Skip to main content

Wood as Raw Material Source

  • Chapter
  • First Online:
Eucalyptus Kraft Pulp Refining
  • 9 Accesses

Abstract

In this chapter, a brief history of the use of wood as a source of fiber is presented, in addition to considerations on the use of wood with special attention to eucalyptus woods and hardwoods, as these characteristics are important both in defining the quality of the pulps obtained from these woods and in the behavior and responses of the pulps during refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lundqvist, S.O.; Grahn, T.; Hedenberg, O.; Hansen, P. ā€“ Visions and tools for forest and mill integration. Part 2: Some new approaches under development at STFI for prediction of paper properties. Eurofiber Seminar, STFI, Oral presentation. (2003). http://www.stfi.se/upload/3439/02_d14-3_stfi-lundqvist2_Part%202x.pdf

  2. Portal SĆ£o Francisco, A histĆ³ria do papel. https://www.portalsaofrancisco.com.br/historia-geral/historia-do-papel

  3. Kanazawa, T. and Fujita, O. K. ā€“ The latest refiner and deflaker designed with a twin rotor and stator system. Jappan Tappi Journal, 52 (4): 62ā€“71 (1998).

    Google ScholarĀ 

  4. Baker, C. F. ā€“ Advances in the practicalities of refining. In: Refining and Mechanical Pulping conference. PIRA, Barcelona: 02-03/03/2005 Paper 2.

    Google ScholarĀ 

  5. Cotterill, P. and Macrae, S. ā€“ Improving eucalyptus pulp and paper quality using genetic selection and good organization. Tappi Journal, 80 (6):82-89 (1997).

    Google ScholarĀ 

  6. Raymond, C. A.; Banham, P. and MacDonald, A. C. ā€“ Whitin tree variation and genetic control of basic density, fibre length and coarseness in Eucalyptus regnans in Tasmania. Appita Journal, 51 (4): 299ā€“305 (1998).

    Google ScholarĀ 

  7. Schmidt, E. A. ā€“ A practical model relating kraft pulping costs to hardwood chemical properties and morphology. Appita Journal, 58 (3): 218ā€“224 (2005).

    Google ScholarĀ 

  8. Lindstrƶm, T. ā€“ Fundamentals of papermaking. In: 9th Fundamental Research Symposium. PIRA. Cambridge, 1989 pg. 311.

    Google ScholarĀ 

  9. Paavilainen, L. ā€“ Quality ā€“ competitiveness of Asian short-fibre raw materials in different paper grades. Papperi Ja Puu, 82 (3): 156 (1998).

    Google ScholarĀ 

  10. Foelkel, C. ā€“ Madeiras para uso celulĆ³sico-papeleiro: formaĆ§Ć£o, ultraestrutura, quĆ­mica e topoquĆ­mica. Eucalyptus Newsletter (84) 645 pgs (2020) http://www.eucalyptus.com.br/news/pt_dez2020.pdf

  11. Riki, J. T. B., Sotannde, O. A. and Oluwadare, A. O. ā€“ Anatomical and chemical properties of wood and their practical implictions in pulp and paper production ā€“ a review. Journal of Research in Forestry, Wildlife & Environment, 11 (3): 358ā€“368 (2019).

    Google ScholarĀ 

  12. Tiikkaja, E.; Kauppinen, M. and Glorigiano, P. ā€“ Fibre dimensions, their effect on paper properties and required measuring accuracy. In: XXXI Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1998 pgs. 397ā€“402.

    Google ScholarĀ 

  13. Kramer, J. D. ā€“ Pulping eucalyptus ā€“ a review. In: XXXI Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1998 pgs.: 615ā€“632.

    Google ScholarĀ 

  14. Barrichelo, L. E. G. ā€“ Estudo das caracterĆ­sticas fĆ­sicas, anatĆ“micas e quĆ­micas da madeira de Pinus caribeae Mor. Var. hondurensis Barr. Golf para a produĆ§Ć£o de celulose kraft. Tese de Livre DocĆŖncia ā€“ ESALQ/USP (1979).

    Google ScholarĀ 

  15. KƤrenlampi, P. ā€“ The effect of pulp fiber properties on the tearing work of paper. Tappi Journal, 79 (4): 211ā€“216 (1996).

    Google ScholarĀ 

  16. Silva Jr., F. G. da; Valle, C. F. do e Muner, J. C. G. ā€“ Programa de qualidade da madeira da Votorantim Celulose e Papel ā€“ VCP. O Papel, 57 (1): 35ā€“43 (1996).

    Google ScholarĀ 

  17. literature review. In: IV International Refining Conference. PIRA, Fiuggi, 1997 Paper 1 pgs. 5ā€“43.

    Google ScholarĀ 

  18. KƤrenlampi, P.; Retulainen, E. and Kolehmainen, H. ā€“ Properties of kraft pulps from different forest stands ā€“ theory and experiment. Nordic Pulp and Paper Research Journal, 9 (4):214ā€“218 (1994).

    Google ScholarĀ 

  19. Retulainen, E.; Moss, P. and Nieminen, K. ā€“ Effect of fines on the properties of fibre networks. In: 10th Fundamental Research Symposium Proceedings. Mechanical Engineering Publications, London, 1993 Volume 2 pgs. 727ā€“769.

    Google ScholarĀ 

  20. Seth, R. S. ā€“ The importance of fibre straightness for pulp strength. Pulp and Paper Canada, 107 (1): 34ā€“42 (2006).

    Google ScholarĀ 

  21. Crotogino, R. H. ā€“ Machine calendering ā€“ recent advances in theory and practice. In: TECH95 Theory & Practice of Papermaking Course. CPPA, Ottawa, 1995 Section F1 13 pgs.

    Google ScholarĀ 

  22. Luce, J. ā€“ Paper structure. In: Wet-End Operations Short Course. TAPPI, Cincinnati, 1994 Paper 2 pgs. 9ā€“23.

    Google ScholarĀ 

  23. Fonseca, S. M. da; Oliveira, R. C. de e Silveira, P. N. ā€“ Industrial tree selection: procedures, risks, costs and benefits. In: Eucalypt Plantations: Improving Fibre Yield and Quality Conference. CRCTHF/IUFRO, Hobart, 1995 pgs. 15ā€“19.

    Google ScholarĀ 

  24. Raymond, C. A. ā€“ Genetic control of wood and fibre traits in eucalypts. In: Eucalypt Plantations: Improving Fibre Yield and Quality Conference. CRTHF/IUFRO, Hobart, 1995 pgs. 49ā€“52.

    Google ScholarĀ 

  25. Piirainen, R. and Paavilainen, L. ā€“ Fiber length measurement in the pulp and paper industry. In: International Process and Materials Quality Evaluations Conference. TAPPI, Atlanta, 1986 pgs. 67ā€“73.

    Google ScholarĀ 

  26. Hatton, J. V. ā€“ Kraft pulping of second-growth Jack pine. Tappi Journal, 76 (5): 105ā€“113 (1993).

    Google ScholarĀ 

  27. Hatton, J. V. and Gee, W. Y. ā€“ Kraft pulping of second- growth lodgepole pine. Tappi Journal, 77 (6): 91ā€“102 (1994).

    Google ScholarĀ 

  28. Philipp, P. and Dā€™Almeida, M. L. O. ā€“ Celulose e papel ā€“ tecnologia de fabricaĆ§Ć£o de papel ā€“ Volume 2. SENAI/IPT, SĆ£o Paulo, 1988 402 pgs.

    Google ScholarĀ 

  29. Pinheiro, A. L. ā€“ ConsideraƧƵes sobre a taxonomia, filogenia, ecologia, genĆ©tica, melhoramento florestal e a fertilizaĆ§Ć£o mineral e seus reflexos na anatomia e qualidade da nadeira. SIF, ViƧosa, 1999 144 pgs.

    Google ScholarĀ 

  30. Paavilainen, L. ā€“ Effect of sulphate cooking parameters on the papermaking potential of pulp fibres. Paperi ja Puu, 71 (4): 356ā€“363 (1989).

    Google ScholarĀ 

  31. Kibblewhite, R. P. ā€“ Qualities of kraft and thermomechanical radiata pine papermaking fibres. In: 8th Fundamental Research symposium. BP&BMA, Oxford, 1985 Volume 1 pgs. 93ā€“131.

    Google ScholarĀ 

  32. Shaw, M. J.; Clarke, C. R.; Pallett, R. N. and Morris, A. R. ā€“ Differentiating timber to optimize the pulping process. Appita Journal, 51 (6): 456ā€“460 (1998).

    Google ScholarĀ 

  33. Scott, W. E. ā€“ Principles of wet end chemistry. Tappi Press, Atlanta, 1996 185 pgs.

    Google ScholarĀ 

  34. Sandercock, C. F.; Sands, R.; Ridoutt, B. G.; Wilson, L. F. and Hudson, I. ā€“ Factors determining wood microstructure in eucalyptus. In: Eucalypt Plantations: Improving Fibre Yield and Quality Conference. CRCTHF/IUFRO, Hobart, 1995 pgs. 12ā€“-135.

    Google ScholarĀ 

  35. Trugilho, P. F.; Bianchi, M. L.; Rosado, S. C. da S. and Lima, J. T. ā€“ Qualidade da madeira de clones de espĆ©cies e hĆ­bridos naturais de Eucalyptus. Scientia Forestalis, 73: 55ā€“62 (2007)

    Google ScholarĀ 

  36. Eklund, D. and Lindstrƶm, T. ā€“ Paper chemistry ā€“ An introduction. DT Paper Science Publications, Grankulla, Finland, 1991 305 pgs.

    Google ScholarĀ 

  37. Springer, A.; Nabors, L. A. and Bhatia, O. ā€“ The influence of fiber, sheet structual properties and chemical additives on wet pressing. Tappi Journal, 74 (4):221 (1991).

    Google ScholarĀ 

  38. Valente, C. A.; de Sousa, A. P. M. de; Furtado, F. P. and Carvalho, A. P. ā€“ Improvement program for Eucalyptus globulus at Portucel: technological component. Appita Journal, 45 (6): 403ā€“407 (1992).

    Google ScholarĀ 

  39. Hatton, J. V. and Cook, J. ā€“ Kraft pulps from second-growth Douglas Fir: relationships between wood, fiber, pulp, and handsheet properties. Tappi Journal, 75 (1): 137ā€“144 (1992).

    Google ScholarĀ 

  40. Mokfiensk, A.; Gomide, J.L.; Colodette, J. L. and Oliveira, R.C. de ā€“ ImportĆ¢ncia da densidade e do teor de carboidratos totais na madeira de eucalipto no desempenho da linha de fibras. In ColĆ³quio Internacional sobre Celulose Kraft de Eucalipto, UFV, ViƧosa, 2003 pgs. 15ā€“38.

    Google ScholarĀ 

  41. Silva, R. P. and Oliveira, R. C. de ā€“ A reciclagem de papĆ©is: uma aboradagem tĆ©cnica. Folha Florestal (93): 9ā€“11 (1999).

