Skip to main content

Refining Process Optimization

  • Chapter
  • First Online:
Eucalyptus Kraft Pulp Refining
  • 10 Accesses

Abstract

The refining optimization considering obtaining the desired result in the properties of the refined pulp with the lowest possible energy consumption is discussed in this chapter. Based on the results and discussions of the evaluation of operational variables, the most suitable strategy is proposed, which considers the use of the lowest intensity and highest possible refining consistencies.

The missing variable in models based on refining intensity is identified and described. It is related to the retention time of the pulp in the refiner and is attributed to the flocculation characteristics of the fibers. A new way of designing the discs (configuration) is presented to allow increasing the cutting length of the discs, generating lower refining intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lundin, T. ā€“ Tailoring pulp fibre properties in low consistency refining. Academic dissertation, ƅbo Akademi University, Abo, 2008 259 pgs www.researchgate.net/publication/261286869_Tailoring_pulp_fibre_properties_in_low_consistency_refing_diss/link/543cfc4e0cf2c432f7423263

  2. Koskenhely, K. ā€“ Refining of chemical pulp fibres. In: Papermaking Science and Technology. Volume 8 ā€“ Paper making part 1 ā€“ stock preparation and wet end, Chapter 4. Ed. Paulapuro, H. Finnish Paper Engineersā€™ Association/Paperi ja Puu Oy, Helsinki: 2007.

    Google ScholarĀ 

  3. Bourmaud, A.; Morvan, C.; Bouali, A.; Placet, V.; Perre, P. and Baley, C. ā€“ Relationships between micro-fibrillar angle, mechanical properties and biochemical composition of flax fibers. In: Composites Week @ Leuven and Texcomp Conference, Leuven. 2013 pgs. 2ā€“4.

    Google ScholarĀ 

  4. Melander, E. ā€“ The effect of charged groups on the beatability of pulp fibres. Bachelor Thesis, KTH, Stockholm, 2011 31 pgs https://www.diva-portal.org/smash/get/diva2:425918/FULLTEXT01.pdf

  5. Kimmo, H.; Markku, P. and HĆ„kan, S. ā€“ New trends and technology in refining. IPPTA Journal, 24 (1): 109ā€“113 (2012).

    Google ScholarĀ 

  6. Sjƶstrƶm, E. ā€“ Production of microfibrillated cellulose by LC-refining. Masterā€™s Thesis, Abo Akademi, 2018 77 pgs https://www.doria.fi/handle/10024/165125

  7. Wang, X. ā€“ Improving the papermaking properties of kraft pulp by controlling hornification and internal fibrillation. Doctoral Thesis, Helsinki University of Technology, Espoo, 2006 88 pos http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.575.9047&rep=rep1&type=pdf

  8. Ruffo, R. and Malton, S. ā€“ Energy savings in stock preparation for recycled paper. Appita Journal, 61 (4): 277ā€“283 (2008).

    Google ScholarĀ 

  9. Rantanen, J.; Hitunen, E.; Nieminen, K.;Kerekers, R. and Paulapuro, H. ā€“ Construction or a wintl3 bar refinin34. Tappi Journal, 10 (7): 45ā€“51. (2011).

    Google ScholarĀ 

  10. Joris, G. ā€“ Optimized fillings for LC refiners. In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta, 1995 Paper 22 89 pgs.

    Google ScholarĀ 

  11. Shekhar, C. D. ā€“ Fine bar technology in refining system for pulp and paper industries. IPPTA Journal, 22 (3): 109ā€“112 (2010).

    Google ScholarĀ 

  12. El-Sharkawy, K.; Haavisto, S.; Koskenhely, K. and Paulapuro, H. ā€“ Effect of fiber flocculation and filling design on refiner loadability and refining characteristics. BioResources, 3 (2):403ā€“424 (2008).

    Google ScholarĀ 

  13. Joris, G. ā€“ Optimization of industrial refining unit through Fibrologic 4.0. In: IV International Refining Conference. PIRA, Fiuggi, 1997 Paper 17 pgs. 267ā€“303.

    Google ScholarĀ 

  14. Albert, K. ā€“ Improved refining performance and lower operating cost through new technology. In: Scientific and Technical Advances in Refining & Mechanical Pulping ā€“ Course Notes. PIRA: Stockholm, 2003 Paper 4.

