397ā€“402.

    Google ScholarĀ 

  35. Demler, C. L. and Pitz, M. ā€“ Comparison of conventionally, ECF and TCF bleached hardwood pulp refining response. In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta, 1995 Paper 9 8 pgs.

    Google ScholarĀ 

  36. Seth, R. S. ā€“ The importance of fibre coarseness for pulp properties. In: 77th Annual Technical Meeting. CPPA, Montreal: 1991 pg. 251.

    Google ScholarĀ 

  37. Malan, F. S.; Male, J. R. and Venter, J. S. M. ā€“ Relationship between the properties of eucalyptus wood and some chemical, pulp and paper properties. Paper Southern Africa, 14 (1): 6ā€“16 (1994).

    Google ScholarĀ 

  38. Barrichelo, L. E. G. ā€“ Estudo das caracterĆ­sticas fĆ­sicas, anatĆ“micas e quĆ­micas da madeira de Pinus caribeae Mor. Var. hondurensis Barr. Golf para a produĆ§Ć£o de celulose kraft. Tese de Livre DocĆŖncia ā€“ ESALQ/USP (1979).

    Google ScholarĀ 

  39. Silva Jr., F. G. da; Valle, C. F. do e Muner, J. C. G. ā€“ Programa de qualidade da madeira da Votorantim Celulose e Papel ā€“ VCP. O Papel, 57 (1): 35ā€“43 (1996).

    Google ScholarĀ 

  40. KƤrenlampi, P.; Retulainen, E. and Kolehmainen, H. ā€“ Properties of kraft pulps from different forest stands ā€“ theory and experiment. Nordic Pulp and Paper Research Journal, 9 (4):214ā€“218 (1994).

    Google ScholarĀ 

  41. Retulainen, E.; Moss, P. and Nieminen, K. ā€“ Effect of fines on the properties of fibre networks. In: 10th Fundamental Research Symposium Proceedings. Mechanical Engineering Publications, London, 1993 Volume 2 pgs. 727ā€“769.

    Google ScholarĀ 

  42. Seth, R. S. ā€“ The importance of fibre straightness for pulp strength. Pulp and Paper Canada, 107 (1): 34ā€“42 (2006).

    Google ScholarĀ 

  43. Piirainen, R. and Paavilainen, L. ā€“ Fiber length measurement in the pulp and paper industry. In: International Process and Materials Quality Evaluations Conference. TAPPI, Atlanta, 1986 pgs. 67ā€“73.

    Google ScholarĀ 

  44. Bawden, A. D. and Kibblewhite, R. P. ā€“ Effects of multiple drying treatments on kraft fibre walls. Journal of Pulp and Paper Science, 23 (7): 340ā€“346 (1997).

    Google ScholarĀ 

  45. Hatton, J. V. and Cook, J. ā€“ Kraft pulps from second-growth Douglas Fir: relationships between wood, fiber, pulp, and handsheet properties. Tappi Journal, 75 (1): 137ā€“144 (1992).

    Google ScholarĀ 

  46. Philipp, P. and Dā€™Almeida, M. L. O. ā€“ Celulose e papel ā€“ tecnologia de fabricaĆ§Ć£o de papel ā€“ Volume 2. SENAI/IPT, SĆ£o Paulo, 1988 402 pgs.

    Google ScholarĀ 

  47. Purdy, T. ā€“ New techniques for surface assessment. In: Papermaking. World Pulp and Paper Technology, 1994/1995: 181ā€“183.

    Google ScholarĀ 

  48. Ferreira, P. J. and Figueiredo, M. M. ā€“ Efeito do cozimento e da refinaĆ§Ć£o nas dimensƵes transversais das fibras de E. globulus. O Papel, 62 (01: 73ā€“80 (2000).

    Google ScholarĀ 

  49. Alber, W. and Erhard, K. ā€“ Differentiation of commercial paper pulps in terms of their behavior in paper manufacturing. Papier, 50 (10A): 24ā€“30 (1996).

    Google ScholarĀ 

  50. Green, S. I. ā€“ Pulp fibre drag coefficient. Appita Journal, 59 (2): 120ā€“126 (2006).

    Google ScholarĀ 

  51. Ratnieks, E. and Foelkel, C. E. B. ā€“ Uma discussĆ£o teĆ³rioco-prĆ”tica sobre polpas de eucalipto para a fabricaĆ§Ć£o de papel ā€œtissueā€. In: XXIX Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1996 pgs. 717ā€“734.

    Google ScholarĀ 

  52. Foelkel, C. ā€“ The Eucalyptus fibers and the kraft pulp quality requirements for paper manufacturing. Eucalyptus Online Book & Newsletter.- Chapter 3 (Feb/Mar) 2007 ā€“ 42 pgs www.eucalyptus.com.br/capitulos/ENG03_fibers.pdf

  53. GonƧalves, D. ā€“ The eucalyptus fiber for tissue papers. In: 7th Brazilian Symposium on the Chemistry of Lignin and Other Wood Components. UFMG, Belo Horizonte, 2001 p. 317ā€“323.

    Google ScholarĀ 

  54. Xu, L.; Filonenko, Y; Li, M. and Parker, I. ā€“ Measurement of wall thickness of fully collapsed fibres by confocal microscopy and image analysis. Appita Journal, 50 (6): 501ā€“504 (1997).

    Google ScholarĀ 

  55. BotkovĆ”, M.; Å utĆ½, Å .; JablonskĆ½, M.; KučerkovĆ”, L. and VrÅ”ka, M. ā€“ Monitoring of kraft pulps swelling in water. Cellulose Chemistry and Technology, 47 (1ā€“2): 95ā€“102 (2013).

    Google ScholarĀ 

  56. Page, D. H. ā€“ A theory for tensile strength of paper. Tappi, 52 (4): 674ā€“681 (1969).

    Google ScholarĀ 

  57. Koubaa, A e Koran, Z. ā€“ Measure of the internal bond strength of paper/board. Tappi Journal, 78 (3): 103ā€“111 (1995).

    Google ScholarĀ 

  58. Niskanen, K.; Kajanto, I. and Pakarinen, P. ā€“ Paper structure. In: Papermaking Science and Technology. Volume 16 ā€“ Paper physics, Chapter 1. Ed. Gullichsen, J. e Paulapuro, H. Finnish Paper Engineersā€™ Association/Paperi ja Puu Oy, Helsinki, 2000.

    Google ScholarĀ 

  59. Sjƶberg, J. C.; HƤggquist, M.; Wikstrƶm, M.; Lindstrƶm, T. and Hƶglund, H. ā€“ Effects of pressurized high consistency refining on sheet density. Nordic Pulp and Paper Research Journal, 23 (1): 39ā€“45 (2008).

    Google ScholarĀ 

  60. WathĆ©n, R.; Rosti, J.; Alava, J. M. and Salminen, L. ā€“ Fiber strength and zero-span strength statistics ā€“ some considerations. Nordic Pulp and Paper Research Journal, 21 (2): 193ā€“201 (2006).

    Google ScholarĀ 

  61. Pulkkinen, I.; Alopaeus, V.; Fiskari, J. and Joutsimo, O. ā€“ O uso de dados sobre espessura da parede da fibra para prediĆ§Ć£o das propriedades de folhas de laboratĆ³rio de polpa de eucalipto. O Papel, 69 (19): 71ā€“85 (2008).

    Google ScholarĀ 

  62. Waterhouse, J. ā€“ Formation measurements and paper quality. World Pulp and Paper Technology, (9): 107 (1998).

    Google ScholarĀ 

  63. Jokinen, O. and Ebeling, K. ā€“ Flocculation tendency of papermaking fibres. Paperi ja Puu, 67 (5): 317, 318, 320, 321, 323ā€“325 (1985).

    Google ScholarĀ 

  64. Chirat, C. and Lachenal, D. ā€“ Brushing up on bleaching techniques. Pulp & Paper International, 41 (10): 41ā€“43 (1999).

    Google ScholarĀ 

  65. Farnood, R. R.; Loewen, S. R. and Dodson, C. T. J. ā€“ Estimation of intra-floc forces. Appita, 47 (5): 391ā€“396 (1994).

    Google ScholarĀ 

  66. Paavilainen, L. ā€“ Importance of cross-dimensional fibre properties and coarseness for the characteristics of softwood sulphate pulp. Paperi ja Puu, 75 (5): 35ā€“43 (1993)

    Google ScholarĀ 

  67. Korteoja, M. J.; Salminen, L. I.; Niskanen, K. J. and Alava, M. ā€“ Statistical variation of paper strength. Journal of Pulp and Paper Science, 24 (1): 1ā€“6 (1998).

    Google ScholarĀ 

  68. Yan, H.; Norman, B.; Lindstrƶm, T. and Ankefors, M. ā€“ Fibre length effect on fibre suspension flocculation and sheet formation. Nordic Pulp and Paper Research Journal, 21 (1): 30ā€“35 (2006).

    Google ScholarĀ 

  69. Lindholm, C.-A. ā€“ Determining optimum combinations of mechanical pulp fractions. Paperi ja Puu, 65 (4): 243ā€“245, 247ā€“250 (1983).

    Google ScholarĀ 

  70. Ramezani, O. and Nazhad, M. M. ā€“ The effect of refining on paper formation. TAPPSA Technical Articles http://www.tappsa.co.za/html/The_effect_of_refining_on_paper_formation.html

  71. Ramezani, O. and Nazhad, M. M. ā€“ The effect of coarseness on paper formation. In: African Pulp and Paper Week. TAPPSA, (2004) http://www.tappsa.co.za/archive2/APPW_2004/Title2004/The_effect_of_coarseness_on_paper_formation.

  72. Gurnagul, N., Page, D. H. and Seth, R. S. ā€“ Dry sheet properties of Canadian hardwood kraft pulps. Journal of Pulp and Paper Science, 16 (1): 36ā€“41 (1990).

    Google ScholarĀ 

  73. Kerekes, R. J. and Schell, C. J. ā€“ Effects of fiber length and coarseness on pulp flocculation. Tappi Journal, 78 (2): 133ā€“139 (1995).

    Google ScholarĀ 

  74. Fahey, H. ā€“ Testing and control. In: Pulp and Paper Manufacture, Volume 2, Mechanical Pulping. Third Edition, Chapter 21 R. A. Leask, Ed. Joint-Textbook Committee, Technical Section. CPPA/TAPPI. pgs. 252ā€“271.

    Google ScholarĀ 

  75. Walmsley, M. R. W.; Weeds, Z. and Atkins, M. ā€“ Pulp consistency and rotor back-flushing effects on pressure screen reject thickening. Journal of Pulp and Paper Science, 34 (1): 59ā€“68 (2008).

    Google ScholarĀ 

  76. MacLeod, J. M. ā€“ Comparing pulp strengths. Pulp and Paper Canada, 81 (12): 128ā€“132 (1980)

    Google ScholarĀ 

  77. Lundin, T. ā€“ Tailoring pulp fibre properties in low consistency refining. Academic dissertation, ƅbo Akademi University, Abo, 2008 259 pgs www.researchgate.net/publication/261286869_Tailoring_pulp_fibre_properties_in_low_consistency_refing_diss/link/543cfc4e0cf2c432f7423263

  78. Kibblewhite, R. P. and McKenzie, C. J. ā€“ Kraft fibre property variation among 29 trees of 15 year old Eucalyptus fastigata and comparison with E. nitens. Appita Journal, 52 (3): 218ā€“225 (1999).

    Google ScholarĀ 

  79. Pulkkinen, I.; Fiskari, J. and Aittamaa, J. ā€“ The effect of refining on transverse dimension distributions of eucalypt pulp speies. O Papel, 67 (5): 58ā€“72 (2007).

    Google ScholarĀ 

  80. Hubbe, M. A.; Venditti, R. A.; Barbour, R. L. and Zhang, M. ā€“ Changes to unbleached kraft fibers due to drying and recycling. Progress in Paper Recycling, 12 (3):11ā€“20 (2003).

    Google ScholarĀ 

  81. Yan, N. and Aspler, J. ā€“ Surface texture controlling speckle-type print defects in a hard printing nip. Journal of Pulp and Paper Science, 29 (11): 357ā€“362 (2003).

    Google ScholarĀ 

  82. Pulkkinen, I. ā€“ From eucalypt fiber distributions to technical properties of paper. Doctoral Thesis. Aalto University School of Science and Technology, Espoo, 2010 74 pgs https://research.aalto.fi/en/publications/from-eucalypt-fiber-distributions-to-technical-properties-of-pape

  83. Courchene, C. E.; Peter, G. F. and Litvay, J. ā€“ Cellulose microfibril angle as a determinant of paper strength and hygroexpansivity in Pinus taeda L. Wood and Fiber Science, 38 (1): 112ā€“120 (2006).

    Google ScholarĀ 

  84. Dodson, C. T. J. and Sampson, W. W. ā€“ The effect of paper formation and grammage on its pore size distribution. Journal of Pulp and Paper Science, 22 (5): 165ā€“169 (1996).

    Google ScholarĀ 

  85. DuPlooy, A. B. J. ā€“ The relationship between wood and pulp properties of E. grandis (Hill ex-maiden) grown in South Africa. Appita, 33 (4): 257ā€“264 (1980).

    Google ScholarĀ 

  86. Law, K. N. and Koran, Z. ā€“ Effect of press drying on paper properties. Appita, 34 (5): 38ā€“390 (1981).

    Google ScholarĀ 

  87. Silva, R. P. and Oliveira, R. C. de ā€“ O efeito da refinaĆ§Ć£o na recuperaĆ§Ć£o das propriedades fĆ­sico-mecĆ¢nicas de papĆ©is reciclados de pinus. O Papel, 63 (8):87ā€“99 (2003).

    Google ScholarĀ 

  88. Castanho, C. G. and Oliveira, R. C. de ā€“ RecuperaĆ§Ć£o e avaliaĆ§Ć£o do rejeito fibroso industrial da polpaĆ§Ć£o kraft de eucalipto para produĆ§Ć£o de papel. In: III SeminĆ”rio de Tecnologia Papeleira. ABTCP, SĆ£o Paulo: 2000 pgs. 96ā€“106.

    Google ScholarĀ 

  89. Dean, G. H. ā€“ Objectives for wood fibre quality and uniformity. In: Eucalypt Plantations: Improving Fibre Yield and Quality Conference. CRCTHF/IUFRO, Hobart: 19-24/02/1995 pgs. 5ā€“9.