    Google ScholarĀ 

  42. Barrichelo, L. E. G. ā€“ Densidade bĆ”sica e caracterĆ­sticas das fibras de madeira de E. grandis. In: III Congresso Latino-Americano de Celulose e Papel. ABTCP, SĆ£o Paulo, 1983 pgs 113ā€“125.

    Google ScholarĀ 

  43. Faust, T. D.; Clark III, A.; Courchene, C. E.; Shiver, B. D. and Beli, M. L. ā€“ Effect of intensive forest management practices on wood properties and pulp yield of young, fast growing Southern pine. In: International Environment Conference. TAPPI, Nashiville, 1999 Volume 2 pgs. 501ā€“512.

    Google ScholarĀ 

  44. Rudie, A. W. ā€“ Wood and how it relates with wood products. Tappi Journal, 81 (5): 223ā€“228 (1998).

    Google ScholarĀ 

  45. Greaves, B. L. and Borralho, M. G. ā€“ The influence of basic density and pulp yield on the cost of eucalypt kraft pulping: a theoretical model for tree breeding. Appita, 49 (2): 90ā€“95 (1996).

    Google ScholarĀ 

  46. Maloney, T. C. and Paulapuro, H. ā€“ The formation of pores in the cell wall. Journal of Pulp and Paper Science, 25 (12): 430ā€“436 (1999).

    Google ScholarĀ 

  47. Higgins, H. G.; Young, J. de; Balodis, V.; Phillips, F. H. and Colley, J. ā€“ The density and structure of hardwoods in relation to paper surface characteristics and other properties. In: Process Engineering Handbook. Ed. Process Engineering Committee of the Engineering Division. Tappi Press, Atlanta, 1992, 2nd Edition Appendix: 77ā€“81.

    Google ScholarĀ 

  48. Dowens, G. M. ā€“ Wood properties of interest in plantation productivity. In: Sampling Plantation Eucalyptus for Wood and Fibres Properties. Chapter 1. Ed. Dewens, G. M. et al CSIRO Publishing, Collingwood, 1997 pgs. 1ā€“8.

    Google ScholarĀ 

  49. Maloney, T. C. ā€“ On the pore structure and dewatering properties of the pulp fiber cell wall. Doctoral Thesis, Helsinki University of Technology, Esppo, 2000. 52 pgs https://www.researchgate.net/publication/34731327_On_the_pore_structure_and_dewatering_properties_of_the_pulp_fiber_cell_wall

  50. Xiang, Y.; Bousfield, D. W.; Hassler, J.; Coleman, P. and Osgood, A. ā€“ Measurement of local variation of ink tack dynamics. Journal of Pulp and Paper Science, 25 (9): 326ā€“330 (1999).

    Google ScholarĀ 

  51. Stratton, R. A. ā€“ Characterization of fibre-fibre bond strength from out-of-plane paper mechanical properties. Journal of Pulp and Paper Science, 19 (1): 7ā€“12 (1993).

    Google ScholarĀ 

  52. Franklin, E. C. ā€“ Selection strategies for eucalypt tree improvement ā€“ four generations of selection in Eucalyptus grandis demonstrate valuable methodology. In: Breeding Tropical Trees: Population Structure and Genetic Improvement Strategies in Clonal and Seedling Forestry. Ed. Gibson, G. L.; Griffin, A. R. and Matheson A. C. IUFRO, Pattaya, 1988 pgs. 197ā€“209.

    Google ScholarĀ 

  53. Boland, D. J.; Brooker, M. I. H.; Chippendale, G. M.; Hall, N.; Hyland, B. P. M.; Johnston, R. E.; Kleining, D. A. and Turner, J. D. ā€“ Trees of Australia. Nelson/CSIRO, Melbourne, 1984.

    Google ScholarĀ 

  54. Ilvessalo-PfƤffli, M. ā€“S. ā€“ Fiber Atlas ā€“ Identification of Papermaking Fibres. Spring Series in Wood Science, Series Ed. Timell, T. E. Spring-Verlag, Berlin, 1995. 400 pgs.

    Google ScholarĀ 

  55. Brown, A. G. and Hills, W. E. ā€“ General introduction. In: Eucalyptus for Wood Production. Ed. Hillis, W. E. and Brown, A. G., CSIRO/Academic Press, London, 1984 Chapter 1 pg 3ā€“5.

    Google ScholarĀ 

  56. Bugajer, S.; Silva, O. F. and Pires, F. ā€“ InfluĆŖncia do pH na refinaĆ§Ć£o de pastas celulĆ³sicas. In: 17Ā° Congresso Anual da ABCP. SĆ£o Paulo. 1984 pgs. 31ā€“39.

    Google ScholarĀ 

  57. Cotterill, P. P. and Brolin, A. ā€“ Improving Eucalytpus wood, pulp and paper quality by genetic selection. In: Conference on Silviculture and Improvement of Eucalypts. IUFRO, Salvador: 24-29/08/1997 Volume 1 pgs. 1ā€“13.

    Google ScholarĀ 

  58. Foelkel, C. E. B. and Dalmolin, I. ā€“ Improving eucalyptus pulp refining through the control of pulp consistency and stock pH: comparisons at given bulk and given tensile strength. In: Papermakers Conference, TAPPI, Atlanta: 01-04/03/1999 Volume 2 pgs: 751ā€“754

    Google ScholarĀ 

  59. Kibblewhite, R. P.; Bawden, A. D. and Hughes, M. C. ā€“ Hardwood market kraft fibre and pulp qualities. Appita, 44 (5): 325ā€“332 (1991).

    Google ScholarĀ 

  60. Sigl, R. ā€“ Low intensity refining of hardwood and deinked pulps with a new generation of filling. Twogether ā€“ Paper Technology Journal (8): 7ā€“11 (1999).

    Google ScholarĀ 

  61. Demler, C. L. and Pitz, M. ā€“ Comparison of conventionally, ECF and TCF bleached hardwood pulp refining response. In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta, 1995 Paper 9 8 pgs.

    Google ScholarĀ 

  62. Miranda, I.; Almeida M. H. and Pereira, H. ā€“ Variation of fibre biometry in different provenances of eucalyptus globulus Labill. Appita Journal, 54 (3): 272 (2001).

    Google ScholarĀ 

  63. Foelkel, C. ā€“ The Eucalyptus fibers and the kraft pulp quality requirements for paper manufacturing. Eucalyptus Online Book & Newsletter.- Chapter 3 (Feb/Mar) 2007 ā€“ 42 pgs www.eucalyptus.com.br/capitulos/ENG03_fibers.pdf

  64. Zhang, C.; Chen, M.; Keten, S.; Coasne, B.; Derome, D. and Carmeliet, J. ā€“ Hygromechanical mechanisms of wood cell wall revealed by molecular modeling and mixture rule analysis. Materials Science, 7 (37): eab8919 (2021).

    Google ScholarĀ 

  65. Gurnagul, N., Page, D. H. and Seth, R. S. ā€“ Dry sheet properties of Canadian hardwood kraft pulps. Journal of Pulp and Paper Science, 16 (1): 36ā€“41 (1990).

    Google ScholarĀ 

  66. Kibblewhite, R. P. and McKenzie, C. J. ā€“ Kraft fibre property variation among 29 trees of 15 year old Eucalyptus fastigata and comparison with E. nitens. Appita Journal, 52 (3): 218ā€“225 (1999).

    Google ScholarĀ 

  67. Dean, G. H. ā€“ Objectives for wood fibre quality and uniformity. In: Eucalypt Plantations: Improving Fibre Yield and Quality Conference. CRCTHF/IUFRO, Hobart: 19-24/02/1995 pgs. 5ā€“9.

    Google ScholarĀ 

  68. Kibblewhite, R. P. ā€“ Reinforcement and optical properties of separate and co-refined softwood and eucalypt market kraft pulps. Appita Journal, 47 (2): 149ā€“153, 158 (1994).

    Google ScholarĀ 

  69. Demuner, B. J.; Manfredi, V. and Claudio-da-Silva Jr., E. ā€“ O refino da celulose de eucalipto ā€“ uma anĆ”lise fundamental. O Papel, 52 (8): 44 ā€“ 54 (1990).

    Google ScholarĀ 

  70. Kibblewhite, R. P. ā€“ The qualities of radiata pine papermaking fibres. Appita, 35 (4): 289ā€“298 (1982).

    Google ScholarĀ 

  71. Shallhorn, P. M. and Heintze, H. U. ā€“ Hardwood vessel picking in the offset printing of uncoated fine papers. Pulp & Paper Canada, 98 (10): 21ā€“24 (1997)

    Google ScholarĀ 

  72. Moore, G. K. and Jopson, R. N. ā€“ The onward march of eucalyptus. Paper 360Ā°, September): 14ā€“15 (2008).

    Google ScholarĀ 

  73. Miranda, I.; Gominho, J.; LourenƧo, A. and Pereira, H. ā€“ Heartwood, extractives and pulp yield of three Eucalyptus globulus clones grown in two sites. Appita Journal, 60 (6): 485ā€“488, 500 (2007).

    Google ScholarĀ 

  74. Brindley, C. L. and Klimbewhite, R. P. ā€“ Refining effects on eucalyptus and mixed hardwood and softwood market pulps and blends. In: 48th Annual General Conference. APPITA, Melbourne, 1994 Paper 3B41 pgs. 493ā€“500.

    Google ScholarĀ 

  75. Beck, M. V. ā€“ The importance of wet end equipment and its influence on retention. In: Retention of Fines and Fillers During Papermaking. Gess, J. M. Ed. Tappi Press, Atlanta, 1998, Chapter 7 pgs. 129ā€“158.

    Google ScholarĀ 

  76. Garlet, V. N.; Andreotti, V. and Sacon, V. ā€“ Misturas de fibras curtas e longas: influĆŖncia da fibra de eucalipto nas propriedades. In: XXIV Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1991. pgs. 37ā€“43.

    Google ScholarĀ 

  77. Demuner, B. J. ā€“ Opportunities for market pulp differentiation via fractionation. In: 5th International Paper and Board Industry Conference. PIRA, Vienna, 1999 pg 4ā€“18.

    Google ScholarĀ 

  78. Gigac, J.; KuƱa, V. and Schwrtz, J. ā€“ Effects of fibers and fillers on the optical and mechanical characteristics of paper. Tappi Journal, 78 (2): 162ā€“167 (1995).

    Google ScholarĀ 

  79. Baker, C. F. ā€“ Good practice for refining the types of fiber found in modern paper furnishes. Tappi Journal, 78 (2): 147ā€“157 (1995).

    Google ScholarĀ 

  80. Koran, Z. ā€“ Different process can be used to enhance hardwood pulping quality. Pulp and Paper Canada, 90 (2): 20ā€“21 (1989).

    Google ScholarĀ 

  81. Levlin, J. E. ā€“ Different hardwood pulps in papermaking. Paper, 9 (206): 218 (1986).

    Google ScholarĀ 

  82. Demuner, B. J.; Viana Doria, E. L.; Claudio-da-Silva Jr., E. and Manfredi, V. ā€“ The influence of eucalypt fiber characteristics on pulp and paper properties. In: International Paper Physics Conference. TAPPI, Kona, 1991 Book 1 pgs.185ā€“196.