    Google ScholarĀ 

  15. Gabl, H. and Gorton-Heulgerth, A. ā€“ A new low consistency refiner yields improved fibre properties while reducing idle energy by up 40%. In: Scientific and Technical Advances in Refining & Mechanical Pulping ā€“ Course Notes. PIRA: Stockholm, 2003 Paper 8.

    Google ScholarĀ 

  16. Arroyo, L. M. ā€“ OptimizaciĆ³n energĆ©tica de una fĆ”brica de papel de nueva planta. El Papel (46): 35ā€“39 (1995).

    Google ScholarĀ 

  17. Glowacki, J. J. ā€“ Refiners: new designs achieved higher efficiency/capacity. Pulp and Paper 70, (1): 113ā€“114 (1996).

    Google ScholarĀ 

  18. Derakhshandeh, B.; Hatzikiakos, S. G. and Bennington, C. P. J. ā€“ The apparent yield stress of pulp fibre suspensions. Journal of Rheology, 54 (5): 1137ā€“1154 (2001).

    Google ScholarĀ 

  19. Vikharev, S. ā€“ Research of a fibrous layer at refining in the refiners. In: IOP Conferences Series: Earth and Environmental Science, 316 (2019) 7 pgs https://www.researchgate.net/publication/336007321_Research_of_a_fibrous_layer_at_refining_in_the_refiners

  20. Martinez, P.C. and Park, S. W. ā€“ AƧƵes das forƧas em processo de refino em baixa consistĆŖncia. In: 40th Congresso Anual. ABTCP: SĆ£o Paulo, 2007 12 pgs.

    Google ScholarĀ 

  21. Sepke, P.-W.; Meltzer, F. P. and Musselmann, W. ā€“ Influencing specific energy in low consistency refining ā€“ a new approach. In: III International Refining Conference and Exhibition. PIRA/PST, Atlanta, 1995 Paper 21.dillen

    Google ScholarĀ 

  22. Crow, H. ā€“ Energy saving in the refining of shor fibre pulps. In: Papermakers Conference. TAPPI, Philadelphia, 1996 pg. 9.

    Google ScholarĀ 

  23. Demuner, B. J. ā€“ Alternatives to improve eucalypt kraft pulp refining. https://www.eucalyptus.com.br/artigos/outros/2001_Refining_7thBSCL_final.pdf

  24. Baker, C. F. ā€“ Optimization of paper mill refining systems. In: 3rd International Refining Conference. PIRA/IPST, Atlanta, 1995 Paper 13.

    Google ScholarĀ 

  25. Rihs, J. ā€“ Low consistency refining ā€“ theory vs practice. In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta, 1995 Paper 10 15 pgs.

    Google ScholarĀ 

  26. Radoslavova, D.; Roux, J. C. and Silvy, J. ā€“ The beating of pulp considered as a hydrodynamic process. In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta, 1995 Paper 6 32 pgs.

    Google ScholarĀ 

  27. Baker, C. F. ā€“ Various options for the control of refining process. In: IV International Refining Conference. PIRA, Fiuggi: 18-20/03/1997 Paper 16 pgs. 249ā€“264.

    Google ScholarĀ 

  28. Ratnieks, E. and Demler, C. ā€“ O refino da polpa de eucalipto. O Papel, 54(8):22ā€“25 (1993).

    Google ScholarĀ 

  29. Mayade, T. L. ā€“ Statistical theory of chemical pulp refining: an innovative combined approach. Appita Journal, 50 (3): 237ā€“244 (1997).

    Google ScholarĀ 

  30. Baker, C. F. ā€“ Optimisation of refining in fine and speciality paper mill systems. In: Papermakers Conference. TAPPI, Philadelphia: 24-27/03/1996 pgs. 215ā€“224.

    Google ScholarĀ 

  31. Pycraft, C. ā€“ The optimization of energy consumption and strength during refining. Paper Southern Africa, 6: 6ā€“8, 10, 14 (1986).

    Google ScholarĀ 

  32. Manfredi, V.; Vilela, C. B. and Claudio-da-Silva Jr. E. ā€“ Efeito das variĆ”veis operacionais de refino na evoluĆ§Ć£o das propriedades da polpa refinada. In: Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1986 pgs. 189ā€“207.