    Google ScholarĀ 

  90. Forgacs, O. L. ā€“ The Characterization of Mechanical Pulps. Pulp and Paper Magazine Canada, 64 (Convention Issue): 89ā€“115 (1963).

    Google ScholarĀ 

  91. Seth, R. S.; Jang, H. F.; Chan, B. K. and Wu, C. B. ā€“ Transverse dimensions of wood pulp fibres and their implications for end use. In: Fundamentals of papermaking materials, Ed. Baker, C. B., Pira International, Leatherhead, 1997 Volume 1 pgs. 473ā€“503.

    Google ScholarĀ 

  92. Park, J. Y.; Melani, L.; Lee, H. and Kim, H. J. ā€“ Effect of pulp fibers on the surface softness component of hygiene paper. Holzforschung, 74 (5): 497ā€“504 (2019)

    Google ScholarĀ 

  93. Kibblewhite, R. P., Evans, R. and Riddell, M. J. C. ā€“ Handsheet property prediction from kraft-fibre and wood-tracheid properties in eleven radiata pine clones. Appita Journal, 50 (2): 131ā€“138 (1997).

    Google ScholarĀ 

  94. Retulainen, E. ā€“ Fibre properties as control variables in papermaking? Part 1: fibre properties of key importance in the network. Paperi ja Puu, 78 (4): 187ā€“194 (1996).

    Google ScholarĀ 

  95. Kibblewhite, R. P. ā€“ Reinforcement and optical properties of separate and co-refined softwood and eucalypt market kraft pulps. Appita Journal, 47 (2): 149ā€“153, 158 (1994).

    Google ScholarĀ 

  96. Ragnar, M. ā€“ The importance of the structural composition of pulp for the selectivity of ozone and chlorine dioxide bleaching. Nordic Pulp and Paper Research Journal, 16 (1): 72-xx (2001).

    Google ScholarĀ 

  97. Santos, A.; Anjos, O. M. and SimƵes, R. M. S. ā€“ Influence of kraft cooking conditions on the pulp quality of Eucalyptus globulus. Appita Journal, 61 (2): 148ā€“155 (2008).

    Google ScholarĀ 

  98. Stratton, R. A. ā€“ Characterization of fibre-fibre bond strength from out-of-plane paper mechanical properties. Journal of Pulp and Paper Science, 19 (1): 7ā€“12 (1993).

    Google ScholarĀ 

  99. Gurnagul, N. and Seth, R. S. ā€“ Wet-web strength of hardwood kraft pulps. In: 83rd Annual Meeting Technical Section. CPPA, Montreal, 1997 Book B pgs. B137ā€“145.

    Google ScholarĀ 

  100. Demuner, B. J.; Manfredi, V. and Claudio-da-Silva Jr., E. ā€“ O refino da celulose de eucalipto ā€“ uma anĆ”lise fundamental. O Papel, 52 (8): 44 ā€“ 54 (1990).

    Google ScholarĀ 

  101. McKenzie, A. W. ā€“ Interpretation of pulp evaluation results. Appita Journal, 38 (4): 284ā€“290 (1985).

    Google ScholarĀ 

  102. Stevens, W. V. ā€“ Refining. In: Pulp and Paper Manufacture ā€“ Volume 6. Ed. Hagemeyer, R.W., Manson, D.W. and Kocurek, M.J. The Joint Textbook Committee of the Paper Industry, Atlanta/Montreal, 1992: 187ā€“219 (1992).

    Google ScholarĀ 

  103. Joutsimo, O. and RobertsĆ©n, L. ā€“ The effect of mechanical treatment on softwood kraft pulp fibers.- pulp and fiber properties. Maderas, Ciencia y Tecnologia, 18 (3): 17 pgs (2016).

    Google ScholarĀ 

  104. Koskenhely, K. ā€“ Refining of chemical pulp fibres. In: Papermaking Science and Technology. Volume 8 ā€“ Paper making part 1 ā€“ stock preparation and wet end, Chapter 4. Ed. Paulapuro, H. Finnish Paper Engineersā€™ Association/Paperi ja Puu Oy, Helsinki: 2007.

    Google ScholarĀ 

  105. Fergus, B. J.; Procter, A. R.; Scott, J. A. N. and Goring, D. A. I. ā€“ The distribution of lignin in spruce wood as determined by ultraviolet microscopy. Wood Science Technology (3): 117ā€“138 (1969).

    Google ScholarĀ 

  106. Mohlin, U-B. ā€“ Market SBK and refining response. In: Refining & Mechanical Pulping Conference. PIRA, Barcelona, 2005 Paper 8.

    Google ScholarĀ 

  107. Campbell, W. B. ā€“ The cellulose-water relationship in papermaking. Dept. of Interior, Forest Service Bulletin, 84. Ottawa, F.A. Ackland. (1933).

    Google ScholarĀ 

  108. Page, D. H.; El-Hosseiny, F.; Winker, K. and Lancaster, A. P. S. ā€“ Elastic modulus of single wood pulp fibers. Tappi Journal, 60 (4): 114ā€“117 (1977).

    Google ScholarĀ 

  109. Page, D. H.; Seth, R. S. and De Grace, J. H. ā€“ The elastic modulus of paper. Tappi Journal, 62 (9): 99ā€“102 (1979).

    Google ScholarĀ 

  110. Kerekes, R. J. ā€“ Rheology of fibre suspensions in papermaking: an overview of recent research. Nordic Pulp and Paper Research Journal, 21 (5): 598ā€“612 (2006).

    Google ScholarĀ 

  111. Horn, R. A. ā€“ Morphology of pulp fiber from hardwoods and influence on paper strength. Forest Products Laboratory, Research Paper 312, 12 pgs (1978) https://www.fpl.fs.fed.us/documnts/fplrp/fplrp312.pdf

  112. KƤrenlampi, P.; Niskanen, K. J. and Alava, M. ā€“ Fracture toughness of paper: role of fiber properties and fiber bonding. In: International Paper Physics Conference. CPPA/TAPPI, Niagara-on-the-lake, 1995. pgs. 39ā€“46.

    Google ScholarĀ 

  113. Seth, R. S. ā€“ Optimizing reinforcement pulps by fracture toughness. Tappi Journal, 79 (1): 170ā€“178 (1996).

    Google ScholarĀ 

  114. WĆ„gberg, L.; Forsberg, S.; Johansson, A. and Juntti, P. ā€“ Engineering of fibre surface properties by application of the polyelectrolyte multilayer concept. Part I: modification of paper strength. Journal of Pulp and Paper Science, 28 (7): 222ā€“8 (2002).

    Google ScholarĀ 

  115. Clark, J. dā€™A. ā€“ Mill beating and Refining, In: Pulp Technology and Treatment of Paper. Miller Freeman, San Francisco, 1978 516 pgs.

    Google ScholarĀ 

  116. Seth, R. S.; Page, D. H.; Barbe, M. I. C. and Jordan, B. D. ā€“ The mechanism of the strength and extensibility of wet webs. Svensk Papperstiding, 87 (6): 36ā€“43 (1984).

    Google ScholarĀ 

  117. Kulachenko, A. and Uesaka T. ā€“ Direct simulations of fiber network deformation and failure. Mechanics of Material, 51:1ā€“14 (2012).

    Google ScholarĀ 

  118. Seth, R. S. ā€“ Fiber quality factors in papermaking ā€“ II: the importance of fibre coarseness. In: Materials Interactions Relevant to the Pulp, Paper and Wood Industries. Research Society Symposium, San Francisco, 1990 Volume 197 pgs. 143ā€“161.

    Google ScholarĀ 

  119. Page, D. H. ā€“ A quantitative theory of the strength of wet webs. Journal of Pulp and Paper Science, 19 (4): J175ā€“176 (1993).

    Google ScholarĀ 

  120. Ibrahem, A. A.; Yousef, M. A. and El-Meadawy, S. A. ā€“ Effect of beating on fibre crystallinity and physical properties of paper sheets. Journal of Islamic Academy of Sciences, 2 (4): 295ā€“298 (1989).

    Google ScholarĀ 

  121. Silva Jr., F. G. da e Braga, E. P. ā€“ Potencialidade da seleĆ§Ć£o cde E. urophylla em funĆ§Ć£o da qualidade da madeira destinada Ć  produĆ§Ć£o de celulose. In: XXX Congresso anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1997 pg. 281ā€“292.

    Google ScholarĀ 

  122. Howard, R. C.; Poole, R. and Page, D. H. ā€“ Factors analysis applied to the results of a laboratory beating investigation. Jornal of Pulp and Paper Science, 20 (5): 137ā€“144 (1994).

    Google ScholarĀ 

  123. Seth, R. S. and Page, D. H. ā€“ Fibre properties and tearing resistance. Tappi Journal, 71 (2): 103ā€“107 (1988).

    Google ScholarĀ 

  124. Broderick, G.; Cacchione, E. and HĆ©rox, Y. ā€“ The importance of distribution statistics in the characterization of chip quality. Tappi Journal, 81 (2): 131ā€“142 (1998).

    Google ScholarĀ 

  125. Giertz, H. W. ā€“ Fundamentos da fabricaĆ§Ć£o de papel (papermaking fundamentals). ABTCP. Itu, 1989 136 pgs.

    Google ScholarĀ 

  126. Kibblewhite, R. P. ā€“ The qualities of radiata pine papermaking fibres. Appita, 35 (4): 289ā€“298 (1982).

    Google ScholarĀ 

  127. Paavilainen, L. ā€“ Importance of coarseness and fiber length in papermaking. In: Process Engineering Handbook. Ed. Process Engineering Committee of the Engineering Division. Tappi Press, Atlanta, 1992, 2nd Edition Appendix: 98ā€“108.

    Google ScholarĀ 

  128. Seth, R. S. ā€“ Beating and refining response of some reinforcement pulps. Tappi Journal, 82 (3): 147ā€“155 (1999).

    Google ScholarĀ 

  129. Melander, E. ā€“ The effect of charged groups on the beatability of pulp fibres. Bachelor Thesis, KTH, Stockholm, 2011 31 pgs https://www.diva-portal.org/smash/get/diva2:425918/FULLTEXT01.pdf

  130. Jonhston, R. E.; Li, M. and Waschl, R. ā€“ Eucalypt fibre size fractions: modeling and measuring their effect on sheet properties. Appita Journal, 50 (4):307ā€“311 (1997).

    Google ScholarĀ 

  131. Area, M. C.; Benitez, J and Felissia, F. E. ā€“ Componentes da resistĆŖncia Ć  traĆ§Ć£o de polpas kraft de Eucalyptus grandis. O Papel,71 (8): 48ā€“62 (2010)

    Google ScholarĀ 

  132. KƤrenlampi, P. ā€“ Effect of distributions of fibre properties on tensile strength of paper: a closed-form theory. Journal of Pulp and Paper Science, 21 (4): 138ā€“143 (1995).

    Google ScholarĀ 

  133. Paavilainen, L. ā€“ Effect of sulphate cooking parameters on the papermaking potential of pulp fibres. Paperi ja Puu, 71 (4): 356ā€“363 (1989).

    Google ScholarĀ 

  134. Paavilainen, L. ā€“ Conformability, flexibility and collapsibility of sulphate pulp fibres. Paperi ja Puu, 75 (9ā€“10): 680 (1993).

    Google ScholarĀ 

  135. van den Akker, J. A., Lathrop, L. A., Voelker, M. H. and Dearth, L. H. ā€“ Importance of fiber strength to sheet strength. Tappi, 41 (8): 416 (1958)

    Google ScholarĀ 

  136. BrƤnnvall, E. and Lindstrƶm, M. E. ā€“ A study on the difference in tensile strength between industrially and laboratory-cooked pulp. Nordic Pulp and Paper Research Journal, 21 (2): 222ā€“226 (2006).

    Google ScholarĀ 

  137. FiserovĆ”, M.; Gigac, J. and Balbercak, J. ā€“ Relationship between fibre characteristics and tensile strength of hardwood and softwood kraft pulps. Cellulose Chemistry and Technology., 44 (7ā€“8), 249ā€“253 (2010).

    Google ScholarĀ 

  138. Gao, W. H.; Chen, K. F.; Yang, R. D.; Li, J.; Yang, F.; Rao, G. H. and Tao, H. ā€“ Effects of beating on tobacco stalk mechanical pulp. Cellulose Chemistry and Technology, 46 (3ā€“4): 277ā€“282 (2012).

    Google ScholarĀ 

  139. Singh, S. V. and Rai, A. K. ā€“ Suface property inter-relationship in wood-free paper. IPPTA, 5 (4): 9ā€“15 (1993).

    Google ScholarĀ 

  140. Higgins, H. G. ā€“ Pulp and paper. In: Eucalyptus for wood production. Ed. Hillis, W. E. and Brown, A. G., CSIRO/Academic Press. London Capitulo 13 pg 290ā€“316.

    Google ScholarĀ 

  141. FrazĆ£o, F. J. L. ā€“ CaracterĆ­sticas da madeira e da polpa kraft nĆ£o branqueada de Eucalyptus deglupta Blume introduzido na regiĆ£o de Manaus-AM. In: Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1986 pgs. 79ā€“87.

    Google ScholarĀ 

  142. Blomstedt, M.; Panula-Ontto, S.; Kontturi, E. and Vuorinen, T. ā€“ Um mĆ©todo para reduzir o arrancamento de valos de folhas de polpa de eucalipto mediante modificaĆ§Ć£o com carboximetilcelulose. O Papel, 69 (2): 35ā€“44 (2008).

    Google ScholarĀ 

  143. Karlsson, H. ā€“ New technique for measurement of fibre properties including vessel cells and mix of fibre species. Appita Journal, 61 (3): 192ā€“196 (2008).

    Google ScholarĀ 

  144. Parham, R. A. ā€“ Wood structures ā€“ hardwood. In: Pulp and Paper manufacture ā€“ Volume I ā€“ Properties of Fibrous Raw Materials and their Preparation for Pulping. E.: Kocurek, M. J. and Stevens, C. F. B. The Joint Textbook Committee of the Paper Industry, Atlanta/Montreal, 1983, 28ā€“34.

    Google ScholarĀ 

  145. Carvalho, H. G. de; Oliveira, R. C. de; Gomide, J. L. and Colodette, J. L. ā€“ Efeito da idade de corte da madeira e de variĆ”veis de refino nas propriedades da celulose kraft branqueada de eucalipto. In: XXXI Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1998 pg. 367ā€“381.