    Google ScholarĀ 

  83. Sepke, P.W., Metzer, F.P. and Selder, H. ā€“ Refining of acacia. In: Scientific and Technical Advances in Refining & Mechanical Pulping ā€“ Course Notes. PIRA, Stockholm, 2003 Paper 7.

    Google ScholarĀ 

  84. Busker, L. H. and Cronin, D. C. ā€“ The relative importance of wet press variables in water removal. Pulp and Paper Canada, 85 (6): 138ā€“147 (1984).

    Google ScholarĀ 

  85. El-Sharkawy, K.; Koskenhely, K. and Paulapuro, H. ā€“ The fractionation and refining of eucalyptus kraft pulps. Nordic Pulp and Paper Research Journal, 23 (2): 172ā€“180 (2008).

    Google ScholarĀ 

  86. Kimmo, H.; Markku, P. and HĆ„kan, S. ā€“ New trends and technology in refining. IPPTA Journal, 24 (1): 109ā€“113 (2012).

    Google ScholarĀ 

  87. Baker, C. F. ā€“ Refining review ā€“ changes in refining practice with new sources of fibre. World Pulp and Paper Technology: 95ā€“97, 99 (1992).

    Google ScholarĀ 

  88. Lavezzo, E. F.; DueƱas, R. S.; Saucedo, J. T.; Prado, M. C. J. and Becerra, M. C. B. ā€“ Evaluacion de eucalyptus procedentes de palantaciones tĆ©cnicas para la produccion de pulpa e papelera. El Papel, (71):40ā€“42 (1998).

    Google ScholarĀ 

  89. Shapiro, S. ā€“ Formation and fiber orientation sensors for web quality optimization. In: Papermakers Conference. TAPPI, Philadelphia: 24-27/03/1996 pg. 17.

    Google ScholarĀ 

  90. Teixeira, M. B. D.; Oliveira, R. A.; Gatti, T. H. and Suarez, P. A. Z. ā€“ O papel: uma breve revisĆ£o histĆ³rica, descriĆ§Ć£o da tecnologia industrial de produĆ§Ć£o e experimentos para obtenĆ§Ć£o de folhas artesanais. Revista Virtual de QuĆ­mica, 9 (3): 1364ā€“1380 (2017) http://static.sites.sbq.org.br/vq.sbq.org.br/pdf/v9n3a28.pdf

  91. Lammi, L. and Svedman, M. ā€“ Tailoring pulp quality in the pulping process. In 2o SeminĆ”rio de DeslignificaĆ§Ć£o. ABTCP, RibeirĆ£o Preto: 02-03/09/1999 Paper 2 8 pgs.

    Google ScholarĀ 

  92. Higgins, H. G. ā€“ Pulp and paper. In: Eucalyptus for wood production. Ed. Hillis, W. E. and Brown, A. G., CSIRO/Academic Press. London Capitulo 13 pg 290ā€“316.

    Google ScholarĀ 

  93. Hillis, W. E. ā€“ Wood quality and utilization. In: Eucalyptus for Wood Production. Ed. Hillis, W. E. and Brown, A. G., CSIRO/Academic Press, London. Chapter 12 pg 259ā€“289 (1984).

    Google ScholarĀ 

  94. Silva Jr, F. da; Gomes, I. M. de B.; Barrichelo, L. E. G. and Oda, S. ā€“ AvaliaĆ§Ć£o da qualidade da madeira de hĆ­bridos de Eucalyptus grandis x Eucalyptus camaldulensis visandoa produĆ§Ć£o de celulose. In: VII Congresso Florestal Brasileiro. SBS/SBEF, Curitiba, 1993 Volume 2 pgs.581ā€“585.

    Google ScholarĀ 

  95. Colodette, J. L.; Gomes, C. M.; Rabelo, M. S.; Eiras, K. M. M.; Gomes, A. de F. and Oliveira, K. D. ā€“ Eucalyptus Kraft pulp bleaching: state-of-art and new developments. Tappi Journal, 7 (2): 18A-18M (2008).

    Google ScholarĀ 

  96. Mascarenhas, A. F. and Muralidharan, E. M. ā€“ Clonal forestry with tropical hardwoods. In: Clonal Forestry II ā€“ Conservation and Application. Ed. Ahuja, M. R. and Libby, W. J. Springer-Verlag, Berlin, 1993 Chapter 10: 167ā€“187.

    Google ScholarĀ 

  97. Magaton, A. S.; Colodette, J. L.; Gouvea, A. F. G.; Gomide, J. L.; Muguet, M. C. S. and Pedrazzin, C. ā€“ Eucalyptus wood quality and its impact on kraft pulp production and use. Tappi Journal, 8 (8): 32ā€“39 (2009).

    Google ScholarĀ 

  98. Ferahi, M.; Kortschot, M. T. and Dodson, C. T. J. ā€“ Effect of anisotropy on the fracture behaviour of newsprint. Journal of Pulp and Paper Science, 22 (11): 430ā€“446 (1996).

    Google ScholarĀ 

  99. Blomstedt, M.; Panula-Ontto, S.; Kontturi, E. and Vuorinen, T. ā€“ Um mĆ©todo para reduzir o arrancamento de valos de folhas de polpa de eucalipto mediante modificaĆ§Ć£o com carboximetilcelulose. O Papel, 69 (2): 35ā€“44 (2008).

    Google ScholarĀ 

  100. Amidon, T. E. ā€“ Effect of the wood properties of hardwoods on kraft paper properities. Tappi Journal, 64 (3): 123ā€“126 (1981).

    Google ScholarĀ 

  101. Sidaway, S. ā€“ The availability and use of eucalyptus pulps. Tappi Journal, 71 (12): 47ā€“51 (1988).

    Google ScholarĀ 

  102. Foelkel, C ā€“ Papermaking properties of Eucalyptus trees, woods, and pulp fibers. Eucalyptus Online Book & Newsletter.- Chapter 14 (Jul) 2009 110 pgs www.eucalyptus.com.br/eucaliptos/ENG14.pdf

  103. Morud, B. ā€“ Papermaking properties of hardwood pulps. Norsk Skogindustri, 26 (2): 30ā€“32 (1972).

    Google ScholarĀ 

  104. Lundqvist, S-O. ā€“ Efficient wood and fiber characterization ā€“ a key factor in research and operation. Annals of Forest Science, 59: 491ā€“501 (2002).)

    Google ScholarĀ 

  105. Demuner, B. J., Ratnieks, E. and Robinson, D. ā€“ Ultra low intensity refining of eucalyptus pulps. In: Refining and Mechanical Pulping Conference. PIRA, Barcelona, 2005 Paper 7.

    Google ScholarĀ 

  106. Demuner, B. J.; Viana Doria, E. L.; Claudio-da-Silva Jr., E. and Manfredi, V. ā€“ InfluĆŖncia das caracterĆ­sticas dos flocos sobre o refino de polpas quĆ­micas. O Papel, 54 (2): 29ā€“39 (1993).

    Google ScholarĀ 

  107. Atchinson, J. E. and McGovern, J. N. ā€“ History of paper and the importance of non-wood plant fibers. In: Pulp and Paper Manufacture ā€“ Volume 1 ā€“ Properties of Fibrous Raw Materials and Their Preparation fo Pulping. Ed.Kocureck, M. J. and Stevens, C. F. B. The Technical Committee of the Paper Industry, Atlanta/Montreal, 1983 pg. 154ā€“156.

    Google ScholarĀ 

  108. Hubbe. M. A ā€“ Flocculation and redispersion of cellulosic fiber suspensions: a review of effects of hydrodiynamic shear and polyeledtolytes. BioResources, 2 (2): 296ā€“331 (2002).

    Google ScholarĀ 

  109. Gharehkhani, S.; Sadeghinezhada, E.; Kazi, S. N.; Yarmanda, H.; Badarudina, A.; Safaei, M. R. and Zubir, M. N. M. ā€“ Effect of pulp consistency during refining of pulp refining on fiber propertiesā€”A review. Carbohydrate Polymers Journal, 115: 785ā€“803 (2015).

    Google ScholarĀ 

  110. Fengel, D. and Wegener, G. ā€“ Wood chemistry, ultrastructure, reactions. De Gruyter, Berlin, 1983

    Google ScholarĀ 

  111. Brandberg, A. ā€“ Insights in paper and paperboard performance by fiber network micromechanics. KTH Royal Institute of Technology. Stockolm, 2019 20 pgs www.diva-portal.org/smash/get/diva2:1355441/FULLTEXT01

  112. Sorieul, M.; Dickson, A.; Hill, S. J. and Pearson, H. ā€“ Plant fibre: molecular structure and biomechanical properties, of a complex living material, influencing Its deconstruction towards a biobased composite. Materials, 9 (618): 1ā€“36; (2016).

    Google ScholarĀ 

  113. Gorshkova, T.; Brutch, N.; Chabbert, B.; Deyholos, M.; Hayashi, T.; Lev-Yadun, S.; Mellerowicz, E. J.; Morvan, C.; Neutelings, G. and Pilate, G. ā€“ Plant fiber formation: state of the art, recent and expected progress, and open questions. Critical Reviews in Plant Sciences, 31: 201ā€“228 (2012).

    Google ScholarĀ 

  114. Coradin, V. T. R. and Camargos, A. A. ā€“ A estrutura anatĆ“mica da madeira e princĆ­pios para sua identificaĆ§Ć£o. IBAMA, LaboratĆ³rio de Produtos Florestais. BrasĆ­lia, 2002 28 pgs.

    Google ScholarĀ 

  115. Sjƶstrƶm, E. ā€“ Production of microfibrillated cellulose by LC-refining. Masterā€™s Thesis, Abo Akademi, 2018 77 pgs www.doria.fi/bitstream/handle/10024/165125/sjostrom_erik.pdf?sequence=2&isAllowed=y

    Google ScholarĀ 

  116. Groom, L.; Motlt, L. and Shalert, S. ā€“ Mechanical properties of individual Southern pine fibers. Part I ā€“ determination and variability of stress-strain curves with respect to tree height and juvenility. Wood na Fiber Science, 34 (1): 14ā€“27 (2002) https://www.fs.usda.gov/treesearch/pubs/8010

  117. Burger, L. M. and Richter, H. G. ā€“ Anatomia da madeira. Editora Nobel, SĆ£o Paulo, 1991 154 pgs.

    Google ScholarĀ 

  118. SalmĆ©n, L. ā€“ Micromechanical understanding of the cell-wall structure (MicromĆ©canique de la structure de la paroi cellulaire) Comptes Rendus Biologies, 327 (9ā€“10): 873ā€“880 (2014).

    Google ScholarĀ 

  119. Chen, F. and Evans, R. ā€“ A robust approach for vessel identification and quantification in eucalypt pulpwoods. Appita Journal, 58 (6): 442ā€“447 (2005).

