Skip to main content

Refining Operating Variables

  • Chapter
  • First Online:
Eucalyptus Kraft Pulp Refining
  • 10 Accesses

Abstract

The effects of operational refining variables on the structural modifications of eucalyptus pulp fibers are presented one-by-one based on studies carried out in a refining pilot plant. In this way, it is possible to identify the most important operational variables, in terms of their direct effects on the desired quality of the refined pulp. The beating process in laboratory is also described considering the most usual laboratory beaters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Danforth, D. W. ā€“ Analyzing stock preparation. Chemical 26 ā€“ Magazine of Paper Processing, 4 (11): 30 (1968)

    Google ScholarĀ 

  2. Bugajer, S.; Silva, O. F. and Pires, F. ā€“ InfluĆŖncia do pH na refinaĆ§Ć£o de pastas celulĆ³sicas. In: 17Ā° Congresso Anual da ABCP. SĆ£o Paulo. 1984 pgs. 31ā€“39.

    Google ScholarĀ 

  3. Cotterill, P. and Macrae, S. ā€“ Improving eucalyptus pulp and paper quality using genetic selection and good organization. Tappi Journal, 80 (6):82-89 (1997).

    Google ScholarĀ 

  4. Johansson, A. ā€“ Correlations between fibre properties and paper properties. Masterā€™s Thesis in Pulp Technology. Royal Institute of Technology, Stockholm, 2011 49 pgs www.diva-poal.org/smash/get/diva2D:505453/FULLTEXT01

  5. ƅkerholm, M. ā€“ Ultrastructural aspects of pulp fibers as studied by dynamic FT-IR spectroscopy. Doctoral Thesis. Royal Institute of Technology. Stockholm, 2003 71 pgs http://www.diva-portal.org/smash/get/diva2:9438/FULLTEXT01.pdf.

  6. Annergren, G. ā€“ Fundamentals of pulp fiber quality and paper properties. In: Pulping Conference. TAPPI, Orlando. 1999 pgs: 29ā€“39

    Google ScholarĀ 

  7. Antolovich, E. ā€“ Method of treating bleached pulp on a washer with calcium ions to remove sodium ions. U.S. Patent no 5,273,625 (1993) https://patents.justia.com/patent/5273625.

  8. Ampulski, R. S. ā€“ Influence of fiber surface charge on tensile strength. In: Papermakers Conference. TAPPI, Denver. 1985 pg. 9.

    Google ScholarĀ 

  9. Lyytikainen, K.; Saukkonen, E.; Kajanto, I. and Kayhko, J. ā€“ The effect of hemicellulose extraction on fibre charge properties and retention behavior of kraft pulp fibres, Bioresources, 6 (1): 219ā€“231 (2011).

    Google ScholarĀ 

  10. Magaton, A. S.; Colodette, J. L.; Gouvea, A. F. G.; Gomide, J. L.; Muguet, M. C. S. and Pedrazzin, C. ā€“ Eucalyptus wood quality and its impact on kraft pulp production and use. Tappi Journal, 8 (8): 32ā€“39 (2009).

    Google ScholarĀ 

  11. Foelkel, C. E. B. and Dalmolin, I. ā€“ Improving eucalyptus pulp refining through the control of pulp consistency and stock pH: comparisons at given bulk and given tensile strength. In: Papermakers Conference, TAPPI, Atlanta: 01-04/03/1999 Volume 2 pgs: 751ā€“754

    Google ScholarĀ 

  12. Paavilainen, L. ā€“ Quality ā€“ competitiveness of Asian short-fibre raw materials in different paper grades. Papperi Ja Puu, 82 (3): 156 (1998).

    Google ScholarĀ 

  13. Kibblewhite, R. P.; Bawden, A. D. and Hughes, M. C. ā€“ Hardwood market kraft fibre and pulp qualities. Appita, 44 (5): 325ā€“332 (1991).

    Google ScholarĀ 

  14. Joutsimo, O. P. and Asikainen, S. ā€“ Effect of fiber wall pore structure on pulp sheet density of softwood kraft pulp fibers. BioResources, 8 (2):2719ā€“2737 (2013).