    Google ScholarĀ 

  146. Lobben, H. T. ā€“ The tensile stiffness of paper. Part 1: A model based on activation. Norsk Skogindustri, 29 (12): 311ā€“315 (1975).

    Google ScholarĀ 

  147. Kerekes, R. J. ā€“ Pulp flocculation in decaying turbulence: a literature review. Journal of Pulp and Paper Science, 9 (3): 86ā€“91 (1983)

    Google ScholarĀ 

  148. Scott, W. E. ā€“ Principles of wet end chemistry. Tappi Press, Atlanta, 1996 185 pgs.

    Google ScholarĀ 

  149. Sandercock, C. F.; Sands, R.; Ridoutt, B. G.; Wilson, L. F. and Hudson, I. ā€“ Factors determining wood microstructure in eucalyptus. In: Eucalypt Plantations: Improving Fibre Yield and Quality Conference. CRCTHF/IUFRO, Hobart, 1995 pgs. 12ā€“-135.

    Google ScholarĀ 

  150. Silva, R. P. and Oliveira, R. C. de ā€“ A reciclagem de papĆ©is: uma aboradagem tĆ©cnica. Folha Florestal (93): 9ā€“11 (1999).

    Google ScholarĀ 

  151. Amidon, T. E. ā€“ Effect of the wood properties of hardwoods on kraft paper properities. Tappi Journal, 64 (3): 123ā€“126 (1981).

    Google ScholarĀ 

  152. Greaves, B. L. and Borralho, M. G. ā€“ The influence of basic density and pulp yield on the cost of eucalypt kraft pulping: a theoretical model for tree breeding. Appita, 49 (2): 90ā€“95 (1996).

    Google ScholarĀ 

  153. Maloney, T. C. and Paulapuro, H. ā€“ The formation of pores in the cell wall. Journal of Pulp and Paper Science, 25 (12): 430ā€“436 (1999).

    Google ScholarĀ 

  154. Arrieta, I. ā€“ El aprovechamiento de la madera y la importancia de la calidad de astilas en la fabricaciĆ³n de la celulosa. El Papel (77): 46ā€“49 (1999).

    Google ScholarĀ 

  155. Valente, C. A. and Furtado, F. P. ā€“ O melhoramento do Eucalyptus globulus. Uma abordagem ecolĆ³gica. Pasta e Papel (5): 33ā€“37 (1992).

    Google ScholarĀ 

  156. Yllner, S. and Enstrƶm, B. ā€“ Studies of the adsorption of xylan on cellulose fibers during the sulphate cook ā€“ Part 1. Svensk Papperistiding, 59 (6): 229ā€“232 (1956).

    Google ScholarĀ 

  157. French, J.; Conn, A.B.; Batchelor, W.J. and Parker, I.H. ā€“ The effect of fibre fibril angle on some handsheet mechanical properties. Appita Journal, 53 (3): 210ā€“226 (2000).

    Google ScholarĀ 

  158. Reme, P. A. ā€“ Some aspects of wood characteristics and the pulping process in mechanical pulp fibres. Doctoral Thesis. Norwegian University of Science and Technology, Trondheim, 2000 121 pgs (2000) https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/248066

  159. Dickson, A. R.; Corson, S. R. and Dooley, N. J. ā€“ Fibre collapse and decollapste determined by cross-sectional geometry. Journal of Pulp and Paper Science, 32 (4): 1ā€“5 (2006).

    Google ScholarĀ 

  160. Pryor, L. O. ā€“ Biology of eucalyptys. Edward Arnold, London, 1976. 82 pgs.

    Google ScholarĀ 

  161. Wang, X.; Maloney, T. C. and Paulapuro, H. ā€“ Internal fibrillation in never-dried and once-dried chemical pulps. Appita Journal, 56 (6): 455ā€“459 (2003).

    Google ScholarĀ 

  162. Beck, M. V. ā€“ The importance of wet end equipment and its influence on retention. In: Retention of Fines and Fillers During Papermaking. Gess, J. M. Ed. Tappi Press, Atlanta, 1998, Chapter 7 pgs. 129ā€“158.

    Google ScholarĀ 

  163. Baker, C. F. ā€“ Good practice for refining the types of fiber found in modern paper furnishes. Tappi Journal, 78 (2): 147ā€“157 (1995).

    Google ScholarĀ 

  164. Rudie, A. W. ā€“ Wood and how it relates with wood products. Tappi Journal, 81 (5): 223ā€“228 (1998).

    Google ScholarĀ 

  165. Busker, L. H. and Cronin, D. C. ā€“ The relative importance of wet press variables in water removal. Pulp and Paper Canada, 85 (6): 138ā€“147 (1984).

    Google ScholarĀ 

  166. Foelkel, C ā€“ Papermaking properties of Eucalyptus trees, woods, and pulp fibers. Eucalyptus Online Book & Newsletter.- Chapter 14 (Jul) 2009 110 pgs www.eucalyptus.com.br/eucaliptos/ENG14.pdf

  167. SalmĆ©n, L. ā€“ Micromechanical understanding of the cell-wall structure (MicromĆ©canique de la structure de la paroi cellulaire) Comptes Rendus Biologies, 327 (9ā€“10): 873ā€“880 (2014).

    Google ScholarĀ 

  168. Ververis, C.; Georghiou, K.; Christodoulakis, N.; Santas, P. and Santas, R. ā€“ Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Industrial Crops and Products, 19: 245ā€“254 (2004).

    Google ScholarĀ 

  169. Fengel, D. and Wegener, G. ā€“ Wood chemistry, ultrastructure, reactions. De Gruyter, Berlin, 1983

    Google ScholarĀ 

  170. Pydimalla, M. and Reddy, K. ā€“ Effect of pulping, bleaching and refining process on fibers for paper making ā€“ A review. International Journal of Engineering Research & Technology, 9 (12): 310ā€“316 (2020).

    Google ScholarĀ 

  171. Stark, H. ā€“ Pulp properties of TCF pulps. In: Emerging Pulping & Bleaching Technologies Workshop. TAPPI, Durhan, 1995 Section Bleaching III.

    Google ScholarĀ 

  172. Stone, J. E. and Scallan, A. M. ā€“ A structural model for the cell wall of water swollen sood pulp fibres based on their accessibility to macromolecules. Cellulose Chemistry Technology (2): 343ā€“358 (1968).

    Google ScholarĀ 

  173. BƤckstrƶm, M ā€“ The effect of environment on refining efficiency of kraft pulps. Doctoral Thesis in Fibre and Polymer Science. KTH Royal Institute of Technology, Stockholm, 2020 53 pgs www.diva-portal.org/smash/getdiva2:1456955/FULLTEXT01

  174. FahlĆ©n, J. ā€“ The cell wall ultrastructure of wood fibres ā€“ effects of the chemical pulp fibre line. KTH Royal Institute of Technology, Stockholm, 2005 70 pgs. https://www.diva-portal.org/smash/get/diva2:7109/FULLTEXT01.pdf

  175. Josephson, W.; Jansson, U.; Sezgi, U. S. and Fagerstrƶn, K. ā€“ Low consistency refining of a non-conventionally cooked pulp. In: Papermakers Conference. TAPPI, Atlanta, 1999 Book 2 pgs. 729ā€“739.

    Google ScholarĀ 

  176. Ferreira, C. R.; Fantini Jr, M.; Colodette, J. L.; Gomide, J. L. and Carvalho, A. M. M. L. ā€“ AvaliaĆ§Ć£o tecnolĆ³gica de clones de eucalipto. Parte 1: qualidade da madeira para produĆ§Ć£o de celulose kraft. Scientia Forestalis (70): 161ā€“170 (2006).

    Google ScholarĀ 

  177. Lennholm, H. and Iversen, T. ā€“ The effects of laboratory beating on cellulose structure. Nordic Pulp and Paper Research Journal, 10 (2): 104ā€“109 (1995).

    Google ScholarĀ 

  178. Park, S. W. and Pinto, J. M. ā€“ CinĆ©tica da polpaĆ§Ć£o kraft. Parte 1: a evoluĆ§Ć£o de modelos empĆ­ricos para modelos mecanĆ­sticos. In: XXIII Congresso Anual de Celulose e Papel, ABTCP, SĆ£o Paulo, 1990 pgs. 69ā€“91.

    Google ScholarĀ 

  179. Scallan, A. M. and Tigerstrƶm, A. C. ā€“ Swelling and elasticity of the cell walls of pulp fibres. Jornal of Pulp and Paper Science, 18 (5): 188ā€“193 (1992).

    Google ScholarĀ 

  180. Sjƶstrƶm, E. ā€“ Wood chemistry ā€“ fundamentals and applications, 2nd. Edition. Academic Press, San Diego, 1993 pg. 204ā€“222.

    Google ScholarĀ 

  181. Sjƶsted A. ā€“ Preparation and characterization of nanoporous cellulose fibres and their use in new material concepts. Doctoral Thesis. KTH Royal Institute of Technology. Stockholm, 2014 65 pgs. https://www.diva-portal.org/smash/get/diva2:761478/FULLTEXT01.pdf

  182. Smook, G. A. ā€“ Preparation of papermaking stock In: Handbook of Pulp and Paper Thechnologists ā€“ Chapter 13. Angus Wilde, 2002. pgs 190ā€“204

    Google ScholarĀ 

  183. Sjƶstrƶm, E. ā€“ Production of microfibrillated cellulose by LC-refining. Masterā€™s Thesis, Abo Akademi, 2018 77 pgs https://www.doria.fi/handle/10024/165125

  184. Gharehkhani, S.; Sadeghinezhada, E.; Kazi, S. N.; Yarmanda, H.; Badarudina, A.; Safaei, M. R. and Zubir, M. N. M. ā€“ Effect of pulp consistency during refining of pulp refining on fiber propertiesā€”A review. Carbohydrate Polymers Journal, 115: 785ā€“803 (2015).

    Google ScholarĀ 

  185. Brandberg, A. ā€“ Insights in paper and paperboard performance by fiber network micromechanics. KTH Royal Institute of Technology. Stockolm, 2019 20 pgs www.diva-portal.org/smash/get/diva2:1355441/FULLTEXT01

  186. Berthold, J. and SalmĆ©n, L. ā€“ Effects of mechanical and chemical treatments on the pore-size distribution in wood pulps examined by inverse size-exclusion chromatography. Journal of Pulp and Paper Science, 23 (6): 245ā€“253 (1997).

    Google ScholarĀ 

  187. Dinus, R. J. and Welt, T. ā€“ Tailoring fiber properties to paper manufacture: recent developments. Tappi Journal, 80 (4): 127ā€“139 (1997).

    Google ScholarĀ 

  188. Higgins, H. G.; Young, J. de; Balodis, V.; Phillips, F. H. and Colley, J. ā€“ The density and structure of hardwoods in relation to paper surface characteristics and other properties. In: Process Engineering Handbook. Ed. Process Engineering Committee of the Engineering Division. Tappi Press, Atlanta, 1992, 2nd Edition Appendix: 77ā€“81.

    Google ScholarĀ 

  189. Luukko, K.; Laine, J. and Pere, J. ā€“ Chemical characterization of different mechanical pulp fines. Appita Jorunal, 51 (2): 126ā€“131 (1999).

    Google ScholarĀ 

  190. Waterhouse, J. F. and Riipa, T. ā€“ Hardwoods from softwoods? In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta, 1995 Paper 12 24 pgs.

    Google ScholarĀ 

  191. Snowman, V. R.; Genco, J. M.; Cole, B. J. W.; Kwon, H. B. and Miller, W. J. ā€“ Bond strength of oxygen-delignified kraft pulps. Tappi Journal, 82 (2): 103ā€“109 (1999).

    Google ScholarĀ 

  192. Oliveira, M. H. de ā€“ Wet web strength development of paper. Masterā€™s Thesis, McGill University, Montreal, 2007 118 pgs.

    Google ScholarĀ 

  193. Jardim, C. ā€“ VariaƧƵes na densidade bĆ”sica da madeira versus impacto no processo produtivo. In: 1Ā° Encontro de Operadores de PĆ”tio de Madeira e 5Ā° Encontro de Operadores de Linhas de Fibras. ABTCP. 2019.

    Google ScholarĀ 

  194. Bertolucci, F. L. G.; Demuner, B. J.; Garcia, S. L. R. and Ikemori, Y. K. ā€“ Increasing fiber yield and quality at Aracruz. In: Eucalypt Plantations: Improving Fibre Yield and Quality Conference. CRCTHF/IUFRO, Hobart, 1995 pgs. 31ā€“34.

    Google ScholarĀ 

  195. SalmĆ©n, N. L. and Olsson, A-M. ā€“ Interaction between hemicelluloses, lignin and cellulose: structure-property relationships. Journal of Pulp and Paper Science, 24 (3): 99ā€“103 (1998).

    Google ScholarĀ 

  196. Gomide, J. L.;Colodette, J. L.; Oliveira, R. C. de; Girard, R. and Argyropoulos, D. S. ā€“ Fatores que afetam a branqueabilidade de polpas kraft de eucalyptus. Parte 2: InfluĆŖncia de parĆ¢metros da PolpaĆ§Ć£o. O Papel, 60 (12): 61ā€“70 (2000).

    Google ScholarĀ 

  197. Kubelka, V.; Wizani, W.; Neubauer, G. and Kappel, J. ā€“ ENERBATCH extended delignification for TCF pulp. In: International Non-Chlorine Bleaching Conference. Pulp & Paper/Emerging Technology Transfer, Amelia Island, 1994 Paper 3-2 23 pgs.

    Google ScholarĀ 

  198. Demuner, B. J. Viana Doria, E. L.; Claudio-da-Silva Jr., E. and Manfredi, V. ā€“ As propriedades do papel e as caracterĆ­sticas das fibras de eucalipto. In: XXIV Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1991 pgs. 621ā€“641.

    Google ScholarĀ 

  199. Cao, B.; Tschirner, U. and Ramaswamy, S. ā€“ Impact of pulp chemical composition on recycling. Tappi Journal, 81 (12): 119ā€“127 (1998).

    Google ScholarĀ 

  200. Hanna, K. R., Fisher, J. J.; Krotm, M. J.; Goyal, G. C.; Packwood, R. E. and Ragauskas, A. J ā€“ Differences in bleaching and refining responses of displacement batch hardwood and softwood caused by pulping conditions and structure of residual lignin. In: International Pulp Bleaching Conference. TAPPI, Helsinki, 1998 Book 2. pgs. 323ā€“328.