    Google ScholarĀ 

  120. Horn, R. A. ā€“ Morphology of pulp fiber from hardwoods and influence on paper strength. Forest Products Laboratory, Research Paper 312, 12 pgs (1978) https://www.fpl.fs.fed.us/documnts/fplrp/fplrp312.pdf

  121. Taher, M. R. B. ā€“ Tailored low consistency refining for targeted fiber properties. Masterā€™s Thesis, Abo Akademi, Gadolinia, 2020 50 pgs. www.doria.fi/bitstream/handle/10024/177080/taher_md.pdf?sequence=2&isAllowed=y

  122. Parham, R. A. ā€“ Wood structures ā€“ hardwood. In: Pulp and Paper manufacture ā€“ Volume I ā€“ Properties of Fibrous Raw Materials and their Preparation for Pulping. E.: Kocurek, M. J. and Stevens, C. F. B. The Joint Textbook Committee of the Paper Industry, Atlanta/Montreal, 1983, 28ā€“34.

    Google ScholarĀ 

  123. Sands, P. J. ā€“ Speculations on modeling eucalypt pulp-wood quality. In: Eucalypt Plantations: Improving Fibre Yield and Quality Conference. CRCTHF/IUFRO, Hobart, 1995 pgs. 136ā€“139.

    Google ScholarĀ 

  124. Foelkel, C. ā€“ ImportĆ¢ncia da qualidade das madeiras e fibras celulĆ³sicas. Eucalyptus Newsletter nĀ° 85 (Fev) 2021 963 pgs https://www.eucalyptus.com.br/news/pt_fev2021.pdf

  125. Byrd, V. L. and Fahey, D. J. ā€“How to reduce vessel element picking in printing papers containing Oak. Paper Trade Journal, 153 (47): 54ā€“59 (1969).

    Google ScholarĀ 

  126. Singh, S. V. and Rai, A. K. ā€“ Suface property inter-relationship in wood-free paper. IPPTA, 5 (4): 9ā€“15 (1993).

    Google ScholarĀ 

  127. Corson, S.R. ā€“ Process impacts on mechanical pulp fibre and sheet dimensions. Pulp and Paper Canada, 103 (2): 20ā€“27 (2002).

    Google ScholarĀ 

  128. Karlsson, H. ā€“ New technique for measurement of fibre properties including vessel cells and mix of fibre species. Appita Journal, 61 (3): 192ā€“196 (2008).

    Google ScholarĀ 

  129. Koran, Z. ā€“ Fiber characteristics. In: TECH95 Theory & Practice of Papermaking Course. CPPA, Ottawa, 1995 Section A1 8 pgs.

    Google ScholarĀ 

  130. Lindstrƶm, N. and Fardim, P. ā€“ Chemistry and surface chemistry of vessels in eucalyptus kraft pulps. O Papel, 73 (9): 65ā€“72 (2012).

    Google ScholarĀ 

  131. Foelkel, C. ā€“ Vessel elements and eucalyptus pulps. 54 pgs (2007) http://www.eucalyptus.com.br/capitulos/ENG04_vessels.pdf

  132. Malan, F. S.; Male, J. R. and Venter, J. S. M. ā€“ Relationship between the properties of eucalyptus wood and some chemical, pulp and paper properties. Paper Southern Africa, 14 (1): 6ā€“16 (1994).

    Google ScholarĀ 

  133. Kartusch, B. ā€“ Einfluss des kambiumalters auf verteilung unf grosse der gefassflachen im buchenholz. Holzforsch. Holzverwert, 46 (4): 58, 66ā€“9 (1994).

    Google ScholarĀ 

  134. Alves, E. F.; Oliveira, R. C. de; Silva, L. H. M. da e Colodette, J. L. ā€“ InteraĆ§Ć£o de fibras e elementos de vasos de polpa Kraft de eucalipto com tintas de impressĆ£o offset. In: XXXIX Congresso Anual. ABTCP. SĆ£o Paulo, 2006 18 pgs.

    Google ScholarĀ 

  135. Tateishi, M.; Seino, T.; Ona, T.; Oshima, J.; Adachi, K.; Yokota, S. and Yoshizawa, N. ā€“ Rapid assessment of vessel anatomical features by pyrolysis-gas chromatography. In: Eucalyptus in a Changing World Conference. IUFRO, Aveiro, 2004 2 pgs.

    Google ScholarĀ 

  136. Taylor, F. W. ā€“ Variation in the anatomical properties of South African grown Eucalyptus grandis. Appita Journal, 27 (3): 171ā€“184 (1973).

    Google ScholarĀ 

  137. Wilson, L.; Hudson, I. and VanBeveren, K. ā€“ Vessel distribution at two percentage heights from pith to bark in a seven year old Eucalyptus globulus tree. Appita Journal, 50 (6): 495ā€“500 (1997).

    Google ScholarĀ 

  138. Dadswell, H. E. ā€“ The anatomy of eucalypt woods. CSIRO Division of Applied Chemistry Technological Paper (66), 1972, 3 pgs.

    Google ScholarĀ 

  139. Willians, M. D. ā€“ Chemimechanical pulps from plantation eucalypts. Appita, 46 (2): 137ā€“142 (1994).

    Google ScholarĀ 

  140. Malan, F. S. ā€“ Genetic variation in some growth and wood properties among 18 fullsib familes of South African grown Eucalyptus grandis: a preliminary investigation. South African Forestry Journal (146): 38 (1988).

    Google ScholarĀ 

  141. Marcoccia, B. S. ā€“ The theoretical background to Lo-SolidsTM pulping. In: 82nd Annual Technical Meeting. CPPA, Montreal, 1996 pgs. 265ā€“274.

    Google ScholarĀ 

  142. Core, H. A.; Cote, W. A. and Day, A. C. ā€“ Wood structure and identification. Syracuse University Press, 2nd Edition, 1979.

    Google ScholarĀ 

  143. Rakkolainen, M.; Kontturi, E.; Isogai, E.; Enomae, T.; Blomstedt, M.; Vuorinen, T. ā€“ Carboxymethyl cellulose treatment as a method to inhibit vessel picking tendency in printing of eucalyptus pulp sheets. Industrial and. Engineering Chemistry Research, 48 (4): 1887ā€“1892 (2009).

    Google ScholarĀ 

  144. Arjas, A. ā€“ Printability and runnability. World Pulp and Paper Technology: 157ā€“158. (1994).

    Google ScholarĀ 

  145. Annergren, G. ā€“ Fundamentals of pulp fiber quality and paper properties. In: Pulping Conference. TAPPI, Orlando. 1999 pgs: 29ā€“39

    Google ScholarĀ 

  146. FrazĆ£o, F. J. L. ā€“ CaracterĆ­sticas da madeira e da polpa kraft nĆ£o branqueada de Eucalyptus deglupta Blume introduzido na regiĆ£o de Manaus-AM. In: Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1986 pgs. 79ā€“87.

    Google ScholarĀ 

  147. Colley, J. ā€“ Factors affecting the vessel picking tendency of hardwood pulps. Appita, 28 (6): 392ā€“398 (1975).

    Google ScholarĀ 

  148. Queiroz, S. C. S. and Gomide, J. L. ā€“ Efeito das caracterĆ­sticas anatĆ“micas e quĆ­micas na densidade bĆ”sica da madeira de clones hĆ­bridos de Eucalyptus grandis x Eucalyptus urophylla. O Papel, 63 (6): 79ā€“84 (2003).

    Google ScholarĀ 

  149. Josefsson, A. ā€“ Ultrasonic refining of chemical pulp fibres. Masterā€™s Thesis. Chalmers University of Technology, Gƶteborg, 2010 48 pgs

    Google ScholarĀ 

  150. Gopichand, K.; Maheshwari, S. ā€“ Vessel picking of printing papers ā€“ a problem in need of greater attention. IPPTA, 2 (1): 19ā€“24 (1990).

    Google ScholarĀ 

  151. Chinga, G. and Syverud, K. ā€“ On structual properties affecting the picking tendency of newsprints. Nordic Pulp and Paper Research Journal, 22 (4): 447ā€“451 (2007).

    Google ScholarĀ 

  152. Colley, J. ā€“ The influence of vessel elements on the picking tendency of eucalypt pulps. Paper Technology, 14: 293ā€“296 (1973).

    Google ScholarĀ 

  153. Carvalho, H. G. de; Oliveira, R. C. de; Gomide, J. L. and Colodette, J. L. ā€“ Efeito da idade de corte da madeira e de variĆ”veis de refino nas propriedades da celulose kraft branqueada de eucalipto. In: XXXI Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1998 pg. 367ā€“381.

    Google ScholarĀ 

  154. Richardson, J. D.; Wong, K. K. Y. and Clarck, T. A. ā€“ Modification of mechanical pulp using carbohydrate-degrading enzymes. Journal of Pulp and Paper Science, 24 (4): 125ā€“128 (1998).

    Google ScholarĀ 

  155. Clarke, C. R. E.; Shaw, M. J. P.; Wessels, A. M. and Jones, W. R. ā€“ Effect of differences in climate on growth, wood, and pulp properties of nine eucalypt species at two sites. Tappi Journal, 82 (7): 89ā€“99 (1999).

    Google ScholarĀ 

  156. Ververis, C.; Georghiou, K.; Christodoulakis, N.; Santas, P. and Santas, R. ā€“ Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Industrial Crops and Products, 19: 245ā€“254 (2004).

    Google ScholarĀ 

  157. Gratzl, J. S. ā€“ Delignification and bleaching principles. In: Emerging Pulping & Bleaching Technologies Workshop. TAPPI, Durhan, 1995 ā€“ section Pulping and Delignification II.

    Google ScholarĀ 

  158. Pydimalla, M. and Reddy, K. ā€“ Effect of pulping, bleaching and refining process on fibers for paper making ā€“ A review. International Journal of Engineering Research & Technology, 9 (12): 310ā€“316 (2020).

    Google ScholarĀ 

  159. Stark, H. ā€“ Pulp properties of TCF pulps. In: Emerging Pulping & Bleaching Technologies Workshop. TAPPI, Durhan, 1995 Section Bleaching III.

    Google ScholarĀ 

  160. Stone, J. E. and Scallan, A. M. ā€“ A structural model for the cell wall of water swollen sood pulp fibres based on their accessibility to macromolecules. Cellulose Chemistry Technology (2): 343ā€“358 (1968).

    Google ScholarĀ 

  161. Smith, T. J.; Wearne, R. H. and Wallis, F. A. ā€“ Factors influencing the amount of chlorinated phenols formed during bleaching of eucalypty kraft pulps. Holzforchung (48): 125ā€“132 (1994).

    Google ScholarĀ 

  162. Ruel, K.; Billosta, V. C.; Guillemin, F.; Sierra, J. B. and Joseleau, J-P. ā€“ The wood cell wall at the ultrastructural scale ā€“ formation and topochemical organization. Maderas. Ciencia y tecnologĆ­a. 8(2):107ā€“116 (2006).