    Google ScholarĀ 

  15. Setasith, S, ā€“ Effect of compressive and abrasive refining on structural changes in fiber and paper. Masterā€™s Thesis. Aalto University. Espoo, 2014 84 pgs https://aaltodoc.aalto.fi/bitstream/handle/123456789/13458/master_Setasith_Suchart_2014.pdf?sequence=1&isAllowed=y

  16. Baker, C. ā€“ Refining and improved paper machine runnability. In: African Pulp and Paper Week. TAPPSA (2004) http://www.tappsa.co.za/archive2/APPW_2004/Title_2004/Refining_and_improved_paper_machine_runnability.html

  17. Sigl, R. ā€“ Low intensity refining of hardwood and deinked pulps with a new generation of filling. Twogether ā€“ Paper Technology Journal (8): 7ā€“11 (1999).

    Google ScholarĀ 

  18. Lindqvist, H. ā€“ Improvement of wet and dry web properties in papermaking by controlling water and fiber quality. Academic Dissertation, ƅbo Akademi University. ƅbo., 2013 85 pgs

    Google ScholarĀ 

  19. Tiikkaja, E. ā€“ Fibre properties and paper machine runnability. In: Engineering/Process and Product Quality Conference & Trade Fair. TAPPI, Anaheim, 1999 Volume 3 pgs. 1241ā€“1242.

    Google ScholarĀ 

  20. Tiikkaja, E.; Kauppinen, M. and Glorigiano, P. ā€“ Fibre dimensions, their effect on paper properties and required measuring accuracy. In: XXXI Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1998 pgs. 397ā€“402.

    Google ScholarĀ 

  21. Demler, C. L. and Pitz, M. ā€“ Comparison of conventionally, ECF and TCF bleached hardwood pulp refining response. In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta, 1995 Paper 9 8 pgs.

    Google ScholarĀ 

  22. Seth, R. S. ā€“ The importance of fibre coarseness for pulp properties. In: 77th Annual Technical Meeting. CPPA, Montreal: 1991 pg. 251.

    Google ScholarĀ 

  23. Malan, F. S.; Male, J. R. and Venter, J. S. M. ā€“ Relationship between the properties of eucalyptus wood and some chemical, pulp and paper properties. Paper Southern Africa, 14 (1): 6ā€“16 (1994).

    Google ScholarĀ 

  24. Barrichelo, L. E. G. ā€“ Estudo das caracterĆ­sticas fĆ­sicas, anatĆ“micas e quĆ­micas da madeira de Pinus caribeae Mor. Var. hondurensis Barr. Golf para a produĆ§Ć£o de celulose kraft. Tese de Livre DocĆŖncia ā€“ ESALQ/USP (1979).

    Google ScholarĀ 

  25. Silva Jr., F. G. da; Valle, C. F. do e Muner, J. C. G. ā€“ Programa de qualidade da madeira da Votorantim Celulose e Papel ā€“ VCP. O Papel, 57 (1): 35ā€“43 (1996).

    Google ScholarĀ 

  26. Piirainen, R. and Paavilainen, L. ā€“ Fiber length measurement in the pulp and paper industry. In: International Process and Materials Quality Evaluations Conference. TAPPI, Atlanta, 1986 pgs. 67ā€“73.

    Google ScholarĀ 

  27. Ferreira, P. J. and Figueiredo, M. M. ā€“ Efeito do cozimento e da refinaĆ§Ć£o nas dimensƵes transversais das fibras de E. globulus. O Papel, 62 (01: 73ā€“80 (2000).

    Google ScholarĀ 

  28. Green, S. I. ā€“ Pulp fibre drag coefficient. Appita Journal, 59 (2): 120ā€“126 (2006).

    Google ScholarĀ 

  29. Pere, J.; Sika-Aho, M. and Vikar, L; ā€“ Biomechanical pulping with enzymes: Response of coarse mechanical pulp to enzymatic modification and secondary refining. Tappi Journal, 83 (5): 8 pgs (2000).