    Google ScholarĀ 

  201. Backstrom, M. and Jensen, A. ā€“ Modified kraft pulping to high kappa numbers. In: Annual General Conference. APPITA, (cidade: 1999 Volume 1 pgs. 101ā€“109.

    Google ScholarĀ 

  202. Colodette, J. L., Gomide, J. L., Girard, R., Jaaskelainen, A. S., Argyropoulos, D. S. ā€“ Influence of pulping conditions on hardwood pulp yield. Quality and bleachability. In: International Pulp Bleaching Conference, Halifax, 2000, pg 41ā€“48 ā€“ Oral presentation.

    Google ScholarĀ 

  203. El-Hosseiny, F. ā€“ Influence of the ā€œGiertz effectā€ on development of short-span compression strength. Tappi Journal, 81 (2): 177ā€“180 (1996).

    Google ScholarĀ 

  204. Moss, P. A. and Pere, J. ā€“ Microscopical study on the effects of partial removal of xylan on the swelling properties of birch Kraft pulp fibres. Nordic Pulp and Paper Research Journal, 21 (1): 8ā€“12 (2006).

    Google ScholarĀ 

  205. Antes, R. and Joustino, O. P. ā€“ Fiber surface and paper technical properties of Eucalyptus globulus and Eucalyptus nitens ā€“ pulps after modified cooking and bleaching. BioResources, 10 (1): 1599ā€“1616 (2015).

    Google ScholarĀ 

  206. Wang, X. ā€“ Improving the papermaking properties of kraft pulp by controlling hornification and internal fibrillation. Doctoral Thesis, Helsinki University of Technology, Espoo, 2006 88 pos http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.575.9047&rep=rep1&type=pdf

  207. Pere, J.; PƤƤkkƶnen, E., Ji, Y.; Retulainen, E. ā€“ Influence of the hemicellulose content on the fiber properties, strength, and formability of handsheets. BioResources, 14 (1): 251ā€“263 (2019).

    Google ScholarĀ 

  208. WĆ„gberg, E. and Lindstrƶm, M. E. ā€“ The hemicellulose composition of pulp fibres and their ability to endure mechanical treatment. Tappi Journal, 6 (10): 19ā€“24 (2007).

    Google ScholarĀ 

  209. Genco, J. M. ā€“ Fundamental process in stock preparation and refining. In: Pulping Conference. TAPPI, Orlando, /1999 pgs. 57ā€“95.

    Google ScholarĀ 

  210. Barbosa, B. M.; Colodette, J. L.; Muguet, M. C dos S.; Gomes, V. J.; e Rubens, C. de O. ā€“ Effects of xylan in eucalyptus pulp production. CERNE, 22 (2): 207ā€“213 (2016).

    Google ScholarĀ 

  211. Antes, R. and Joutsimo, O. P. ā€“ Effect of modified cooking on fiber wall structure of E. globulus and E. nitens. BioResources, 10 (2): 2195ā€“2212 (2015).

    Google ScholarĀ 

  212. Ferreira, M. and Santos, P. E. F. ā€“ Eucalyptus wood traits for species/provenances/plus trees and clones planted in Brazil ā€“ a review applied to genetic improvement for pulp production. In: Eucalypt Plantations: Improving Fibre Yield and Quality Conference. CRCTHF/IUFRO, Hobart, 1995 pgs. 258ā€“260.

    Google ScholarĀ 

  213. Gonzaga, J. V. ā€“ Qualidade da madeira e da celulose kraft de treze espĆ©cies de Eucalyptus. Masterā€™s Thesis, Universidade Federal de ViƧosa, ViƧosa, 1983 119 p.

    Google ScholarĀ 

  214. Claudio-da-Silva Jr, E. ā€“ The Flexibility of pulp fibers ā€“ a structural approach. In: International Paper Physics Conference. TAPPI/CPPA, Harwichport, 1983 pgs. 13ā€“25.

    Google ScholarĀ 

  215. Parhan, P. A. ā€“ Wood physical properties. In: Pulp and Paper Manufacture ā€“ Volume 1 ā€“ Properties of Fibrous Raw Materials and Their Preparation for Pulping. Ed. Kocureck, M. J. and Stevens, C. F. B. The Technical Committee of the Paper Industry, Atlanta/Montreal, 1983 pg. 46ā€“54

    Google ScholarĀ 

  216. Miranda, C. R. and Barrichelo, L. E. G. ā€“ Celulose de madeira de E. citriodora: influĆŖncia do tamanho dos cavacos. In: XXIII Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo: 1990 pgs. 01ā€“34.

    Google ScholarĀ 

  217. Evans, R.; Kibblewhite, R. P. and Lausberg, M. ā€“ Relationships between wood and pulp properties of twenty-five 13 year old radiata pine trees. Appita Journal, 52 (2): 133ā€“139 (1999).

    Google ScholarĀ 

  218. Mohlin, U.-B e Miller, J. ā€“ Industrial refining ā€“ effects of refining conditions on fibre properties. In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta, 1995 Paper 4.

    Google ScholarĀ 

  219. Meadows, D. G. ā€“ An eye to the future: stock preparation. Tappi Journal, 81 (2): 70ā€“78 (1998).

    Google ScholarĀ 

  220. Dowens, G. M. ā€“ Wood properties of interest in plantation productivity. In: Sampling Plantation Eucalyptus for Wood and Fibres Properties. Chapter 1. Ed. Dewens, G. M. et al CSIRO Publishing, Collingwood, 1997 pgs. 1ā€“8.

    Google ScholarĀ 

  221. Carrillo, I.; Aguayo, M. G.; MendonƧa, S. V. R. T. and Elissetche, J. P. ā€“ Variations in wood anatomy and fiber biometry of Eucalyptus globulus genotypes with diferent wood density. Wood Research. 60 (1): 1ā€“10 (2015).

    Google ScholarĀ 

  222. Trugilho, P. F.; Mendes, L. M.; Lima, J. T. and Silva, J. R. M. da ā€“ Uso de tĆ©cnicas multivariadas na classificaĆ§Ć£o de clones de eucalipto para produĆ§Ć£o de celulose e papel. In: XXX Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1997 pgs. 309ā€“315.

    Google ScholarĀ 

  223. Silva, D. de J., Oliveira, R. C. de; Colodette, J. L. and Gomide, J. L ā€“ Impacto da qualidade da madeira na deslignificaĆ§Ć£o, no branqueamento e nas propriedades fĆ­sico-mecĆ¢nicas da polpa kraft de eucalipto. In: XXIX Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo 1996 pgs. 453ā€“470.

    Google ScholarĀ 

  224. SalmĆ©n, L.; Olsson, A-M.; Stevanic, J. S.; Simonović, J. and Radotić, K. ā€“ Structural organization of the wood polymers in the wood fibre. BioResources, 7 (1): 521ā€“532 (2012).

    Google ScholarĀ 

  225. Leask, R. A. ā€“ Introduction. In: Pulp and Paper Manufacture, Volume 2, Mechanical Pulping. R. A. Leask, Ed. Joint-Textbook Committee, Technical Section. CPPA/TAPPI.

    Google ScholarĀ 

  226. Berggren, R. ā€“ Cellulose degradation in pulp fibers studied as changes in molar mass distributions. Doctoral Thesis, Royal Institute of Technology, Stockholm, 2003 94 pgs https://www.diva-portal.org/smash/get/diva2:9304/FULLTEXT01.pdf

  227. Derakhshandeh, B.; Kerekes, R.; Hatzikiriakos, S. and Bennington, C. ā€“ Rheology of pulp fibre suspensions: A critical review. Chemical Engineering Science 66: 3460ā€“3470 (2011).

    Google ScholarĀ 

  228. Eklund, D. and Lindstrƶm, T. ā€“ Paper chemistry ā€“ An introduction. DT Paper Science Publications, Grankulla, Finland, 1991 305 pgs.

    Google ScholarĀ 

  229. Martinez, P. C. and, S. W. ā€“ Modelos matemĆ”ticos de uma fibra celulĆ³sica em processo de refino em baixa consistĆŖncia. In: V CIADICYP ā€“ Congreso Iberoamericano de InvestigaciĆ³n en Celulosa y Papel, Guadalajara, 2006 12 pgs https://www.eucalyptus.com.br/artigos/2006_Modelagem+Fibras+Refinador.pdf

  230. Chauhan, A.; Kumari, A. and Ghosh, U. K. ā€“ Blending impact of softwood pulp with hardwood pulp on different paper properties. Tappsa Journal,. 2: 16ā€“22 (2013).

    Google ScholarĀ 

  231. Hubbe, M. A.; Venditti, R. V. and Rojas, O. J. ā€“ What happens to cellulosic fibers during papermaking and recycling? A Review. BioResources, 2 (4): 739ā€“788 (2007).

    Google ScholarĀ 

  232. Uesaka, T. and Moss, C. ā€“ Effects of fibre morphology on hygroexpansivity of paper: a micromechanics approach. In: 11st Fundamental Research Symposium. PIRA, Leatherhead, 1997 pgs. 663.

    Google ScholarĀ 

  233. Bjurhager, I. ā€“ Mechanical behaviour of hardwoods ā€“ effects from cellular and cell wall structures. KTH Royal Institute of Technology, Stockolm, 2008 36 pgs. www.diva-portal.org/smash/get/diva2:14173/FULLTEXT01

  234. MacLeod, M. and Pelletier, L. J. ā€“ Basket cases: kraft pulps inside digesters. Tappi Journal, 70 (11): 47 (1987)

    Google ScholarĀ 

  235. De Grace, J. and Page, D. H. ā€“ The extensional behavior of commercial softwood bleached kraft pulps. Tappi Journal, 59 (7): 98 (1976).

    Google ScholarĀ 

  236. Lumiainen, J. ā€“ Refining ā€“ a key to upgrading the papermaking potential of recycled fibre. Paper Technology,35 (9): 41ā€“44 (1994).

    Google ScholarĀ 

  237. Liu, H.; Jixian Dong. J.; Guo, X.; Jiang, X.; Luo, C.; Xiaohui Tian, X.; Yang, R.; Zhang, L.; Bo Wang, B.; Yan, Y. ā€“ Refining characteristics of hardwood pulp using straight and curved bar plates. Journal of Korea TAPPI, 51 (5): 45ā€“60 (2019).

    Google ScholarĀ 

  238. Li, M.; Johnston, R. E.; Xu, L.; Filonenko, Y. and Parker, I. ā€“ Characterization of hydrocycone-separated eucalypt fibre fractions. Journal of Pulp and Paper Science, 25 (8): 299ā€“304 (1999).

    Google ScholarĀ 

  239. Nazhad, M. M. ā€“ Recycled fibre quality ā€“ a review. Journal of Industrial and Engineering Chemistry, 11 (3): 314 (2005).

    Google ScholarĀ 

  240. Sharp, S. ā€“ A technical look at pulp & paper fiber. FI Insights. Fisher International. (2020) www.fisheri.com/blog/a-technical-look-at-pulp-paper-fiber-properties

  241. Jang, H. F. ā€“ A theory for the transverse collapse of wood pulp fibres. In: 13th Fundamental Research Symposium, PIRA, Oxford, 2001, pg. 193.

    Google ScholarĀ 

  242. Johansson, K.; Thuvander, F. and GermgĆ„rd, U. ā€“ Single fibre fragmentation: a new measure of fibre strength loss during brown stock washing and oxygen delignification. Appita Journal, 54 (3): 276ā€“280 (2001).

    Google ScholarĀ 

  243. Miletzky, F.; Erhard, K. and Alber, W. ā€“ Neue methoden zur chemischen und physikalischen charakterisierung von Zellstoffen. PTS Symposium, Dresden, 1995.

    Google ScholarĀ 

  244. Area, C, ā€“ Updating the knowledge about the relationship between fibers characteristics and pulp properties. In: 48th congresso Internacional da ABTCP, SĆ£o Paulo, 2012. Oral presentation) https://www.eucalyptus.com.br/artigos/2012_Fibers+and+Pulps.pdf

  245. Smith, S. ā€“ The action of the beater in papermaking. Paper Trade Journal, 106 (26): 47ā€“48 (1922) [583, 1031].

    Google ScholarĀ 

  246. Azevedo, C. A.; Sofia M. C.; Rebola, S. M. C.; Domingues, E. M.; Figueiredo, F. M. L. and Evtuguin, D. V. ā€“ Relationship between surface properties and fiber network parameters of eucalyptus kraft pulps and their absorption capacity Surfaces, 3: 265ā€“281 (2020) https://www.researchgate.net/publication/342581602_Relationship_between_Surface_Properties_and_Fiber_Network_Parameters_of_Eucalyptus_Kraft_Pulps_and_Their_Absorption_Capacity

  247. Dalpke, B. and Kerekes, R. J. (2005). The influence of fibre properties on the apparent yield stress of flocculated fibre suspensions. Journal of Pulp and Paper Science, 31 (1): 39ā€“43 (2005).

    Google ScholarĀ 

  248. Havelock, G. ā€“ Dynamic simulation of press drying. Paper Technology, 31 (8) (1990).

    Google ScholarĀ 

  249. Ellis, R. L. and Sedlachek, K. ā€“ Recycled vs. virgin fiber characteristics: a comparison. Tappi Journal, 76 (2): 143ā€“146 (1993).

    Google ScholarĀ 

  250. Pulkkinen, I.; Kuitunen, S.; Alopaeus, V. ā€“ The most important eucalypt fiber properties for fiber network strength and structural property development. In: 5th ICEP International Colloquium on Eucalyptus Pulp. Porto Seguro, 2011 9 pgs www.eucalyptus.com.br/artigos/outros/49_Fibers_Characteristics.pdf

  251. Dowens, G. M.; Hudson, I. L. and Raymond, C. A. ā€“ Variation in fibre dimensions in plantation eucalyptus. In: Sampling Plantation Eucalyptus for Wood and Fibre Properties. Ed. Dowens, G. M. and co-authors. CSRIO Publishing, Collingwood, 1997 Appendix 2 pgs. 100ā€“109.

    Google ScholarĀ 

  252. Paavilainen, L. and Luner, P. ā€“ Wet flexibility as a predictor of sheet properties. Espra Research Reports, 84 (IX): 2 (1986).

    Google ScholarĀ 

  253. Wardrop, A. B. ā€“ Fibre morphology and papermaking. Tappi Journal, 52 (3): 396 (1969).

    Google ScholarĀ 

  254. Gao, Y.; Li, K. and Wang, Z. ā€“ The influence of pulp furnish components on the property of supercalendered paper. Pulp and Paper Canada, 108 (1): 44ā€“49 (2007).