    Google ScholarĀ 

  163. BƤckstrƶm, M ā€“ The effect of environment on refining efficiency of kraft pulps. Doctoral Thesis in Fibre and Polymer Science. KTH Royal Institute of Technology, Stockholm, 2020 53 pgs www.diva-portal.org/smash/getdiva2:1456955/FULLTEXT01

  164. FahlĆ©n, J. ā€“ The cell wall ultrastructure of wood fibres ā€“ effects of the chemical pulp fibre line. KTH Royal Institute of Technology, Stockholm, 2005 70 pgs. www.diva-portal.orgsmashgetdiva27109FULLTEXT01.pdf

    Google ScholarĀ 

  165. Castanho, C. G. and Oliveira, R. C. de ā€“ RecuperaĆ§Ć£o e avaliaĆ§Ć£o do rejeito fibroso industrial da polpaĆ§Ć£o kraft de eucalipto para produĆ§Ć£o de papel. In: III SeminĆ”rio de Tecnologia Papeleira. ABTCP, SĆ£o Paulo: 2000 pgs. 96ā€“106.

    Google ScholarĀ 

  166. Josephson, W.; Jansson, U.; Sezgi, U. S. and Fagerstrƶn, K. ā€“ Low consistency refining of a non-conventionally cooked pulp. In: Papermakers Conference. TAPPI, Atlanta, 1999 Book 2 pgs. 729ā€“739.

    Google ScholarĀ 

  167. Borralho, N. M. G.; Cotterill, P. P. and Kanowski, P. J. ā€“ Breeding objectives for pulp production of Eucalyptus globulus under different industrial cost structures. Canadian Journal of Forest Research, 23: 649 (1993).

    Google ScholarĀ 

  168. Ferreira, C. R.; Fantini Jr, M.; Colodette, J. L.; Gomide, J. L. and Carvalho, A. M. M. L. ā€“ AvaliaĆ§Ć£o tecnolĆ³gica de clones de eucalipto. Parte 1: qualidade da madeira para produĆ§Ć£o de celulose kraft. Scientia Forestalis (70): 161ā€“170 (2006).

    Google ScholarĀ 

  169. Zhang, X.; Li, L. and Xu, F ā€“ Chemical Characteristics of Wood Cell Wall with an Emphasis on Ultrastructure: A Mini-Review. Forests, 13 (3): 439ā€“461 2022)

    Google ScholarĀ 

  170. Whitney, R. P. ā€“ The dtory of paper. Tappi Press, Atlanta, 1984, 28 pgs.

    Google ScholarĀ 

  171. Koch, G ā€“ Raw material for pulp. In: Handbook of Pulp. Volume 1, Chapter 2, Ed. Sixta, H. WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim, 2006 pgs. 28ā€“68.

    Google ScholarĀ 

  172. ƅkerholm, M. ā€“ Ultrastructural aspects of pulp fibers as studied by dynamic FT-IR spectroscopy. Doctoral Thesis. Royal Institute of Technology. Stockholm, 2003 71 pgs http://www.diva-portal.org/smash/get/diva2:9438/FULLTEXT01.pdf.

  173. Park, S. W. and Pinto, J. M. ā€“ CinĆ©tica da polpaĆ§Ć£o kraft. Parte 1: a evoluĆ§Ć£o de modelos empĆ­ricos para modelos mecanĆ­sticos. In: XXIII Congresso Anual de Celulose e Papel, ABTCP, SĆ£o Paulo, 1990 pgs. 69ā€“91.

    Google ScholarĀ 

  174. Sjƶstrƶm, E. ā€“ Wood chemistry ā€“ fundamentals and applications, 2nd. Edition. Academic Press, San Diego, 1993 pg. 204ā€“222.

    Google ScholarĀ 

  175. Smook, G. A. ā€“ Preparation of papermaking stock In: Handbook of Pulp and Paper Thechnologists ā€“ Chapter 13. Angus Wilde, 2002. pgs 190ā€“204

    Google ScholarĀ 

  176. Abdul Khalil, H. P. S.; Davoudpour, Y.; Nazrul Islama, Md; Mustaphaa, A.; K. Sudeshd, Rudi Dungani, R. and Jawaidb, M. ā€“ Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydrate Polymers 99: 649ā€“665 (2014)

    Google ScholarĀ 

  177. Jansson, J. ā€“ The influence of pH on fiber and paper properties: Different pH levels during beating and sheet forming. Masterā€™s Thesis. Karlstad University, Karlstad, 2015 43 pgs www.diva-portal.org/smash/get/diva2:823180/FULLTEXT01

  178. Sjƶsted A. ā€“ Preparation and characterization of nanoporous cellulose fibres and their use in new material concepts. Doctoral Thesis. KTH Royal Institute of Technology. Stockholm, 2014 65 pgs. https://www.diva-portal.org/smash/get/diva2:761478/FULLTEXT01.pdf

  179. Zhang, M.; Hubbe, M. A.; Venditti, R. A. and Heitamann, J. A. ā€“ Can recycled kraft benefit from chemical addition before they are first dried? Appita Journal, 55 (2): 135ā€“144.

    Google ScholarĀ 

  180. Winandy, J. E. and Rowell, R. M. ā€“ Chemistry of wood strength. In: Handbook of wood chemistry and wood. Chapter 11. CRC Press, Boca Raton, 2005 Ed. Rowell, R. M. ā€“ pgs. 303ā€“347.

    Google ScholarĀ 

  181. Milichovsky, M. ā€“ A new concept of chemistry refining process. Tappi Journal, 62 (10): 221ā€“231 (1990).

    Google ScholarĀ 

  182. Clark, J. dā€™Ć. ā€“ Some troughts on fiber classification and length. In: Process Engineering Handbook. Ed. Process Engineering Committee of the Engineering Division. Tappi Press, Atlanta, 1992, 2nd Edition Appendix: 74ā€“76.

    Google ScholarĀ 

  183. Xie, Y. Q.; Tong, Q. J. and Chen, Y. ā€“ Manufacture and properties of a novel ultra-low-density fiberboard from wood fibre. BioResources, 6 (4): 4055ā€“4066 (2011).

    Google ScholarĀ 

  184. Lennholm, H. and Iversen, T. ā€“ The effects of laboratory beating on cellulose structure. Nordic Pulp and Paper Research Journal, 10 (2): 104ā€“109 (1995).

    Google ScholarĀ 

  185. Yuan, L.; Wan, J.; Ma, Y.; Wang, Y.; Huang, M. and Chen, Y. ā€“ The content of different hydrogen bond models and crystal structure of eucalypty fibers during beating. BioResources 8 (1), 717ā€“734 (2013).

    Google ScholarĀ 

  186. Homas, L. H.; Kennedye, C. J.; Mayb, R. P.; Altanerf, C. M.; Apperleyg, D. C.; Wessh, T.J. and Jarvisi, M. C. ā€“ Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiology, 161 (1): 465ā€“476 (2013).

    Google ScholarĀ 

  187. Genco, I.; Boufi, S.; PĆØlach, M. A.; AlcalĆ , M.; Vilaseca, F. and MutjĆ©a, P. ā€“ Nanofibrillated cellulose as paper additive in eucalyptus pulps. BioResources, 7 (4): 5167ā€“5180 (2012).

    Google ScholarĀ 

  188. Chinga-Carrasco, G. ā€“ Cellulose fibres, nanofibrils and microfibrils: The morphological sequence of MFC components from a plant physiology and fibre technology point of view. Nanoscale Research Letter,. 6 7 pgs. (2011).

    Google ScholarĀ 

  189. FahlĆ©n J, SalmĆ©n L. ā€“ Cross-sectional structure of the secondary wall of wood fibers as affected by processing. In: 11th International Symposium on Wood and Pulping Chemistry. Nice, 2001 pg. 585.

    Google ScholarĀ 

  190. Donaldson, L. ā€“ Cellulose microfibril aggregates and their size variation with cell wall type. Wood Science and Technology, (41): 443ā€“460 (2007).

    Google ScholarĀ 

  191. Leask, R. A. ā€“ Introduction. In: Pulp and Paper Manufacture, Volume 2, Mechanical Pulping. R. A. Leask, Ed. Joint-Textbook Committee, Technical Section. CPPA/TAPPI.

    Google ScholarĀ 

  192. SalmĆ©n, L. ā€“ Wood morphology and properties from molecular perspectives. Annals of Forest Science, (72):679ā€“684 (2015).

    Google ScholarĀ 

  193. Scallan, A. M. and Tigerstrƶm, A. C. ā€“ Swelling and elasticity of the cell walls of pulp fibres. Jornal of Pulp and Paper Science, 18 (5): 188ā€“193 (1992).

    Google ScholarĀ 

  194. Mohlin, U.-B. and Wennberg, K. ā€“ Some aspects of the interaction between mechanical and chemical pulps. Tappi Journal, 67 (1): 90ā€“93 (1984).

    Google ScholarĀ 

  195. Haunreiter, K. J. ā€“ 200th Anniversary of the paper machine ā€“ the first 100 years. Tappi Journal, 80 (10): 87ā€“96 (1997).

    Google ScholarĀ 

  196. Page, D.H. ā€“ A note on the cell-wall structure of softwood tracheids. Wood and Fiber, 7: 246ā€“248 (1976).

    Google ScholarĀ 

  197. Berglund, J., Mikkelsen, D., Flanagan, B.M. et al. ā€“ Wood hemicelluloses exert distinct biomechanical contributions to cellulose fibrillar networks. Nature Communications, 11, 4692 (2020) 15 pgs. https://doi.org/10.1038/s41467-020-18390-z

  198. Waterhouse, J. ā€“ Formation measurements and paper quality. World Pulp and Paper Technology, (9): 107 (1998).

    Google ScholarĀ 

  199. SalmĆ©n, N. L. and Olsson, A-M. ā€“ Interaction between hemicelluloses, lignin and cellulose: structure-property relationships. Journal of Pulp and Paper Science, 24 (3): 99ā€“103 (1998).

    Google ScholarĀ 

  200. Berggren, R. ā€“ Cellulose degradation in pulp fibers studied as changes in molar mass distributions. Doctoral Thesis, Royal Institute of Technology, Stockholm, 2003 94 pgs https://www.diva-portal.org/smash/get/diva2:9304/FULLTEXT01.pdf

  201. Santos, A.; Anjos, O. M. and SimƵes, R. M. S. ā€“ Influence of kraft cooking conditions on the pulp quality of Eucalyptus globulus. Appita Journal, 61 (2): 148ā€“155 (2008).

    Google ScholarĀ 

  202. Gomide, J. L.;Colodette, J. L.; Oliveira, R. C. de; Girard, R. and Argyropoulos, D. S. ā€“ Fatores que afetam a branqueabilidade de polpas kraft de eucalyptus. Parte 2: InfluĆŖncia de parĆ¢metros da PolpaĆ§Ć£o. O Papel, 60 (12): 61ā€“70 (2000).