    Google ScholarĀ 

  33. Manfredi, V. ā€“ Optimizing eucalyptus pulp refining. In: International Papermaking & Environment Conference. Ed. Yang, S.; Ni, Y e Liu, Z. Tianjin University of Science and Technology, Tianjin ā€“ China: 12-14/05/2004 Book A pgs. 41ā€“50.

    Google ScholarĀ 

  34. Sha, J.; Nikbakht, A.; Wang, C.; Zhang, H. and Olson, J. ā€“ The effect of consistency and freeness on the yield stress of chemical pulp fibre suspensions. BioResources, 10(3), 4287ā€“4299 (2015).

    Google ScholarĀ 

  35. Wittberg, L. P.; Bjƶrkman, M.; Khokhar, G.; Mohlin, U-B. and Dahlkild, A. ā€“ Flow conditions in the grooves of a low-consistency refiner. Nordic Pulp & Paper Research Journal, 27 (2): 173ā€“183 (2012).

    Google ScholarĀ 

  36. Fox, T. S.; Brodkey, R. S. and Nissan, A. H. ā€“ Inside a disk refiner. Tappi Journal, 65 (7): 80ā€“83 (1982).

    Google ScholarĀ 

  37. Nordman, L.; Levlin, J.-E.; Makkonen, T. and Jokisalo, H. ā€“ Conditions in na LC refiner as observed by physical measurements. In: International Symposium on Fundamental Concepts of Refining. IPC, Appleton, 1980 pgs. 121ā€“130.

    Google ScholarĀ 

  38. Wagle, D. G.; Lee, C. W. and Brodley, R. S. ā€“ Further comments on a visual study of pulp floc dispersion mechanisms. Tappi, 71 (9): 137ā€“141 (1988).

    Google ScholarĀ 

  39. Liu, H.; Dong, J.; Qi, K.; Guo, X.; Yan, Y, Qiao, L.; Duan, C. and Zhao, Z. ā€“ The effect of pulp properties on the consumption in low consistency refining. Journal of Korean Wood Science and Technology, 48 (6): 869ā€“877 (2020)

    Google ScholarĀ 

  40. Liu, H.; Dong, J.; Guo, X.; Wang, B.; Lijie, Q.; Chuanwu Duan, C.; Kai Qi, K.; Kong, L. ā€“ No-load power of disc refiner in low consistency refining. Journal of Korea TAPPI, 52(2): 87ā€“96 (2020).

    Google ScholarĀ 

  41. Bjƶrkman, U. ā€“ Stress generation and transmission in suspended fibre networks. Nordic Pulp and Paper Research Journal, 18 (1): 38ā€“43 (2003).

    Google ScholarĀ 

  42. Rihs, J.; Albert, K. and Josephson, W. ā€“ Optimal refining of bleached tropical hardwood kraft for uncoated paper. In: 51st Annual General Conference. APPITA, Melbourne, 1997 Paper 4B21 pgs. 627ā€“634.

    Google ScholarĀ 

  43. Steel, C. L. ā€“ Evaluation of cell-wall modifying enzymes for improved refining of pulp from two eucalyptus species. Masterā€™s Thesis. University of the Free State, Bloemfontein, 2010 145 pgs https://scholar.ufs.ac.za/xmlui/handle/11660/5576

  44. Radoslavova, D.; Roux, J. C. and Silvy, J. ā€“ Energy efficiency analysis in refining. In: IV International Refining Conference. PIRA, Fiuggi, 1997 Paper 3 pgs. 63ā€“72.

    Google ScholarĀ 

  45. Crook, J. ā€“ The practical refiner. In: IV International Refining Conference. PIRA, Fiuggi, 1997 Paper 11 pgs. 185ā€“189.

    Google ScholarĀ 

  46. Cisneros, H. A.; Williams, G. J. Hatton, J. V. ā€“ Fibre surface characteristics of hardwood refiner pulps. Journal of Pulp and Paper Science, 21 (5): 178ā€“184 (1995).

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manfredi, V. (2024). Refining Process Optimization. In: Eucalyptus Kraft Pulp Refining. Springer, Cham. https://doi.org/10.1007/978-3-031-47285-5_13

Download citation

Publish with us

Policies and ethics