    Google ScholarĀ 

  255. Pulkkinen, I.; Fiskari, J. and Alopaeus, V. ā€“ The use of fibre wall thickness data to predict handsheet properties of eucalypt pulp fibres. Journal of Applied Science, 9 (22): 1 (2009)

    Google ScholarĀ 

  256. Gƶrres, J.; Amiri, R.; Wood, J. R. and Karnis, A. ā€“ The apparent density of sheets made from pulp blends. Tappi Journal, 79 (1): 179ā€“187 (1996).

    Google ScholarĀ 

  257. Carvalho, M. G.; Martins, A. A. and Figueiredo, M. M. ā€“ Fracionamento de pasta kraft de eucalipto: caracterizaĆ§Ć£o fĆ­sico-quĆ­mica e desempenho papeleiro. O Papel, 58 (7): 83ā€“86 (1997).

    Google ScholarĀ 

  258. Maloney, T. C. ā€“ On the pore structure and dewatering properties of the pulp fiber cell wall. Doctoral Thesis, Helsinki University of Technology, Esppo, 2000. 52 pgs https://www.researchgate.net/publication/34731327_On_the_pore_structure_and_dewatering_properties_of_the_pulp_fiber_cell_wall

  259. Yu, Y.; Kettunen, H.; Hiltunen, E. and Niskanen, K. ā€“ Comparison of abaca and spruce as reinforcement. In: International Paper Phuysics Conference. TAPPI, Sao Diego, 1999 p. 161ā€“169.

    Google ScholarĀ 

  260. Karnis, A. ā€“ The mechanism of fiber development in mechanical pulping. Journal of Pulp and Paper Science, 20 (10): 280ā€“288 (1994).

    Google ScholarĀ 

  261. Mansfield, S.D. and Kibblewhite, R.P. ā€“ Reinforcing potential of different eucalypt:softwood blends during separate and co-PFI mill refining. Appita Journal, 53 (5): 385ā€“392 (2000).

    Google ScholarĀ 

  262. Yli-Viitala, P.; Jokinen, H.; NiinimƤki e ƄmmƤlƤ, A. ā€“ Hydrocyclone sand separation. In: 59th Annual Meeting. APPITA, Auckland, 2005 pg 39ā€“43.

    Google ScholarĀ 

  263. BƤckstrƶm, M.; Melander, E. and BrƤnnall, E. ā€“ Study of the influence of charges on refinability of bleached softwood kraft pulp. Nordic Pulp and Paper Research Journal, 28 (4): 588ā€“595 (2013)

    Google ScholarĀ 

  264. AtaĆ­de, M. R. and Figueiredo, M. M. L. ā€“ Algumas consideraƧƵes sobre a caracterizaĆ§Ć£o de fibras celulĆ³sicas. Pasta e Papel (4): 55ā€“58 (1992).

    Google ScholarĀ 

  265. Lumiainen, J. ā€“ Energy saving in low consistency refining. Journal of Pulp and Paper Science, 19 (3): J125-J130 (1993).

    Google ScholarĀ 

  266. Dillner, B e Tibbing, P. ā€“ Iso-thermal cooking to low kappa numbers facilitates TCF bleaching to full brightness. In: International Non-Chlorine Bleaching Conference. Pulp & Paper/Emerging Technology Transfer, Hilton Head, 1993 Paper 37 27 pgs.

    Google ScholarĀ 

  267. Carlsson, J.; Persson, W.; Hellentin, P. and Malmqvist, L. ā€“ The propagation of light in paper: modeling and Monte Carlo simulations. In: International Paper Physics Conference. TAPPI, Niagara-on-the-lake, 1995 pgs. 83ā€“86.

    Google ScholarĀ 

  268. Laivins, G. V. and Scallan, A. M. ā€“ Removal of water from pulps by pressing. Part 1: inter- and intra-wall water. Tappi Journal, 77 (3): 125ā€“131 (1994).

    Google ScholarĀ 

  269. Hietanen, S. and Ebeling, K. ā€“ A new hypothesis for the mechanics of refining. Paperi ja Puu, 72 (2): 172ā€“179 (1990).

    Google ScholarĀ 

  270. Crotogino, R. H. and Gratton, M. F. ā€“ On-machine calendering ā€“ the process. In: TECH95 Theory & Practice of Papermaking Course. CPPA, Ottawa, 1995 Section F1 33 pgs.

    Google ScholarĀ 

  271. Salvador, E.; Colodette, J. L.; Gomide, J. L. and Oliveira, R. C. de ā€“ Efeito da deslignificaĆ§Ć£o com oxigĆŖnio nas propriedades fĆ­sico-mecĆ¢nicas de polpas kraft. O Papel, 61 (2): 75ā€“96 (2001).

    Google ScholarĀ 

  272. Heikkurinen, A.; Levlin, J.-E. and Paulapuro, H. ā€“ Principles and methods in pulp characterization ā€“ basic fiber properties. Papperi ja Puu, 73 (5): 411ā€“417 (1991).

    Google ScholarĀ 

  273. Kibblewhite, R. P. and Bawden, A. D. ā€“ Blends of extreme high and low coarseness radiata pine kraft pulps ā€“ fibre and handsheet properties. Appita, 43 (3): 199ā€“207 (1990).

    Google ScholarĀ 

  274. Clarke, C. R. E.; Garbutt, D. C. F. and Pearce, J. ā€“ Growth and wood properties of preveances and trees of nine eucalypt especies. Appita Journal, 50 (2): 121ā€“130 (1997).

    Google ScholarĀ 

  275. Carpim, M. A.; Barrichelo, L. E. G.; Claudio-da-Silva Jr., E. and Dias, R. L. de V. ā€“ A influĆŖncia do nĆŗmero de fibras por grama nas propriedades Ć³pticas do papel. In: XX Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1987 pgs. 183ā€“205.

    Google ScholarĀ 

  276. Kibblewhite, R. P. ā€“ Effects of pulp drying and refining on softwood fibre wall structural organizations. In: 9th Fundamental Research Symposium, PIRA, Cambridge, 1989 pgs. 121ā€“152.

    Google ScholarĀ 

  277. Kibbewhite, R. P. and Bawden, A. D. ā€“ Fibre and fibre wall response to refining in softwood and hardwood kraft pulps. PAPDRO-New Zealand B. Report, 69, 1990.

    Google ScholarĀ 

  278. Hortal, J. G. ā€“ Composicion quimica y estructura de la fibra. In: Constituyentes fibrosos de pastas y papeles. Ed. Escuela TĆ©cnica Superior de Ingenieros Industriales de Terrassa, 1988 Capitulo 2 pgs. 11ā€“36.

    Google ScholarĀ 

  279. Atack, D. ā€“ Towards a theory of refining mechanical pulping. Appita, 34 (3): 223ā€“227 (1980).

    Google ScholarĀ 

  280. Rantanen, J.; Hitunen, E.; Nieminen, K.;Kerekers, R. and Paulapuro, H. ā€“ Construction or a wintl3 bar refinin34. Tappi Journal, 10 (7): 45ā€“51. (2011).

    Google ScholarĀ 

  281. Lewis, D. W. and Danforth, J. ā€“ Stock preparation analysis. Tappi Journal, 45 (3): 185ā€“188 (1962).

    Google ScholarĀ 

  282. LeskelƤ, M. ā€“ A model for the optical properties of paper. Part 1: theory. Paperi ja Puu, 75 (9ā€“10): 683ā€“688 (1993).

    Google ScholarĀ 

  283. Luce, J. E. ā€“ Transverse collapse of wood pulps fibers: fiber models, the physics and chemistry of wood pulp fibers. In: Tappi STAP number 8, 1970.

    Google ScholarĀ 

  284. Mark, R. E. ā€“ Handbook of physical and mechanical testing of paper and paperboard. Marcel Deckker, Inc., New York, 1984 508 pgs.

    Google ScholarĀ 

  285. Mayr, M.; Eckard, R.; Thaller, A. and Bauer, W. ā€“ Characterization of fines quality and that independent effect on sheet properties. In: 15th Fundamental Research Simposium, Oxford, 2017 pgs 299ā€“322.

    Google ScholarĀ 

  286. Motamedian, H. R.; Halilovic, A. E. and Kulachenko, A. ā€“ Mechanisms of strength and stiffness improvement of paper after PFI refining with a focus on the effect of fines. Cellulose 26: 4099ā€“4124 (2019).

    Google ScholarĀ 

  287. Fischer, W. J.; Mayr, M.; Spirk, S.; Reishofer, D.; Jagiello, L. A.; Schmiedt, R.; Colson, J.; Zankel, A. and Bauer, W. ā€“ Pulp finesā€”characterization, sheet formation, and comparison to microfibrillated cellulose. Polymers, 9: 12 pgs (2017).

    Google ScholarĀ 

  288. Comelato, J. S.; Ventorim, G.; Caraschi, J. C.; Santos, I. R. dos ā€“ GeraĆ§Ć£o de finos no branqueamento de pasta kraft de eucalipto e seu efeito nas propriedades do papel. Revista Ɓrvore, 37 (1) (2013).

    Google ScholarĀ 

  289. BƤckstrƶm, M.; Kolar, M.-C. and Htun, M. ā€“ Characterization of fines from unbleached kraft pulps and their impact on sheet properties, Holzforschung, 62 (5): 546ā€“552 (2008).

    Google ScholarĀ 

  290. Lƶnnberg, L B.; JƤkƤrƤ, J.; ParĆØn, A. and Lundin, T. ā€“ Beating of chemical pulps from various wood raw materials. In: PTS Symposium (1999) https://www.researchgate.net/publication/284187811_Beating_of_chemical_pulps_made_from_various_wood_raw_materials

  291. Retulainen, E. and Ebeling, K. ā€“ Fibre to fibre bonding and ways to characterize the bond strength. Appita Journal, 46 (2): 282ā€“288 (1993).

    Google ScholarĀ 

  292. Kibblewhite, R. P. ā€“ The fibres of mechanical pulps ā€“ drying and latency effects. Appita, 35 (3): 216ā€“224 (1981).

    Google ScholarĀ 

  293. ForsskĆ„hl, I.; Tylli, H. and Olkkonen, C. ā€“ Participation of carbohydrate-derived chromophores in the yellowing of high-yield and TCF pulps. Journal of Pulp and Paper Science, 26 (7): 245ā€“249 (2000).

    Google ScholarĀ 

  294. Oā€™Neil, P. L.; Karen, D. H. and Michell, A. J. ā€“ and Tijero, J. ā€“ Focused beam reflectant measurement as a tool to measure flocculation. Tappi Journal, 1 (10): 14ā€“20 (2002).

    Google ScholarĀ 

  295. Htun, M. and Ruvo, A. D. ā€“ Implication of fines fraction for properties of bleached Kraft sheet. Svensk Papperstidning, 81 (16): 507ā€“510 (1978)

    Google ScholarĀ 

  296. Wang, Q. Q.; Zhu, J. K.; Gleisner, R.; Kuster, T. A.; Baxa, U. and McNeil, S. E. ā€“ Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose, 19: 1631ā€“1643 (2012).

    Google ScholarĀ 

  297. Ratnieks, E. and Martins, M. A. L. ā€“ Eucalyptus refining and white water quality. In: XXXV Congresso Anual. ABTCP, SĆ£o Paulo, 1992 11 pgs.

    Google ScholarĀ 

  298. Lindstrƶm, T. ā€“ Chemical factors affecting the behavior of fibres during papermaking. Nordic Pulp and Paper Research Journal, 7 (4): 181ā€“192 (1992).

    Google ScholarĀ 

  299. Scallan, A. M. ā€“ The Effect of Acidic Groups on the Swelling of Pulps, Tappi Journal, 66(11), 73 (1983).

    Google ScholarĀ 

  300. Hammar, L-ƅ; BƤckstrƶm, M. and Htun, M. ā€“ Efeitos da concentraĆ§Ć£o de eletrĆ³lito e do pH na caracterĆ­stica de refino de celuloses kraft nĆ£o branqueadas. O Papel, 63 (8): 79ā€“86 (2003).

    Google ScholarĀ 

  301. Kuitunen; S.; Pulkkinen, I.; Tarvo, V. and Alopaeus, V. ā€“ Modeling of fiber swelling. In: 5th ICEP ā€“ International Colloquium on Eucalyptus Pulp, Porto Seguro, 2011 9 pgs.

    Google ScholarĀ 

  302. Kuitunen, S., and, Tarvo, V. ā€“ Modeling of fiber swelling. In: 5th International Colloquium on Eucalyptus Pulp. Porto Seguro, 2011 9 pgs.

    Google ScholarĀ 

  303. Lobben, H. T. ā€“ The tensile stiffness of paper. Part 2: Activation studied by freeze drying. Nordic Skogindustri, 30 (3): 43ā€“48 (1976)

    Google ScholarĀ 

  304. Lindstrƶm, T. and Carlsson, G. ā€“ The effect of carboxyl groups and their ionic form during drying aon the hornification of cellulose fibers. Svensk Papperstiding,85 (15): 146ā€“151 (1982).

    Google ScholarĀ 

  305. Wang, X., Paulapuro, H. and Maloney, T. C. ā€“ Chemical pulp refining for optimum combination of dewatering and tensile strength. Nordic Pulp and Paper Research Journal, 20 (4): 442ā€“447 (2005)

    Google ScholarĀ 

  306. Joris, G. ā€“ Optimized fillings for LC refiners. In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta, 1995 Paper 22 89 pgs.

    Google ScholarĀ 

  307. Stone, J. E. and Scallan, A. M. ā€“ The effect of component removal upon the porous structure of the cell wall of wood. Part 2 ā€“ swelling in water and the fibre saturation point. Tappi, 50 (10): 496ā€“501 (1967).

    Google ScholarĀ 

  308. Lindstrƶm, T. and Kolman, M. ā€“ The effect of pH and electrolyte concentration during beating and sheet forming on paper strength. Svensk Paperstiding, 85 (15): 140 (1982).

    Google ScholarĀ 

  309. Scallan, A. M. and Grignon, J. ā€“ The efeect of cations on pulp and paper properties. Svensk Papperstiding., 82 (2): 40ā€“47 (1979)

    Google ScholarĀ 

  310. Barzyk, D.; Page, D. H. and Ragauskas, A. ā€“ Acidic group topochemistry and fibre-to-fibre specific bond strength. Journal of Pulp and Paper Science, 23 (2): 59ā€“61 (1997).