    Google ScholarĀ 

  30. Ramires, H.; Oliveira, R. C.; Rubini, B.; Demuner, B. J.; Pavan, P. ā€“ Aumento da proporĆ§Ć£o de fibra de eucalipto na formulaĆ§Ć£o de papeis tissue e avaliaĆ§Ć£o de suas propriedades. In: 46th International Pulp and Paper Congress, ABTCP, SĆ£o Paulo, 2013 9 pgs.

    Google ScholarĀ 

  31. Ratnieks, E. and Foelkel, C. E. B. ā€“ Uma discussĆ£o teĆ³rioco-prĆ”tica sobre polpas de eucalipto para a fabricaĆ§Ć£o de papel ā€œtissueā€. In: XXIX Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1996 pgs. 717ā€“734.

    Google ScholarĀ 

  32. Foelkel, C. ā€“ The Eucalyptus fibers and the kraft pulp quality requirements for paper manufacturing. Eucalyptus Online Book & Newsletter.- Chapter 3 (Feb/Mar) 2007 ā€“ 42 pgs www.eucalyptus.com.br/capitulos/ENG03_fibers.pdf

  33. GonƧalves, D. ā€“ The eucalyptus fiber for tissue papers. In: 7th Brazilian Symposium on the Chemistry of Lignin and Other Wood Components. UFMG, Belo Horizonte, 2001 p. 317ā€“323.

    Google ScholarĀ 

  34. BotkovĆ”, M.; Å utĆ½, Å .; JablonskĆ½, M.; KučerkovĆ”, L. and VrÅ”ka, M. ā€“ Monitoring of kraft pulps swelling in water. Cellulose Chemistry and Technology, 47 (1ā€“2): 95ā€“102 (2013).

    Google ScholarĀ 

  35. Guo, X.; Dong, J.; Liu, H.; Duan, C.; Yang, R. and Qi, K. ā€“ Effect of combined refining plates with different bar angles on paper properties during mixed pulp refining. Journal of Korean Wood Science and Technology, 48 (5): 581ā€“590 (2020).

    Google ScholarĀ 

  36. Page, D. H. ā€“ A theory for tensile strength of paper. Tappi, 52 (4): 674ā€“681 (1969).

    Google ScholarĀ 

  37. Pulkkinen, I.; Alopaeus, V.; Fiskari, J. and Joutsimo, O. ā€“ O uso de dados sobre espessura da parede da fibra para prediĆ§Ć£o das propriedades de folhas de laboratĆ³rio de polpa de eucalipto. O Papel, 69 (19): 71ā€“85 (2008).

    Google ScholarĀ 

  38. Paavilainen, L. ā€“ Importance of cross-dimensional fibre properties and coarseness for the characteristics of softwood sulphate pulp. Paperi ja Puu, 75 (5): 35ā€“43 (1993)

    Google ScholarĀ 

  39. Korteoja, M. J.; Salminen, L. I.; Niskanen, K. J. and Alava, M. ā€“ Statistical variation of paper strength. Journal of Pulp and Paper Science, 24 (1): 1ā€“6 (1998).

    Google ScholarĀ 

  40. Yan, H.; Norman, B.; Lindstrƶm, T. and Ankefors, M. ā€“ Fibre length effect on fibre suspension flocculation and sheet formation. Nordic Pulp and Paper Research Journal, 21 (1): 30ā€“35 (2006).

    Google ScholarĀ 

  41. Lindholm, C.-A. ā€“ Determining optimum combinations of mechanical pulp fractions. Paperi ja Puu, 65 (4): 243ā€“245, 247ā€“250 (1983).

    Google ScholarĀ 

  42. Vuorinen, T.; Buchert, J.; Teleman, A.; Tenkanen, M. and Fagerstrƶm, P. ā€“ Selective hydrolysis of HexA groups and its application in ECF and TCF bleaching of kraft pulps. In: International Pulp Bleaching Conference. TAPPI, Atlanta, 1996, pgs. 43ā€“51.