    Google ScholarĀ 

  203. Gomide, J. L. and Almeida, J. M. ā€“ Carbohydrate and lignin degradation during continuous kraft pulping of Eucalyptus wood. In: Sixt Brazilian Symposium on the Chemistry of Lignins and Other Wood Components. FAENQUIL, GuaratinguetĆ”, 1999 pgs. 45ā€“51.

    Google ScholarĀ 

  204. Al-Dajani, W. W. and Tschirner, U. W. ā€“ Pre-extraction of hemicelluloses and subsequent kraft pulping. Part I: alkaline extraction. Tappi Journal, 7 (6): 3ā€“8 (2008).

    Google ScholarĀ 

  205. Ratnieks, E. and Foelkel, C. E. B. ā€“ Uma discussĆ£o teĆ³rioco-prĆ”tica sobre polpas de eucalipto para a fabricaĆ§Ć£o de papel ā€œtissueā€. In: XXIX Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1996 pgs. 717ā€“734.

    Google ScholarĀ 

  206. Page, D. H. ā€“ A theory for tensile strength of paper. Tappi, 52 (4): 674ā€“681 (1969).

    Google ScholarĀ 

  207. Snowman, V. R.; Genco, J. M.; Cole, B. J. W.; Kwon, H. B. and Miller, W. J. ā€“ Bond strength of oxygen-delignified kraft pulps. Tappi Journal, 82 (2): 103ā€“109 (1999).

    Google ScholarĀ 

  208. Demuner, B. J. Viana Doria, E. L.; Claudio-da-Silva Jr., E. and Manfredi, V. ā€“ As propriedades do papel e as caracterĆ­sticas das fibras de eucalipto. In: XXIV Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1991 pgs. 621ā€“641.

    Google ScholarĀ 

  209. Cao, B.; Tschirner, U. and Ramaswamy, S. ā€“ Impact of pulp chemical composition on recycling. Tappi Journal, 81 (12): 119ā€“127 (1998).

    Google ScholarĀ 

  210. Hanna, K. R., Fisher, J. J.; Krotm, M. J.; Goyal, G. C.; Packwood, R. E. and Ragauskas, A. J ā€“ Differences in bleaching and refining responses of displacement batch hardwood and softwood caused by pulping conditions and structure of residual lignin. In: International Pulp Bleaching Conference. TAPPI, Helsinki, 1998 Book 2. pgs. 323ā€“328.

    Google ScholarĀ 

  211. Backstrom, M. and Jensen, A. ā€“ Modified kraft pulping to high kappa numbers. In: Annual General Conference. APPITA, (cidade: 1999 Volume 1 pgs. 101ā€“109.

    Google ScholarĀ 

  212. Dahlman, O.; Sjƶberg, J.; Jansson, U. B. and Larsson, P. O. ā€“ Effects of surface hardwood xylan on the quality of softwood pulps. Nordic Pulp and Paper Research Journal, 18 (3): 310ā€“315 (2003).

    Google ScholarĀ 

  213. Saake, B.; Till, B. and Puls, J. ā€“ The effect of xylan adsorption on the properties of sufite and kraft pulps. In: International Symposium on Wood, Fibre and Pulping Chemistry. APPITA, Auckland, 2005 pgs 131ā€“146.

    Google ScholarĀ 

  214. Danielsson, S. and Lindstrƶm, M. E. ā€“ Influence of birch xylan adsorption during kraft cooking on softwood pulp strength. Nordic Pulp and Paper Research Journal, 20 (4): 436 (2005).

    Google ScholarĀ 

  215. Walker, E. ā€“ Effects of the uronic acid carboxyls on the sorption of 4-O-methylglucuronoarabinoxylans and their influence on papermaking properties of cellulose fibres. Tappi, 48 (5): 298 (1965).

    Google ScholarĀ 

  216. Colodette, J. L., Gomide, J. L., Girard, R., Jaaskelainen, A. S., Argyropoulos, D. S. ā€“ Influence of pulping conditions on hardwood pulp yield. Quality and bleachability. In: International Pulp Bleaching Conference, Halifax, 2000, pg 41ā€“48 ā€“ Oral presentation.

    Google ScholarĀ 

  217. Lyytikainen, K.; Saukkonen, E.; Kajanto, I. and Kayhko, J. ā€“ The effect of hemicellulose extraction on fibre charge properties and retention behavior of kraft pulp fibres, Bioresources, 6 (1): 219ā€“231 (2011).

    Google ScholarĀ 

  218. Joutsimo, O. P. and Asikainen, S. ā€“ Effect of fiber wall pore structure on pulp sheet density of softwood kraft pulp fibers. BioResources, 8 (2):2719ā€“2737 (2013).

    Google ScholarĀ 

  219. Dinus, R. J. and Welt, T. ā€“ Tailoring fiber properties to paper manufacture: recent developments. Tappi Journal, 80 (4): 127ā€“139 (1997).

    Google ScholarĀ 

  220. Jardim, C. ā€“ VariaƧƵes na densidade bĆ”sica da madeira versus impacto no processo produtivo. In: 1Ā° Encontro de Operadores de PĆ”tio de Madeira e 5Ā° Encontro de Operadores de Linhas de Fibras. ABTCP. 2019.

    Google ScholarĀ 

  221. Kubelka, V.; Wizani, W.; Neubauer, G. and Kappel, J. ā€“ ENERBATCH extended delignification for TCF pulp. In: International Non-Chlorine Bleaching Conference. Pulp & Paper/Emerging Technology Transfer, Amelia Island, 1994 Paper 3-2 23 pgs.

    Google ScholarĀ 

  222. El-Hosseiny, F. ā€“ Influence of the ā€œGiertz effectā€ on development of short-span compression strength. Tappi Journal, 81 (2): 177ā€“180 (1996).

    Google ScholarĀ 

  223. Moss, P. A. and Pere, J. ā€“ Microscopical study on the effects of partial removal of xylan on the swelling properties of birch Kraft pulp fibres. Nordic Pulp and Paper Research Journal, 21 (1): 8ā€“12 (2006).

    Google ScholarĀ 

  224. Antes, R. and Joustino, O. P. ā€“ Fiber surface and paper technical properties of Eucalyptus globulus and Eucalyptus nitens ā€“ pulps after modified cooking and bleaching. BioResources, 10 (1): 1599ā€“1616 (2015).

    Google ScholarĀ 

  225. Wang, X. ā€“ Improving the papermaking properties of kraft pulp by controlling hornification and internal fibrillation. Doctoral Thesis, Helsinki University of Technology, Espoo, 2006 88 pos http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.575.9047&rep=rep1&type=pdf

  226. Pere, J.; PƤƤkkƶnen, E., Ji, Y.; Retulainen, E. ā€“ Influence of the hemicellulose content on the fiber properties, strength, and formability of handsheets. BioResources, 14 (1): 251ā€“263 (2019).

    Google ScholarĀ 

  227. Saucedo, J. J. and GonzĆ”lez, S. F. ā€“ IdentificaciĆ³n y efecto de las hemiceluloses sobre las propriedades fĆ­sicas de la celulosa y papel. In: II Congresso Latino-Americano de Celulose y Papel. AITIPE, Torremolinos, 1981 pgs. 143ā€“151.

    Google ScholarĀ 

  228. Hu, G.; Shiyu, F. and Liu, H. ā€“ Hemicellulose in pulp affects paper properties and printability. Appita Journal, 66 (2) 139ā€“141 (2013).

    Google ScholarĀ 

  229. Hakanen, A. and Teder, A. ā€“ Modified kraft cooking with polysulfide: yield, viscosity, and physical properties. Tappi Journal, 80 (7): 189 (1997).

    Google ScholarĀ 

  230. WĆ„gberg, E. and Lindstrƶm, M. E. ā€“ The hemicellulose composition of pulp fibres and their ability to endure mechanical treatment. Tappi Journal, 6 (10): 19ā€“24 (2007).

    Google ScholarĀ 

  231. Genco, J. M. ā€“ Fundamental process in stock preparation and refining. In: Pulping Conference. TAPPI, Orlando, /1999 pgs. 57ā€“95.

    Google ScholarĀ 

  232. Resquin, F.; Barrichelo, L. E. G.; Silva Jr, F. G. da; Brito, J. O. and Sansigolo, C. A. ā€“ Wood quality for Kraft pulping of Eucalyptus globulus origins planted in Uruguay. Scientia Forestalis (72): 57 (2006).

    Google ScholarĀ 

  233. Barbosa, B. M.; Colodette, J. L.; Muguet, M. C dos S.; Gomes, V. J.; e Rubens, C. de O. ā€“ Effects of xylan in eucalyptus pulp production. CERNE, 22 (2): 207ā€“213 (2016).

    Google ScholarĀ 

  234. Antes, R. and Joutsimo, O. P. ā€“ Effect of modified cooking on fiber wall structure of E. globulus and E. nitens. BioResources, 10 (2): 2195ā€“2212 (2015).

    Google ScholarĀ 

  235. Kersavage, P. C. ā€“ Moisture content effect on tensile properties of individual Douglas-fir latewood tracheids. Wood and Fiber Science, 5 (2): 105ā€“117 (1973).

    Google ScholarĀ 

  236. Fagerstedt, K. V.; Kukkola, E. M.; Koistinen, V. V. T.; Takahashi, J. and Marjamaa, K. ā€“ Cell wall lignin is polymerised by class III secretable plant peroxidases in Norway spruce. Journal of Integrative Plant Biology, 52 (2): 186ā€“194 (2010).

    Google ScholarĀ 

  237. Du, X.; Gellerstedt, G. and Li, J. ā€“ Universal fractionation of ligninā€“carbohydrate complexes (LCCS) from lignocellulosic biomass: An example using spruce wood. Plant Journal, 74 (2): 328ā€“338 (2013).

    Google ScholarĀ 

  238. Youssefian, S. and Rahbar, N. ā€“ Molecular origin of strength and stiffness in bamboo fibrils. Scientific Reports, 5: 1ā€“13 (2015).

    Google ScholarĀ 

  239. NiemelƤ, K.; Tamminen, T. and Ohra-aho, T. ā€“ Black liquor components as potential raw materials. TAPPSA (2008) http://www.tappsa.co.za/archive3/Journal_papers/BlackLiquorComponents/blackliquor components.html.

  240. SalmĆ©n, L.; Olsson, A-M.; Stevanic, J. S.; Simonović, J. and Radotić, K. ā€“ Structural organization of the wood polymers in the wood fibre. BioResources, 7 (1): 521ā€“532 (2012).

    Google ScholarĀ 

  241. Chabbert, B.; Tollier, M. T.; Monties, B. ā€“ Biological variability in lignification of maize: Expression oft he brown midbrid bm2 mutation. Journal of Science Food Agriculture, 64, 455ā€“460 (1994).

    Google ScholarĀ 

  242. Lani, T. B. T; Iiyama, K.; Stone, B. ā€“ Lignin and hydroxycin-namic acids in walls of brown midrib mutants of sorghun, pearl millet and maize stems. Journal of Science Food Agriculture, 406y 174ā€“178 (1996).