    Google ScholarĀ 

  311. Laine, J. ā€“ The effect of surface chemical composition and charge on the fibre and paper properties of unbleached and bleached kraft pulps.Doctoral Thesis, Helsinki University of Technology, Espoo, 1996.

    Google ScholarĀ 

  312. Koljonen, K.; Ɩsterberg, M.; Kleen, M.; Fuhrmann, A. and Stenius, P. ā€“ Precipitation of lignin and extractives on kraft pulp: Effect on surface chemistry, surface morphology and paper strength. Cellulose, 11: 209ā€“224 (2004).

    Google ScholarĀ 

  313. Laivins, G. and Scallan, T. ā€“ Acidic versus alkaline beating of pulp. Journal of Pulp and Paper Science, 26 (6): 228ā€“233 (2000).

    Google ScholarĀ 

  314. Shen, W.; Yao, W.; Li, M. and Parker, I. ā€“ Characterization of eucalypt fibre surface using inverse gas chromatography and X-ray photoelectron spectroscopy. Appita Journal, 51 (2): 147ā€“151 (1998).

    Google ScholarĀ 

  315. Torgnysdotter, A. and WĆ„gberg, L. ā€“ Study of the joint strength between regenerated cellulose and its influence on the sheet strength. Nordic Pulp and Paper Research Journal, 18 (4): 455ā€“459 (2003).

    Google ScholarĀ 

  316. WĆ„gberg, L.; Bjorklund, M ā€“ On the mechanism behind wet strength development in papers containing wet strength resins. Nordic Pulp and Paper Research Journal, 8 (8): 53 (1993).

    Google ScholarĀ 

  317. Isogai, A.; Kitaoka, C.; Onabe, F. ā€“ Effects of carboxyl groups in pulp on retention of alkylketene dimer. Journal of Pulp and Paper Science, 23 (5): 215 (1997).

    Google ScholarĀ 

  318. Hirn, U. and Schennach, R ā€“ Fiber-fiber bond formation and failure: mechanisms and analytical techniques. In: 16th Fundamental Research Symposium, Oxford, 2017 pgs 839ā€“863. https://bioresources.cnr.ncsu.edu/wp-content/uploads/2019/03/2017.2.839.pdf

  319. BƤckstrƶm, M. and Hammar, L-A ā€“ The influence of the counter-ions to the charged groups on the refinability of the never-dried bleached pulps. BioResources, 5(4): 2751ā€“2764 (2010).

    Google ScholarĀ 

  320. NiemelƤ, K.; AlĆ©n, R. and Sjƶstrƶm, E. ā€“ The formation of carboxylic acids during kraft and kraft-anthraquinone pulping of birch wood. Hozforschung, 39: 167ā€“172 (1985).

    Google ScholarĀ 

  321. Sjƶstrƶm, E. ā€“ The origin of charge on cellulosic fibres. Nordic Pulp and Paper Research Journal, 4 (4): 181 (1989).

    Google ScholarĀ 

  322. Jansson, J. ā€“ The influence of pH on fiber and paper properties: Different pH levels during beating and sheet forming. Masterā€™s Thesis. Karlstad University, Karlstad, 2015 43 pgs www.diva-portal.org/smash/get/diva2:823180/FULLTEXT01

  323. Choi, K. H.; Kim, A. R. and Cho, B. U. ā€“ Effects of alkali swelling and beating treatments on properties of kraft pulp fibers. BioResources, 11 (2): 3769ā€“3782 (2016).

    Google ScholarĀ 

  324. Barzyk, D.; Page, D. H. and Ragauskas, A. ā€“ Carboxylic acid groups and fibre bonding. The fundamentals of papermaking materials, Volume 2 pg. 893 (1997).

    Google ScholarĀ 

  325. Levlin, J. E. ā€“ Some differences in the beating behavior of softwood and hardwood kraft pulps. In: International Symposium on Fundamental Concepts of Refining. IPC, Appleton, 1980.

    Google ScholarĀ 

  326. Fiskari, J. ā€“ Oxalic acid formation in oxygen chemical bleaching. In: Pulping Conference. TAPPI, Orlando, 1999, volume 2, pgs. 7ā€“10.

    Google ScholarĀ 

  327. Keckes, J.; Burgert, I.; Fruhmann, K.; Muller, M.; Kolling, K.; Hamilton, M.; Burghammer, M.; Roth, S.V.; Stanzl-Tschegg, S. and Fratzl, P. ā€“ Cell-wall recovery after irreversible deformation in wood. Natural Materials, 2: 810ā€“814 (2003).

    Google ScholarĀ 

  328. Torgnysdotter, A. and WĆ„gberg, L. ā€“ Influence of electrostatic interactions on fibre/fibre joint and paper strength. Nordic Pulp and Paper Research Journal, 19 (4): 440ā€“447 (2004).

    Google ScholarĀ 

  329. Evans, B. E. ā€“ The effect of process water on paper properties. Paper Technology Ind., 22 (3): 99 (1981).

    Google ScholarĀ 

  330. Zhao, C.; Zhang, H.; Zeng, X.; Li, H. and Sun, D, ā€“ Enhancing the inter-fiber bonding properties of cellulosic fibers by increasing different fiber charges. Cellulose, (23): 1617ā€“1628 (2016).

    Google ScholarĀ 

  331. RƤsƤnen, E. ā€“ Modelling ion exchange and flow in pulp suspensions. Doctoral Thesis, Helsinki University of Technology, Espoo, 2003 62 pgs www.vttresearch.comsitesdefaultfilespdfpublications2003P495.pdf

  332. Wang, F. and Hubbe, M. A. ā€“ Charge properties of fibers in the paper mill environment. 1. effect of electrical conductivity. Journal of Pulp Paper Science, 28 (10): 347ā€“353 (2002).

    Google ScholarĀ 

  333. Paulapuro, H. ā€“ Wet pressing ā€“ present understanding and future chalenges. Translations of Fundamental Research Symposium, D.F.Baker Ed., BPBMA, London, 2001 639 pgs.

    Google ScholarĀ 

  334. Scallan, A. M. and Carles, J. E. ā€“ Correlation of water retention value with fiber saturation point. Svensk Papperstiding, 75 (17): 699ā€“703 (1972).

    Google ScholarĀ 

  335. Seth, R. S.; Barbe, M. C.; Willians, J. C. R. and Page, D. H. ā€“ The strength of wet webs. Tappi, 65 (3): 135 (1982).

    Google ScholarĀ 

  336. Vaz, A.; Silvy, J.; Gil, C. and SimƵes, R ā€“ OtimizaĆ§Ć£o na refinaĆ§Ć£o de pastas quĆ­micas: minimizaĆ§Ć£o enegĆ©tica e otimizaĆ§Ć£o conjugada de propriedades. In: 45th ABTCP International Pulp and Paper Congress and VII IberoAmerican Congress on Pulp and Paper Research. Sao Paulo., 2012 14 pgs.

    Google ScholarĀ 

  337. Stone, J. E.; Scallan, A. M. and Abrahamson, B. ā€“ Influence of beating on cell wall swelling and internal fibrillation. Svensk Papperstiding, 71 (19): 687ā€“694 (1968).

    Google ScholarĀ 

  338. Maloney, T. C.; Laine, J. E. and Paulapuro, H. ā€“ Comments on the measurement of cell wall water. Tappi Journal, 82 (9): 125ā€“127 (1999).

    Google ScholarĀ 

  339. Lee, J-Y.; Kim, C-H.; Kwon, S.; Park, H-H.; Yim, H-T.; Gu, H-G. and Min, B-G. ā€“ Study of mixed refining behaviors of softwood kraft pulps and hardwood kraft pulps using different bar fillings. Journal of Korea TAPPI, 50(5): 31ā€“38 (2018).

    Google ScholarĀ 

  340. Srndovic, J. S. ā€“ Interactions between wood polymers in wood cell walls and cellulose/hemicellulose biocomposites. Doctoral Thesis. Chalmers University of Technology, Goteborg, 2011 98 pgs https://core.ac.uk/download/pdf/70588365.pdf

  341. McIntoch, D. C. ā€“ The effect of refining on the structure of the fiber wall. Tappi, 50 (10): 482ā€“488 (1967).

    Google ScholarĀ 

  342. Emerton, H. W. ā€“ Fundamentals of the beating process. Marshall Press, London, 1957 137 pgs.

    Google ScholarĀ 

  343. Mayr, M.; Eckhart, R.; Winter, H. and Bauer, W. ā€“ A novel approach to determining the contribution of the fiber and fines fraction to the water retention value (WRV) of chemical and mechanical pulps. Cellulose 24: 3029ā€“3036 (2017

    Google ScholarĀ 

  344. Campos, E. da S. ā€“ A influĆŖncia do perfil transversal de umidade da folha na estabilidade dimensional do papel. In: XXVIII Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1995 pgs. 667ā€“675.

    Google ScholarĀ 

  345. Laivins, G. V. and Scallan, A. M. ā€“ The mechanism of hornification of wood pulps. In: 10th Fundamental Research Symposium. PIRA, Oxford, 1993 pgs. 1235ā€“1260.

    Google ScholarĀ 

  346. Chen, Y.; Wan, J.; Dong, X. and Ma, Y. ā€“ Fiber properties of eucalyptus kraft pulp with different carboxyl group contents. Cellulose, 20:2839ā€“2846 (2013).

    Google ScholarĀ 

  347. Waterhouse, J. F. ā€“ The ultimate strength of paper. In: Design Criteria for Paper Performance. Ed. Kolseth, P; Fellers, C. and Salmen, L. STFI, Meddelande A 969, 1987.

    Google ScholarĀ 

  348. Ingmanson, W. and Thode, E. ā€“ Factors contributing to the strength of paper ā€“ relative bonded area. Tappi, 42 (1): 83ā€“93 (1959).

    Google ScholarĀ 

  349. Luner, P.; Karna, A. E. U. and Donofrio, C. P. ā€“ Studies in inter fiber bonding of paper ā€“ the use of optical bonded areas with high yield pulps. Tappi, 46 (6): 409ā€“414 (1961).

    Google ScholarĀ 

  350. Tanaka, F. and Fukui, N. ā€“ The behavior of cellulose molecules in aqueous environments. Cellulose, 11: 33ā€“38 (2004).

    Google ScholarĀ 

  351. Retulainen, E. ā€“ The role of fibre bonding in paper properties. Doctoral Thesis, Helsinki University of Technology, Espoo, 1997 78 pgs https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB98102098.xhtml

  352. Vainio, A. and Paulapuro, H. ā€“ Observations on inter fibre bonding and fibre segment activation based on the strength properties of laboratory sheets. Nordic Pulp and Paper Research Journal, 20 (3): 340ā€“344 (2005).

    Google ScholarĀ 

  353. van den Akker, J. A. ā€“ Note on the theory of fiber-fiber bonding in paper. The influence on paper strength of drying by sublimation. Tappi, 35 (1): 13ā€“15 (1952).

    Google ScholarĀ 

  354. Weisse, U. and Paulapuro, H. ā€“ Effect of drying and rewetting cycles on fibre swelling. Journal of Pulp and Paper Science, 25 (5): 163ā€“166 (1999).

    Google ScholarĀ 

  355. Pelton, R. ā€“ A model of the external surface of wood pulp fibres. Nordic Pulp and Paper Research Journal, 8 (1): 113ā€“119 (1993).

    Google ScholarĀ 

  356. Ratnieks, E.; Mora, E. and Martins, M. A. L. ā€“ Propriedades papeleiras de misturas de polpas: fibras de eucalipto, aparas destintadas e fibras longas. In: XXVII Congresso Anual. ABTCP, SĆ£o Paulo (1994) 12 pgs

    Google ScholarĀ 

  357. Rusu M, Mƶrseburg K, Gregersen Ƙ, Yamakawa A, Liukkonen S. ā€“ Relation between fibre flexibility and cross sectional properties. Bioresources 6(1):641ā€“655 (2011).

    Google ScholarĀ 

  358. Springer, A.; Nabors, L. A. and Bhatia, O. ā€“ The influence of fiber, sheet structual properties and chemical additives on wet pressing. Tappi Journal, 74 (4):221 (1991).

    Google ScholarĀ 

  359. Brodeur, P. H. and Runge, T. M. ā€“ Compactability of a wet fibre mat using acoustic radiation pressure. Journal of Pulp and Paper Science, 22 (8): J278ā€“282 (1996).

    Google ScholarĀ 

  360. Santos, A.; Amaral, M. E.; Vaz, A.; Anjos, O. and SimƵes, R. ā€“ Effect of Eucalyptus globulus wood density on papermaking potential. Tappi Journal, 7 (5): 25ā€“32 (2008).

    Google ScholarĀ 

  361. Abitz, P. and Luner, P. ā€“ Applications of wet fiber flexibility (WFF) to papermaking: wet web strength and refining. Espra Research Reports, 90 (IV): 109ā€“110 (1989).

    Google ScholarĀ 

  362. Bentley, R. G.; Hamilton, R. K. and Jack, J. S. ā€“ An optical method for monitoring pulp refining. Journal of Pulp and Paper Science, 23 (10): 504ā€“509 (1997).

    Google ScholarĀ 

  363. Thode, E. F. and Ingmanson, W. L. ā€“ Factor contributing to the strength of a sheet paper. Tappi, 42 (1): 74ā€“83 (1959).

    Google ScholarĀ 

  364. Abitz, P.; Cresson, T; Brown, A. and Luner, P. ā€“ Role of web fiber flexibility in governing wet web properties ā€“ preliminary report. Espra Research Reports, 85 (VI): 93 (1986).

    Google ScholarĀ 

  365. Mohlin, U-B., Tubek-Lindblom, A., Luukko, Woo, Y. D. and Burman, A ā€“ Industrial refining of acacia. Appita Journal, 59 (1): 53ā€“57 (2006).

    Google ScholarĀ 

  366. Shekhar, C. D. ā€“ Fine edged parallel and curved bar plates in refining system for pulp and paper industries. IPPTA Journal, 24 (1): 115ā€“119 (2012).

    Google ScholarĀ 

  367. Shekhar, C. D. ā€“ Fine bar technology in refining system for pulp and paper industries. IPPTA Journal, 22 (3): 109ā€“112 (2010).

    Google ScholarĀ 

  368. Arjas, A. ā€“ Effect of the evenness of the pulp bleaching stage on fibre bonding. Paperi Ja Puu, 52 (12): 825ā€“829 (1970).

    Google ScholarĀ 

  369. Clark, J.dā€™A. ā€“ Fibrillation, free water and fiber bonding. Tappi, 52 (2): 335 (1969).

    Google ScholarĀ 

  370. van Eperen, R. H. ā€“ What do test result mean. In: Process and Product Quality Conference. TAPPI, Savannah, 1994 pgs. 45ā€“50.

    Google ScholarĀ 

  371. Allison, R. W.; Ellis, M. J. and Wrathall, S. H. ā€“ Interaction of mechanical and chemical treatments on pulp strength during kraft pulp bleaching. Appita Journal, 51 (2): 107ā€“113 (1998).

    Google ScholarĀ 

  372. Gurnagul, N.; Page, D. H. and Paice, M. ā€“ The effect of cellulose degradation on the strength of wood pulp fibres. Nordic Pulp and Paper Research Journal, 7 (3): 152 (1992).

    Google ScholarĀ 

  373. Seth, R. S. and Chan, B. K. ā€“ Measuring fiber strength of papermaking pulps. Tappi Journal, 82 (11): 115ā€“120 (1999).

    Google ScholarĀ 

  374. Duker, E. and Lindstrƶm, T. ā€“ On the mechanisms behind the ability of CMC to enhance paper strength. Nordic Pulp and Paper Research Journal, 23 (1): 57ā€“64 (2008).

    Google ScholarĀ 

  375. Stoere, P.; Nazhad, M. and Kerekes, R. J. ā€“ An experimental study of the effect of refining on paper formation. Tappi Journal, 84 (7): 52ā€“58 (2001)

    Google ScholarĀ 

  376. Switzer, L. H. and Kingenberg, D. J. ā€“ Simulations of fiber floc dispersion in linear flow fields. Nordic Pulp and Paper Research Journal, 18 (2): 141ā€“144 (2003).

    Google ScholarĀ 

  377. Steenberg, B. ā€“ A model of refining as a special case of milling. In: International Symposium on Fundamental Concepts of Refining. IPC, Appleton, 1980 pgs 107.

    Google ScholarĀ 

  378. Koskenhely, K.; ƄmmƤlƤ, A.; Jokinen, H. and Paulapuro, H. ā€“ Refining characteristics of softwood fibre fractions. In: 13th Fundamental Research Symposium ā€“ Advances in Paper Science and Technology Cambridge. 2005 pgs. 427ā€“456.

    Google ScholarĀ 

  379. Manfredi, V. and Claudio-da-Silva Jr, E. ā€“ Refining operating variables vs raw material. In: International Conference ā€“ Advances in Refining Technologies. PIRA, Birmingham, 1986 41 pgs.

    Google ScholarĀ 

  380. Joy, E.; Robinson, D. and Mathew, J. ā€“ Deformation of fiber flocs in refining. In: Papermakers Conference. TAPPI, 2001 5 pgs.

    Google ScholarĀ 

  381. Kibblewhite, R. P. Johnson, B. I. and Shelbourne, C. J. A. ā€“ Kraft pulp qualities of Eucalyptus nitens, E globulus and E maidenii at 8 and 11 years. New Zealand Journal of Forestry Science, 30(3): 447ā€“457 (2000).

    Google ScholarĀ 

  382. Almeida, M. D. de; Sevrini, G. I.; Leodoro, L. M., Faez, M. S., Soto, M. R., Kaneco, S. Y. ā€“ Tratamento mecĆ¢nico de fibra curta de eucalipto com utilizaĆ§Ć£o de discos de refino com maior comprimento de corte. O Papel, 66 (6): 80ā€“87 (2006).

    Google ScholarĀ 

  383. Demuner, B. J.; Viana Doria, E. L.; Claudio-da-Silva Jr., E. and Manfredi, V. ā€“ InfluĆŖncia das caracterĆ­sticas dos flocos sobre o refino de polpas quĆ­micas. O Papel, 54 (2): 29ā€“39 (1993).

    Google ScholarĀ 

  384. Beghello, L. and Eklund, D. ā€“ Some mechanisms that govern fibre flocculation. Nordic Pulp and Paper Research Journal, 12 (2): 119ā€“123 (1997).

    Google ScholarĀ 

  385. Beghello, L. and Eklund, D. ā€“ The influence of chemical environment on fibre flocculation. Journal of Pulp and Paper Science, 25 (7): 246ā€“250 (1999).

    Google ScholarĀ 

  386. Li, L.; Collins, A. and Pelton, R. ā€“ A new analysis of filler effects on paper strength. Journal of Pulp and Paper Science, 28 (8):267ā€“273 (2002).

    Google ScholarĀ 

  387. Kerekes, R. ā€“ Perspectives on fibre flocculation in papermaking. In: International Paper Physics Conference. TAPPI, Niagara-on-the-Lake, 1995. pgs. 23ā€“31.

    Google ScholarĀ 

  388. Lundin, T.; Lƶnnberg, B.; Soini, P. and Harju, K ā€“ Laboratory LC-refining of SBK pulps: effects of pulp consistency and dispersion. In: Scientific and Technical Advances in Refining & Mechanical Pulping ā€“ Course Notes. PIRA, Stockholm, 2003 Paper 5.

    Google ScholarĀ 

  389. Bjƶrkman, U. ā€“ Break-up of suspended fibre networks. Nordic Pulp and Paper Research Journal, 18 (1): 32ā€“37 (2003).

    Google ScholarĀ 

  390. Mason, S. G. ā€“ The motion of fibres in flowing liquids. Pulp and Paper Magazine Canada, x (51): 93ā€“100 (1950) [879]

    Google ScholarĀ 

  391. Kerekes, R. J. and Schell, C. J. ā€“ Characterization of fibre flocculation regimes by a crowding factor. Journal of Pulp and Paper Science, 18 (1): J32ā€“38 (1992)

    Google ScholarĀ 

  392. Sharkawya, K. E.; Haavistob, S.; Koskenhely, K. and Paulapuroa, H. ā€“ Effect of fiber flocculation and filling design on refiner loadability and refining characteristics. BioResources, 3 (2): 403-424 (2008).

    Google ScholarĀ 

  393. Nordstrƶm, B. and Hermansson, L. ā€“ Effect of fiber length on formation and strength efficiency in twin-wire roll forming. Nordic Pulp & Paper Research Journal, 32 (1):119ā€“125 (2017).

    Google ScholarĀ 

  394. Alfano, J. C.; Carter, P. W. and Whitten, J. E. ā€“ Use of scanning laser microscopy to investigate microparticle flocculation. Journal of Pulp and Paper Science, 25 (6): 189ā€“195 (1999).

    Google ScholarĀ 

  395. Laivins, G. V. and Scallan, A. M. ā€“ The influence of drying and beating on the swelling of fines. Journal of Pulp and Paper Science, 22 (5): 178ā€“184.1996).

    Google ScholarĀ 

  396. Retulainen, E.; Luukko, K.; Fagerholm. K.; Pere, J.; Laine, J. and Paulapuro, H. ā€“ Papermaking quality of fines from different pulps ā€“ the effect of shape, size and chemical composition. Appita Journal, 55 (6): 457ā€“467 (2002)

    Google ScholarĀ 

  397. LiitiƤ, T.; Maunu, S. L. and Hortling, B. ā€“ Solid-state NMR studies of residual lignin and its association with carbohydrates. Journal of Pulp and Paper Science, 26 (9): 323ā€“330 (2000).

    Google ScholarĀ 

  398. Eastwood, F. G. and Clarke, B. ā€“ Handsheet and pilot machine recycling degradation mechanism. In: Fibre Water Interactions in Papermaking Symposium. BPBIF, Oxford, 1978 Volume II: 835ā€“848.

    Google ScholarĀ 

  399. Seth, R. S. and Page, D. H. ā€“ The problem of using Pageā€™s equation to determine loss in shear strength of fiber-fiber bonds upon pulp drying. Tappi Journal, 79 (9): 206ā€“210 (1996).

    Google ScholarĀ 

  400. Joutsimo, O.; WathĆ©n, R. and RobertsĆ©n, L. ā€“ Role of fiber deformations and damage from fiber strength to end user. In: 13th Fundamental Research Symposium- Advances in Paper Science and Technology. Cambridge. 2005 pgs. 591ā€“611.

    Google ScholarĀ 

  401. Page, D. H. and Seth, R. S. ā€“ A note on the effect of fibre strength on the tensile strength of paper. Tappi Journal, 71 (10): 182 (1988).

    Google ScholarĀ 

  402. MacLeod, J. M.; McPhee, F. J.; Kingsland, K. A.; Tristram, R. W.; Oā€™Hagan, T. J.; Kowaiska, R. and e Thomas, B. C. ā€“ Pulp strength delivery along complete kraft mill fiber lines. Tappi Journal, 78 (8): 153ā€“160 (1995).

    Google ScholarĀ 

  403. Wathen, R, ā€“ Studies on fiber strength and its effect on paper properties. Doctoral Thesis. Helsinki University of Technology, Helsinki, 2006 98 pgs https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.554.2638&rep=rep1&type=pdf

  404. Page, D. H.; Seth, R. S. and El-Hosseiny, F. ā€“ Strength and chemical composition of wood pulp fibres. In: Papermaking raw materials, 8th Fundamental Research Symposium, London (1985).

    Google ScholarĀ 

  405. Mohlin, U.-B. ā€“ Low consistency beating ā€“ laboratory evaluation contra industrial experience. In: Current and Future Technologies in Refining. PIRA, Leatherhead, 1991 pgs 1ā€“14.

    Google ScholarĀ 

  406. Buchert, J.; Tenkanen, M. and Tamminen, T. ā€“ Characterization of carboxylic acids during kraft and Superbatch pulping. Tappi Journal, 84 (4): 70 (2001).

    Google ScholarĀ 

  407. Mohlin, U.-B e Miller, J. ā€“ Influence of industrial beating on fiber swelling and fiber shape. In: 4th International Conference on New Available Technologies ā€“ Current Tendencies. EUCEPA, Bologna, 1992 Volume 2 pgs. 274ā€“283.

    Google ScholarĀ 

  408. Kibblewhite, R. P. and Brookes, D. ā€“ Factors which influence the wet web strength of commercial pulps. Appita Jornal, 28 (4): 227ā€“231 (1975).

    Google ScholarĀ 

  409. Joutsimo, O.; Wathen, R. and Tamminen, T. ā€“ Effects of fiber deformations on pulp sheet properties and fiber strength. Paperi jaa Puu, 87 (6):392 (2005).

    Google ScholarĀ 

  410. Mohlin, U.-B. and Alfredsonn, C. ā€“ Fibre deformation and its implications in pulp characterization. Nordic Pulp and Paper Research Journal, 4 (5): 172ā€“179 (1990)

    Google ScholarĀ 

  411. Bennington, C. P. J. ā€“ Simultaneous chemical and mechanical treatment of pulp fibre and the resulting changes in pulp properties. Nordic Pulp and Paper Research Journal, 21 (1): 44ā€“48 (2006).

    Google ScholarĀ 

  412. Allison, R. W. and Wrathall, S. H. ā€“ Effect of pulping and bleaching conditions on the strength of kraft pulp. Part 2: comparison of three commercial softwoods. Appita, 47 (5): 369ā€“374 (1994).

    Google ScholarĀ 

  413. Allison, R. W.; Ellis, M. J., Kibblewhite, R. P. and Duffy, G. G. ā€“ Effect of mechanical processes on the strength of oxygen delignified kraft pulp. In: International Pulp Bleaching Conference. Helsinki, 1998 pgs. 159ā€“166.

    Google ScholarĀ 

  414. Mohlin, U. B.; Dahlbom, J. and Hornatowska, J. ā€“ Fiber deformation and sheet strength. Tappi Journal, 79 (6): 105ā€“111 (1996).

    Google ScholarĀ 

  415. Gominho, J. and Pereira, H. ā€“ Effect of refining in the fibre structure and properties in unbleached eucalypt pulps. In: International Conference on Cellulose and Cellulose Derivatives: Physico-Chemical Aspects and Industrial Applications, 1998 pgs. 529ā€“534.

    Google ScholarĀ 

  416. Kimura, M.; Kimura, S.; Qi, Z. D.; Kuga, S. and Isogai. A. ā€“ Porous structure of never dried pulp fi bers analyzed by nitrogen adsorption method. In: 15th Fundamental Research Symposium, Cambridge, 2013 pgs 821ā€“836

    Google ScholarĀ 

  417. DeRuvo, A. and Htun, M. ā€“ Fundamental and practical aspects of paper making with recycled fibers. In: The Role of Fundamental Research in Papermaking. BP&BMA, London, 1983 Volume 1 pgs. 195ā€“225.

    Google ScholarĀ 

  418. Attwood, D. ā€“ The solid waste problem ā€“ Pira Proposes a Recycling Centre. Paper Technology and Industry, 319 (11): 2ā€“4 (1990).

    Google ScholarĀ 

  419. Page, D. H. and Tydeman, P. A. ā€“ Transverse swelling and shrinkage of softwood tracheids. Nature, 199 (4892): 471ā€“472 (1963).

    Google ScholarĀ 

  420. Howard, R. C. ā€“ The effects of recycling on paper quality. Journal of Pulp and Paper Science, 16 (5): 143 (1990).

    Google ScholarĀ 

  421. Stone, J. E. and Scallan, A. M. ā€“ Influence of drying on the pore structures of the cell wall. In: Consolidation of the Paper Web, Transactions of the 3rd Fundamental Research Symposium, BRBMA, Cambridge, 1965 pgs. 145ā€“166.

    Google ScholarĀ 

  422. Ɩlander, K.; Htun, M. and GrĆ©n, U. ā€“ Specific surface area ā€“ an important property of mechanical pulps. Journal of Pulp and Paper Science, 20 (11): 338ā€“342 (1994).

    Google ScholarĀ 

  423. SuurnƤkki, A.; Heijnesson, A.; Buchert, J.; Viikari, L. and Westermark, U. ā€“ Chemical characterization of the surface layers of unbleached pine and birch kraft pulp fibres. Journal of Pulp and Paper Science, 22 (2): J43ā€“47 (1996).

    Google ScholarĀ 

  424. Sjƶholm, E., Gustafsson, K., Norman, E., Reitberger, T. and Colmsjƶ, A. ā€“ Fibre strength in relation to molecular weight distribution of hardwood kraft pulp: degradation by gamma irradiation, oxygen/alkali or alkali. Nordic Pulp and Paper Research Journal, 5 (4): 326ā€“332 (2000).