    Google ScholarĀ 

  243. Thorstensson, E. M. G.; Buxton, D. R.; Chemey, J. H. Apparent inhibition to digestion by lignin in normal and brown midrib stenu. Journal of Science Food Agriculture, 59: 183ā€“188 (1992).

    Google ScholarĀ 

  244. Morrison, W H.; Akin, D. E.; Himmelsbach, D. S.; Gamble, G. R. ā€“ Investigation and esterand ether-linked phenolic constituents of cell wall types of normal and brown midrib pearl millet using chemical isolation, microspectrophotom-etryandl3CNMRspectroscopy. Journal of Science Food Agriculture, 63, 329ā€“337 (1993).

    Google ScholarĀ 

  245. Grenet, E.; Barry, R. ā€“ Microbial degradation of normal maize and bm3 maize in the rumen observed by scanning electron microscopy. Journal of Science Food Agriculture, 59y, 199ā€“210 (1991).

    Google ScholarĀ 

  246. Zani Filho, J.; Stape, J. L.; Ribeiro, F. de A. and Balloni, E. A. ā€“ Programa de melhoramento genĆ©tico de E. urophylla S. T. Blake, atravĆ©s de seleĆ§Ć£o precoce. In: VI Congresso Florestal Brasileiro. SBS/SBEF, Campos do JordĆ£o: 22-27/09/1990 Volume 3: 464ā€“471.

    Google ScholarĀ 

  247. Carneiro, C. J. C.; Amaral Santos, C. A. S. do e Manfredi, V. ā€“ CaracterizaĆ§Ć£o da variabilidade longitudinal da Ć”rvore visando a produĆ§Ć£o de celulose. In: XXX Congresso Anual de Celulose e Papel da ABTCP, SĆ£o Paulo, 1997 pgs. 271ā€“280.

    Google ScholarĀ 

  248. Manfredi, V. and Barrichelo, L. E. G. ā€“ VariaĆ§Ć£o do rendimento em celulose sulfato ao longo do tronco do eucalipto. In: XVIII Congresso Anual de Celulose e Papel da ABTCP, SĆ£o Paulo, 1985 pgs. 5ā€“29.

    Google ScholarĀ 

  249. Minor, J. L.; Atalla, R. H. and Harten, T. M. ā€“ Improving inter fibre bonding of recycled fibres. Journal of Pulp and Paper Science, 19 (4): J152ā€“155 (1993).

    Google ScholarĀ 

  250. Tikka, P.; TƤhkanen, H. and Kovasin, K. ā€“ Chip thickness versus kraft pulping performance: experimental by multiple hanging basket in batch digesters. Tappi Journal, 76 (3): 131ā€“136 (1993).

    Google ScholarĀ 

  251. Perissoto, D. O.; Nascimento, E. A. and Morais, S. A. L. ā€“ Estudo dos extrativos da polpa kraft de eucalipto. Parte 2: Branqueamento dos extrativos e da polpa kraft. O Papel, 61 (8): 69ā€“72 (2000).

    Google ScholarĀ 

  252. Turner, C. H.; Balodis, V. and Dean, G. H. ā€“ Variability in pulping quality of E. globulus from Tasmanian provenances. Appita Journal, 36 (5): 371ā€“376 (1983).

    Google ScholarĀ 

  253. Valente, C. A. and Furtado, F. P. ā€“ O melhoramento do Eucalyptus globulus. Uma abordagem ecolĆ³gica. Pasta e Papel (5): 33ā€“37 (1992).

    Google ScholarĀ 

  254. Hall, M. J.; Hansen, N. W. and Rudra, A. B. ā€“ The effect of species, age and wood characteristics on eucalypt Kraft pulp quality. Appita Journal, 26 (5): 348 (1973).

    Google ScholarĀ 

  255. Claudio-da-Silva Jr, E. ā€“ The Flexibility of pulp fibers ā€“ a structural approach. In: International Paper Physics Conference. TAPPI/CPPA, Harwichport, 1983 pgs. 13ā€“25.

    Google ScholarĀ 

  256. Regmed IndĆŗstria TĆ©cnica de PrecisĆ£o Ltda. www.regmed.com.br

  257. Parhan, P. A. ā€“ Wood physical properties. In: Pulp and Paper Manufacture ā€“ Volume 1 ā€“ Properties of Fibrous Raw Materials and Their Preparation for Pulping. Ed. Kocureck, M. J. and Stevens, C. F. B. The Technical Committee of the Paper Industry, Atlanta/Montreal, 1983 pg. 46ā€“54

    Google ScholarĀ 

  258. Miranda, C. R. and Barrichelo, L. E. G. ā€“ Celulose de madeira de E. citriodora: influĆŖncia do tamanho dos cavacos. In: XXIII Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo: 1990 pgs. 01ā€“34.

    Google ScholarĀ 

  259. Evans, R.; Kibblewhite, R. P. and Stringer, S. ā€“ Kraft pulp fibre property prediction from wood properties in eleven radiata pine clones. Appita Journal, 50 (1): 25 (1997)

    Google ScholarĀ 

  260. Evans, R.; Kibblewhite, R. P. and Lausberg, M. ā€“ Relationships between wood and pulp properties of twenty-five 13 year old radiata pine trees. Appita Journal, 52 (2): 133ā€“139 (1999).

    Google ScholarĀ 

  261. Foelkel, C. E. B.; Mora, E. and Menochelli, S. ā€“ Densidade bĆ”sica: sua verdadeira utilidade como Ć­ndice de qualidade da madeira de eucalipto para a produĆ§Ć£o de celulose. In: VI Congresso Florestal Brasileiro. SBS/SBEF, Campos do JordĆ£o: 1990 pgs. 719ā€“728.

    Google ScholarĀ 

  262. Ferreira, C.; Fantini JĆŗnior, M.; Oliveira, R.C. de; Colodette, J.L. and Gomide, J.L. ā€“ CritĆ©rios de seleĆ§Ć£o de clones para maximizar rendimento e qualidade da celulose. In: ColĆ³quio Internacional sobre Celulose Kraft de Eucalipto, UFV, ViƧosa, 2003 pgs. 39ā€“58.

    Google ScholarĀ 

  263. Vale, A. T do; Moura, V. P. G.; Martins, I. S. and Rezende, D. C. A. de ā€“ Densidade bĆ”sica mĆ©dia, em funĆ§Ć£o da profundidade de penetraĆ§Ć£o do pino do ā€œPilodynā€e da classe diamĆ©trica, e variaĆ§Ć£o axial da densidade bĆ”sica em Eucalyptus grandis Hill ex Maiden. Revista Ɓrvore, 19 (1): 80 (1995).

    Google ScholarĀ 

  264. Xu, E. C. and Saborin, M. J. ā€“ Evaluation of APMP and BCTMP for market pulps from South American eucalyptus. Tappi Journal, 82 (12): 75ā€“82 (1999).

    Google ScholarĀ 

  265. Whiteman, P. H.; Cameron, J. W. and Farrington, A. ā€“ Breeding trees for improved pulp and paper production. Appita Journal, 49 (1): 50ā€“53 (1996).

    Google ScholarĀ 

  266. Oda, S.; Mello, E. J.; Menck, A. L. de M. and Costa, P. C. ā€“ VariaĆ§Ć£o da densidade bĆ”sica da madeira de clones de E. grandis e E. saligna em diferentes povoamentos, com seis anos de idade. In: VI Congresso Florestal Brasileiro. SBS/SBEF, Campos do JordĆ£o, 1990 Volume 3: 701ā€“705.

    Google ScholarĀ 

  267. Rezende, M. A. de; Saglietti, J. R. C. and Marinez, J. C. ā€“ Estudo das variaƧƵes de massa especĆ­fica e retratibilidade da madeira do Eucalyptus saligna. In: VII Congresso Florestal Brasileiro. SBS/SBEF, Curitiba, 1993. Volume 2 pgs. 629ā€“637.

    Google ScholarĀ 

  268. Duffy, G. G. and Kibblewhite, R. P. ā€“ A new method of relating wood density, pulp quality and paper properties. Appita Journal, 42 (3): 209ā€“214 (1989).

    Google ScholarĀ 

  269. Botrel, M. C. G.; da Silva, J. R. M.; Trugilho, P. F.; Rosado, S. C. da S. and Fernandes, B. R. ā€“ Ganho genĆ©tico em propriedades fĆ­sicas e mecĆ¢nicas de clones de Eucalyptus. Scientia Forestalis (76): 13ā€“19 (2007).

    Google ScholarĀ 

  270. Dias, R. L. V. and Claudio-da-Silva Jr., E ā€“ Pulp and paper properties as influenced by wood density. In: 8th Fundamental Research Symposium. PIRA, Oxford, 1995 pgs. 7ā€“35.

    Google ScholarĀ 

  271. Moraes, M. L. T. ā€“ VariaĆ§Ć£o genĆ©tica da densidade bĆ”sica da madeira em progĆŖnies de Eucalyptus grandis Hill ex-Maiden e suas relaƧƵes com as caracterĆ­sticas de crescimento. Masterā€™s Thesis, ESALQ/USP, Piracicaba, 1987 115 pgs.

    Google ScholarĀ 

  272. Wehr, T. R. and Barrichelo, L. E. G. ā€“ Cozimento kraft com madeira de Eucalyptus grandis de diferentes densidades bĆ”sicas e dimensƵes de cavacos. In: XXV Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1992 pgs. 161ā€“177.

    Google ScholarĀ 

  273. Shimoyama, V. R. de S. ā€“ VariaƧƵes da densidade bĆ”sica e caracterĆ­sticas anatĆ“micas e quĆ­micas da madeira em Eucalyptus spp. Masterā€™s Thesis, ESALQ/USP, Piracicaba, 1990 93 pgs.

    Google ScholarĀ 

  274. Kibblewhite, R. P., Evans, R. and Riddell, M. J. C. ā€“ Handsheet property prediction from kraft-fibre and wood-tracheid properties in eleven radiata pine clones. Appita Journal, 50 (2): 131ā€“138 (1997).

    Google ScholarĀ 

  275. Xu, E. C. and Saborin, M. J. ā€“ Evaluation of APMP and BCTMP for market pulps from South American eucalyptus. Tappi Journal, 82 (12): 75ā€“82 (1999).

    Google ScholarĀ 

  276. Eskelinen, E.; Hu, S. H. and Marton, R. ā€“ Wood mechanics and mechanical pulping. Appita, 36 (1): 32ā€“38 (1992).

    Google ScholarĀ 

  277. Demuner, B. J. and Bertolucci, F. de L. G. ā€“ SeleĆ§Ć£o florestal: uma nova abordagem a partir de estimativas de parĆ¢metros genĆ©ticos e fenotĆ­picos para caracterĆ­sticas da madeira e polpa de eucalipto. In: XXVI Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1993 pgs. 411ā€“423.

    Google ScholarĀ 

  278. Silva Jr., F. G. da e Braga, E. P. ā€“ Potencialidade da seleĆ§Ć£o cde E. urophylla em funĆ§Ć£o da qualidade da madeira destinada Ć  produĆ§Ć£o de celulose. In: XXX Congresso anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1997 pg. 281ā€“292.