    Google ScholarĀ 

  425. Hjort, A. ā€“ Effects on pulp and paper properties from iso thermal cooking (ITC) and black liquor impregnation in a continuous digester. In: International Non-Chlorine Bleaching Conference. Pulp & Paper/Emerging Technology Transfer, Amelia Island, 1994 Paper 3-1 12 pgs.

    Google ScholarĀ 

  426. RƤmark, H. and Kettunen, A. ā€“ CocciĆ³n de pastas softwood y hardwood ā€“ recientes experiencias. El Papel (71): 47ā€“51 (1998).

    Google ScholarĀ 

  427. Cardoso, G. da S.; Lopes, J. L.; dos Santos, M. R. and Lopes, R. J. F. ā€“ Tratamento enzimĆ”tico sobre as fibras recicladas de papelĆ£o ondulado. O Papel, 79 (7): 80ā€“86 (2018).

    Google ScholarĀ 

  428. Leopold, B.; Thorpe, J. L. and Marabito, J. ā€“ Effect of pulping on strength properties of dry and wet pulp fibers. Espra Research Reports, 45 (IV): 20 (1967).

    Google ScholarĀ 

  429. Tam Doo, P. A. and Kereke, R. ā€“ Flexibility of wet pulp fibred. Pulp and Paper Canada, 83 (2): 46ā€“50 (1982).

    Google ScholarĀ 

  430. Irvine, G. M.; Wallis, A. F. A. and Wearne, R. H. ā€“ Application of a Monte Carlo procedure to the kraft pulping of eucalyptus from Eden forest resource. Appita, 44 (6): 394ā€“398, 409 (1991).

    Google ScholarĀ 

  431. Rosli, W. U.; Mazlan, I. and Law, K. N. ā€“ Effects of kraft pulping variables on pulp and paper properties of acacia mangiumkraft pulp. Cellulose Chenistry and Technology, 43 (1): 9ā€“15 (2009).

    Google ScholarĀ 

  432. Malinen, R.; Rantanen, T.; Rautonen, R. and Toikkanen, L. ā€“ TCF bleaching to high brightness ā€“ bleaching sequences and pulp properties. In: International Pulp Bleaching Conference. TAPPI/CPPA/SPCI/EUCEPA, Vancouver, 1994 pgs. 187ā€“194.

    Google ScholarĀ 

  433. Blechschmidt, J; Strunz, A.-M. and Baumgarten, H.-L. ā€“ Refining behavior of ECF and TCF pulps. In: First EcoPaperTech. FPPRI, Helsinki, 1995 pgs. 245ā€“257.

    Google ScholarĀ 

  434. Gomide, J. L. and Fantuzzi Neto, H. ā€“ Aspectos fundamentais da polpaĆ§Ć£o kraft de madeira de Eucalyptus. O Papel, 61 (3): 62ā€“68 (2000).

    Google ScholarĀ 

  435. Wallis, A. F. A.; Wearne, R. H. and Wright, P. J. ā€“ Analytical characteristics of plantation eucalyptus woods relating to kraft pulp yields. Appita Journal, 49 (6): 427ā€“432 (1996).

    Google ScholarĀ 

  436. Pereira, H. ā€“ Variability in the chemical composition of plantation eucalypts (Eucalyptus globulus labill). Wood Fiber Science, 20 (1): 82 (1988).

    Google ScholarĀ 

  437. Danby, R. ā€“ Pulp to paper. In: TECH95 Theory and Practice of Papermaking Course. CPPA, Ottawa, 1995 Section D2 5 pgs.

    Google ScholarĀ 

  438. Yu, L., Zhan, H., Qian, B., Yue, B., He, W. ā€“ Study on modified kraft cooking of Pinus taeda and low pollution bleaching of the pulp. Chung-kuo Tsao Chih, 18 (2):8ā€“12 (1999)

    Google ScholarĀ 

  439. Manfredi, V.; Gomide, J. L.; Carneiro, C. J. G.; Salvador, E. and Fantuzzi Neto, H. ā€“ Effects of delignification strategies on production and quality of eucalypt kraft pulp. In: 7th Brazilian Symposium on the chemistry of Lignins and Other Wood Components. UFV/SIF, Belo Horizonte, 2001 pgs. 119ā€“127.

    Google ScholarĀ 

  440. Redko, B. V. P. ā€“ Vasos de folhosas: Eucalyptus deglupta, Eucalyptus urophylla, Gmelina arborea. In: XVI Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1983 pgs 1169ā€“1194.

    Google ScholarĀ 

  441. Burke, T. M.; SkĆ„lĆ©n, B. and Talley, M. ā€“ Mill experience in refiner control through on-line measurement of stock drainage. In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta, 1995 Paper 20 10 pgs.

    Google ScholarĀ 

  442. Tozzi, E. J.; Lavenson, D. M.; McCarthy, M. J. and Powell, R. L. ā€“ Effect of fiber length, flow rate, and concentration on velocity profiles of cellulosic fiber suspensions. Acta Mechanica, 224: 2301ā€“2310 (2013) https://link.springer.com/article/10.1007/s00707-013-0922-2

  443. Martinez, M.; Buckley, K.; Jivan, S.; Lindstrƶm, A.; Thiruvengadaswamy, R.; Olson, J. A.; Ruth, T. J. and Kerekes, R. J. ā€“ Characterizing the mobility of papermaking fibres during sedimentation. In: 12th Fundamental Research Symposium. PIRA, Oxford, 2001 pgs. 225ā€“254.

    Google ScholarĀ 

  444. Soszynski, R.H. and Kerekes, R. ā€“ Elastic interlocking of nylon fibers suspended in liquid. Part 1: nature of cohesion among fibers. Nordic Pulp and Paper Research Journal, 3 (4): 172ā€“179 (1988).

    Google ScholarĀ 

  445. Meyer, R. and Wahren, R. ā€“ On the elastic properties of three-dimensional fibre networks. Svensk Papperstidning, 57 (10): 432ā€“436 (1964).

    Google ScholarĀ 

  446. Zhao, R. N. and Kerekes, R. J. ā€“ The effect of suspending liquid viscosity on fiber flocculation. Tappi Journal, 76 (2): 183ā€“188 (1993).

    Google ScholarĀ 

  447. Dodson, C. T. J. ā€“ Fiber crowding, fiber contacts, and fiber flocculation. Tappi Journal, 79 (9): 211ā€“216 (1996)

    Google ScholarĀ 

  448. Huber, P.; Roux, J. C.; Mauret, E.; Belgacem, N. and Pierre, C ā€“ Suspension crowding for a general fibre-length distribution: application to flocculation of mixtures of short and long papermaking fibres. Journal of Pulp and Paper Science, 29 (3): 77ā€“85 (2003).

    Google ScholarĀ 

  449. Andersson, S. R.; RingnĆ©r, J. and Rasmuson, A. ā€“ The network strength of non-flocculated fibre suspensions. Nordic Pulp and Paper Research Journal, 14 (1): 61ā€“70 (1999).

    Google ScholarĀ 

  450. Parker, J. D. ā€“ The sheet forming process. In: STAP, 9. TAPPI, Atlanta, 1972.

    Google ScholarĀ 

  451. Negro, C.; Fuente, E.; Blanco, A. and Tijero, J. ā€“ Effect of chemical flocculation mechanisms on rheology of fibre pulp suspensions. Nordic Pulp and Paper Research Journal, 21 (3): 336ā€“341 (2006).

    Google ScholarĀ 

  452. Gurnagul, N. and Page, D. H. ā€“ The difference between dry and rewetted zero-span tensile strength. Tappi Journal, 72 (12): 164ā€“167 (1989).

    Google ScholarĀ 

  453. Mohlin, U.-B. ā€“ Properties of TMP fractions and their importance for the quality of printing papers. Part 2: the influence of particles properties and particle size distribution on pulp properties. Svensk Papperstiding, 83 (18): 513ā€“519 (1980).

    Google ScholarĀ 

  454. Page, D. H. and MacLeod, M. ā€“ Fibre strength and its impact on tear strength, Tappi Journal, 71 (1): 172 (1988).

    Google ScholarĀ 

  455. Przybysz, P.; Dubowik, M.; Kucner, M. A.; Przybysz, K. and Buzała, K. P. ā€“ Contribution of hydrogen bonds to paper strength properties, PLOS One, 11 (5):1ā€“10 (2016) https://www.researchgate.net/publication/303552314_Contribution_of_Hydrogen_Bonds_to_Paper_Strength_Properties

  456. Soszynski, R. M. ā€“ Relative bonded area ā€“ a different approach. Nordic Pulp and Paper Research Journal, 10 (2): 150 (1995).

    Google ScholarĀ 

  457. Torgnysdotter, A.; Kulachenko, A.; Gradin, P. and WĆ„gberg, L. ā€“ Fibre/fibre crosses: finite element modelling and comparison with experiment. Journal of Composite Materials, 41 (13): 1603ā€“1618 (2007)

    Google ScholarĀ 

  458. Batchelor, W.; Kibblewhite, R. P. and He, J. ā€“ A new method for measuring RBA applied to the Pageā€™s Equation for the tensile strength of paper. Appita Journal, 61 (4): 302ā€“306 (2008).

    Google ScholarĀ 

  459. Batchelor, W. J. and He, J. ā€“ A new method for determining the relative bonded area. Tappi Journal, 4 (6): 23 (2005).

    Google ScholarĀ 

  460. Batchelor, W. J. and Kibblewhite, R. P. ā€“ Calculation of relative bonded area and scattering coefficient from sheet density and fibre shape. Holzforschung, 60 (3): 253 (2006).

    Google ScholarĀ 

  461. WĆ„gberg, L. and Annergren, G. ā€“ Physicochemical characterization of papermaking fibres. In: 16th Fundamental Research Symposium. Cambridge, 1997 pgs. 1ā€“82 https://bioresources.cnr.ncsu.edu/wp-content/uploads/2020/03/1997.1.1.pdf

  462. Hirn, U.; Schennach, R.; Ganser, C.; Magnusson, M.; Teichert, C. and Ɩstlund, S. ā€“ The area in molecular contact in fiber-fiber bonds.In: 15th Fundamental Research Symposium: Advances in Paper Research, Cambridge. 2013 pgs 201ā€“226.

    Google ScholarĀ 

  463. Hirn, U. and Schennach, R. ā€“ Comprehensive analysis of individual pulp fiber bonds quantifies the mechanisms of fiber bonding in paper. Scientific Reports, 5 (10503):1ā€“9 (2015).

    Google ScholarĀ 

  464. Baker, C. F. ā€“ The refining of nonwood fibres. In: IV International Refining Conference. PIRA, Fiuggi: 18-20/03/1997 Paper 10 pgs. 151ā€“180.492. Prasad, D. Y.; Jameel, H. and Gratzl, J. ā€“ Extended delignification of hardwood with AQ/Polysulfide. Tappi Journal, 78 (9): 151 (1995).

    Google ScholarĀ 

  465. Ratnieks, E. and Mora, E. ā€“ How the dryness of pulp influences the stock preparation. In: XXVI Congresso Anual de Celulose e Papel, ABTCP, SĆ£o Paulo, 1993 pgs. 715ā€“731.

    Google ScholarĀ 

  466. Page, D. H. ā€“ The mechanism of strength development of dried pulps by beating. Svensk Papperstiding, 88 (3): R30ā€“35 (1985).

    Google ScholarĀ 

  467. Page, D. H. ā€“ The beating of chemical pulps ā€“ the action and the effects. In Fundamentals of Papermaking, Trans. of the IXth Fund. Res. Symp. Cambridge, 1989, pgs. 1ā€“38.

    Google ScholarĀ 

  468. Tam Doo, P. A. and Kerekes, R. J. ā€“ The effect of beating and low amplitude flexing on pulp fibre flexibility. Journal of Pulp and Paper Science, 15 (11): 36ā€“42 (1989).

    Google ScholarĀ 

  469. Sha, J.; Nikbakht, A.; Wang, C.; Zhang, H. and Olson, J. ā€“ The effect of consistency and freeness on the yield stress of chemical pulp fibre suspensions. BioResources, 10(3), 4287ā€“4299 (2015).

    Google ScholarĀ 

  470. Marcoccia, B. S. and Poulin, T. M. ā€“ A lo-solids pulping update. In: XXIX Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1996 pgs. 203ā€“219.

    Google ScholarĀ 

  471. Lindstrƶm, T. ā€“ Der einfluss chemischer factoren auf faserquellung und papierfestigkeit. Das Papier, 34 (12): 561 (1980)

    Google ScholarĀ 

  472. Olejnik, K.; Skalski, B.; Stanislawska, A.; Wysocka-Robak, A. ā€“ Swelling properties and generation of cellulose fines originating from bleached kraft pulp refined under different operating conditions. Cellulose 24: 3955ā€“3967 (2017).

    Google ScholarĀ 

  473. Poppel, E. and Turtureanu, C. ā€“ Cercetari privind evaluarea severiatii proceselor de macinare. Celul. Hirtie, 45 (1): 3ā€“12 (1996).

    Google ScholarĀ 

  474. Marcoccia, B. S. ā€“ Lo-Solids pulping: theorical background and mill scale experiences. Kamyr Inc., Status Report 130 (1994).

    Google ScholarĀ 

  475. Kerekes, R. J.; Soszynski, R. M. and Tam Doo, P. A. ā€“ The flocculation of pulp fibres. In: Papermaking Raw Materials, Transactions 8th Fundamental Research Symposium, Ed. Ponton, V., Mech. Eng. Publ. Ltd., Oxford: 1985 pgs. 265ā€“310.

    Google ScholarĀ 

  476. Sanjay, C.; Akansha, S.; Rajeev, S.; Shankarshan, S. and Narendra, A. ā€“ Optimization of fibre properties using single pass refining vs recirculation ā€“ A Case Study. IPPTA, 27 (04): 58ā€“66 (2015).

    Google ScholarĀ 

  477. Rennel, J. ā€“ Opacity in relation to strength properties of pulps III. Light scattering coefficient of sheets of model fibres. Tappi, 52 (10): 1943ā€“1947 (1969).

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manfredi, V. (2024). The Pulps (Fibers) Characteristics. In: Eucalyptus Kraft Pulp Refining. Springer, Cham. https://doi.org/10.1007/978-3-031-47285-5_7

Download citation

Publish with us

Policies and ethics