    Google ScholarĀ 

  279. Willians, M. D.; Beadle, C. L.; Turnbull, C. R. A.; Dean, G.H. and French, J. ā€“ Papermaking potential of plantation eucalypt. In: Eucalypt Plantations: Improving Fibre Yield and Quality Conference. CRCTHF/IUFRO, Hobart, 1995 pgs. 73ā€“78.

    Google ScholarĀ 

  280. Valeri, S.; Aguiar, I. B. de; Banzatto, D. A. and Alvarenga, S. F. ā€“ VariaĆ§Ć£o da densidade bĆ”sica da madeira de E. grandis Hill ex-Maiden com a altura do caule e aplicaĆ§Ć£o de fĆ³sforo e calcĆ”rio dolomĆ­tico. In: VI Congresso Florestal Brasileiro. SBS/SBEF, Campos do JordĆ£o, 1990 Volume 3: 746ā€“756.

    Google ScholarĀ 

  281. Flores, D. M. M.; Cardoso, G. V.; Foelkel, C. E. B. and Frizzo, S. M. B. ā€“ Amostragem de Ć”rvores para estudos tecnolĆ³gicos da madeira para produĆ§Ć£o de celulose: tamanho da amostra, nĆŗmero mĆ­nimo de repetiƧƵes e variabilidade das popriedades para um clone de Eucalyptus saligna Smith. O Papel, 61 (3): 44ā€“49, 52, 55 (2000).

    Google ScholarĀ 

  282. Bertolucci, F. L. G.; Demuner, B. J.; Garcia, S. L. R. and Ikemori, Y. K. ā€“ Increasing fiber yield and quality at Aracruz. In: Eucalypt Plantations: Improving Fibre Yield and Quality Conference. CRCTHF/IUFRO, Hobart, 1995 pgs. 31ā€“34.

    Google ScholarĀ 

  283. Mohlin, U.-B e Miller, J. ā€“ Industrial refining ā€“ effects of refining conditions on fibre properties. In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta, 1995 Paper 4.

    Google ScholarĀ 

  284. Zobel, B. J. and Buijteen, J. P. ā€“ Wood variation: its causes and control. Spring Series in Wood Science, Series Ed. Timell, T. E. Spring Verlag, Berlim, 1989 363 pgs.

    Google ScholarĀ 

  285. Meadows, D. G. ā€“ An eye to the future: stock preparation. Tappi Journal, 81 (2): 70ā€“78 (1998).

    Google ScholarĀ 

  286. Rezende, M. A. and Ferraz, E. S. B. ā€“ Densidade anual da madeira de Eucalyptus grandis. IPEF (30): 37ā€“41 (1985).

    Google ScholarĀ 

  287. Zhong, R. and Ye, Z-H. ā€“ Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation. Plant and Cell Physiology, 56 (2): 195ā€“214 (2015).

    Google ScholarĀ 

  288. Barrichelo, L. E. G. and Brito, J. O. ā€“ Variabilidade longitudinal e radial da madeira de Eucalyptus grandis. In: XVII Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1984 pgs. 403ā€“409.

    Google ScholarĀ 

  289. Zobel, B. J. ā€“ Clonal forestry in the Eucalyptus. In: Clonal Forestry II ā€“ Conservation and Application. Ed. Ahuja, M. R. and Libby, W. J. Springer-Verlag, Berlin, 1993 Chapter 7 pgs. 139ā€“148.

    Google ScholarĀ 

  290. Fonseca, S. M. da; Fernandes, D. E.; Borges, J. F.; Martini, S. L. and Silveira, P. N. ā€“ Efeitos do espaƧamento e da idade de corte sobre a produtividade e qualidade da madeira e o custo da celulose kraft de eucalipto. In: XXIX Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1996 pgs. 437ā€“451.

    Google ScholarĀ 

  291. Foelkel, C. E. B. ā€“ A madeira do eucalipto: da floresta ao digestor. Boletim Informativo do IPEF, 6 (20): 1ā€“25 (1978).

    Google ScholarĀ 

  292. Corson, S. R. ā€“ Directions in New Zealand mechanical pulping research Part 1: development of research effort; research activity; influence of wood quality; and process influences. Appita, 46 (2): 143ā€“148 (1993).

    Google ScholarĀ 

  293. Panshin, A. J. and Zeeuw, C. de ā€“ Textbook of Wood Technology, 4th Edition. McGraw Hill, New York, 1980. 722 pgs.

    Google ScholarĀ 

  294. Ferreira, M. and Santos, P. E. F. ā€“ Eucalyptus wood traits for species/provenances/plus trees and clones planted in Brazil ā€“ a review applied to genetic improvement for pulp production. In: Eucalypt Plantations: Improving Fibre Yield and Quality Conference. CRCTHF/IUFRO, Hobart, 1995 pgs. 258ā€“260.

    Google ScholarĀ 

  295. Malan, F. S. and Arbudthnot, A. L. ā€“ The inter-relationship between density and fibre properties of South African grown Eucalyptus grandis. In: Eucalypt Plantations: Improving Fibre Yield and Quality. CRCTHF/IUFRO, Hobart, 1995 pgs. 116ā€“120.

    Google ScholarĀ 

  296. Malan, F. S. ā€“ Variation, association and inheritance of juvenile wood properties of Eucalyptus grandis Hill ex-Maiden with special reference to the effect of rate of grown. South African Forestry Journal (157): 16ā€“23 (1991).

    Google ScholarĀ 

  297. Danforth, D. W. ā€“ Stock preparation: theory and practice. Southern Pulp and Paper Manufacture, 32 (7): 52ā€“53 (1969).

    Google ScholarĀ 

  298. Malan, F. S. ā€“ Studies on the phenotypic variation in growth tree wood properties of South African grown Eucalyptus grandis (Hill ex-Maiden). Doctoral Thesis, University of Stellenbosch, Stellenbosch, 1984 https://scholar.sun.ac.za/handle/10019.1/64868

  299. Shimoyama, V. R. S. and Barrichelo, L. E. G. ā€“ InfluĆŖncia das caracterĆ­sticas anatĆ“micas e quĆ­micas sobre a densidade bĆ”sica da madeira de Eucalyptus. In: XXIV Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1991 pgs. 23ā€“26.

    Google ScholarĀ 

  300. Laivans, G. V. and Scallan, A. M. ā€“ Removal of water from pulps by pressing, Tappi Journal, 77(3), 125 (1994).

    Google ScholarĀ 

  301. Carrillo, I.; Aguayo, M. G.; MendonƧa, S. V. R. T. and Elissetche, J. P. ā€“ Variations in wood anatomy and fiber biometry of Eucalyptus globulus genotypes with diferent wood density. Wood Research. 60 (1): 1ā€“10 (2015).

    Google ScholarĀ 

  302. Barrichelo, L. E. G.; Brito, J. O.; Couto, M. T. Z. do e Campinhos Jr., E. ā€“ Densidade bĆ”sica, teor de holocelulose e rendimento em celulose de madeira de Eucalyptus grandis. Silvicultura, 8 (32): 802ā€“808 (1983).

    Google ScholarĀ 

  303. KƤrenlampi, P. ā€“ Effect of distributions of fibre properties on tensile strength of paper: a closed-form theory. Journal of Pulp and Paper Science, 21 (4): 138ā€“143 (1995).

    Google ScholarĀ 

  304. Greaves, B. L.; Borralho, N. M. G. and Raymond, C. A. ā€“ Breending objective for plantation eucalypts grown for production of kraft pulp. Forest Science (43): 465 (1997).

    Google ScholarĀ 

  305. DuPlooy, A. B. J. ā€“ The relationship between wood and pulp properties of E. grandis (Hill ex-maiden) grown in South Africa. Appita, 33 (4): 257ā€“264 (1980).

    Google ScholarĀ 

  306. Trugilho, P. F.; Mendes, L. M.; Lima, J. T. and Silva, J. R. M. da ā€“ Uso de tĆ©cnicas multivariadas na classificaĆ§Ć£o de clones de eucalipto para produĆ§Ć£o de celulose e papel. In: XXX Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1997 pgs. 309ā€“315.

    Google ScholarĀ 

  307. Silva, D. de J., Oliveira, R. C. de; Colodette, J. L. and Gomide, J. L ā€“ Impacto da qualidade da madeira na deslignificaĆ§Ć£o, no branqueamento e nas propriedades fĆ­sico-mecĆ¢nicas da polpa kraft de eucalipto. In: XXIX Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo 1996 pgs. 453ā€“470.

    Google ScholarĀ 

  308. Groot, B. de; Van der Kolk, J. C.; Van Dam, J. E. G. and Riet, K. V. ā€“ Papermaking characteristics of alkaline hemp-woodly-core pulps. Tappi Journal, 82 (7): 107ā€“111 (1999).

    Google ScholarĀ 

  309. Antolovich, E. ā€“ Method of treating bleached pulp on a washer with calcium ions to remove sodium ions. U.S. Patent no 5,273,625 (1993) https://patents.justia.com/patent/5273625.

  310. Hughes, M. ā€“ Wood and Wood Products ā€“ Cell wall and mass-volume relationships. Course CHEM-E2105 ā€“ Oral presentation. 2019 https://mycourses.aalto.fi/pluginfile.php/898005/mod_resource/content/1/2019_01_17_CHEM-E2105_Cell%20wall%20and%20mass-volume%20relationships.pdf

  311. Kellogg, R. M. and Wangaard, F. F. ā€“ Variation in the cell wall density of wood. Wood and Fiber Science, 3: 1508ā€“1542 (1969).

    Google ScholarĀ 

  312. Gonzaga, J. V. ā€“ Qualidade da madeira e da celulose kraft de treze espĆ©cies de Eucalyptus. Masterā€™s Thesis, Universidade Federal de ViƧosa, ViƧosa, 1983 119 p.

    Google ScholarĀ 

  313. Bhat, K. M. and Benny, A. G. ā€“ Improving fibre yield and quality of eucalyptus in India: problems and prospects. In: Eucalypt Plantations: Improving Fibre Yield and Quality Conference. CRCTHF/IUFRO, Hobart, 1995 pgs. 255ā€“257.

    Google ScholarĀ 

  314. PihlajamƤki, P. and Hytonen, H. ā€“ Mixed tropical hardwood ā€“ a minor and declining source of fibre for paper. Twogether, nĀ° 17: 2ā€“6 (2004).

    Google ScholarĀ 

  315. Banham, P. W.; Orme, K. and Russell, S. L. ā€“ Pulpwood qualities required for the cold soda pulping process. In: Eucalypt Plantations: Improving Fibre Yield and Quality Conference. CRCTHF/IUFRO, Hobart, 1995 pgs. 1ā€“4.

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manfredi, V. (2024). Wood as Raw Material Source. In: Eucalyptus Kraft Pulp Refining. Springer, Cham. https://doi.org/10.1007/978-3-031-47285-5_5

Download citation

Publish with us

Policies and ethics