    Google ScholarĀ 

  43. Ramezani, O. and Nazhad, M. M. ā€“ The effect of refining on paper formation. TAPPSA Technical Articles http://www.tappsa.co.za/html/The_effect_of_refining_on_paper_formation.html

  44. Gurnagul, N., Page, D. H. and Seth, R. S. ā€“ Dry sheet properties of Canadian hardwood kraft pulps. Journal of Pulp and Paper Science, 16 (1): 36ā€“41 (1990).

    Google ScholarĀ 

  45. Kerekes, R. J. and Schell, C. J. ā€“ Effects of fiber length and coarseness on pulp flocculation. Tappi Journal, 78 (2): 133ā€“139 (1995).

    Google ScholarĀ 

  46. Lundin, T. ā€“ Tailoring pulp fibre properties in low consistency refining. Academic dissertation, ƅbo Akademi University, Abo, 2008 259 pgs www.researchgate.net/publication/261286869_Tailoring_pulp_fibre_properties_in_low_consistency_refing_diss/link/543cfc4e0cf2c432f7423263

  47. Pikulik, I. I.; McDonald, J. D.; Mentele, C. J. and Lange, D. V. ā€“ The refining, forming, and pressing on fine paper quality. Tappi Journal, 81 (6): 122ā€“130 (1998).

    Google ScholarĀ 

  48. KƤrenlampi, P.; Rantanen, R.; HƤmƤlƤinen, T. and Suur-Hamari, H. ā€“ Opacitt, smoothness and toughness of mechanical printing papers: the effect of softwood kraft pulp properties. In: Papermakers Conference. TAPPI, Philadelphia, 1996 pgs. 153ā€“160.

    Google ScholarĀ 

  49. Retulainen, E. ā€“ Fibre properties as control variables in papermaking? Part 1: fibre properties of key importance in the network. Paperi ja Puu, 78 (4): 187ā€“194 (1996).

    Google ScholarĀ 

  50. Kibblewhite, R. P. ā€“ Reinforcement and optical properties of separate and co-refined softwood and eucalypt market kraft pulps. Appita Journal, 47 (2): 149ā€“153, 158 (1994).

    Google ScholarĀ 

  51. Santos, A.; Anjos, O. M. and SimƵes, R. M. S. ā€“ Influence of kraft cooking conditions on the pulp quality of Eucalyptus globulus. Appita Journal, 61 (2): 148ā€“155 (2008).

    Google ScholarĀ 

  52. Gurnagul, N. and Seth, R. S. ā€“ Wet-web strength of hardwood kraft pulps. In: 83rd Annual Meeting Technical Section. CPPA, Montreal, 1997 Book B pgs. B137ā€“145.

    Google ScholarĀ 

  53. Demuner, B. J.; Manfredi, V. and Claudio-da-Silva Jr., E. ā€“ O refino da celulose de eucalipto ā€“ uma anĆ”lise fundamental. O Papel, 52 (8): 44 ā€“ 54 (1990).

    Google ScholarĀ 

  54. McKenzie, A. W. ā€“ Interpretation of pulp evaluation results. Appita Journal, 38 (4): 284ā€“290 (1985).

    Google ScholarĀ 

  55. Stevens, W. V. ā€“ Refining. In: Pulp and Paper Manufacture ā€“ Volume 6. Ed. Hagemeyer, R.W., Manson, D.W. and Kocurek, M.J. The Joint Textbook Committee of the Paper Industry, Atlanta/Montreal, 1992: 187ā€“219 (1992).

    Google ScholarĀ 

  56. Koskenhely, K. ā€“ Refining of chemical pulp fibres. In: Papermaking Science and Technology. Volume 8 ā€“ Paper making part 1 ā€“ stock preparation and wet end, Chapter 4. Ed. Paulapuro, H. Finnish Paper Engineersā€™ Association/Paperi ja Puu Oy, Helsinki: 2007.

    Google ScholarĀ 

  57. Sharkawya, K. E.; Haavistob, S.; Koskenhely, K. and Paulapuroa, H. ā€“ Effect of fiber flocculation and filling design on refiner loadability and refining characteristics. BioResources, 3 (2): 403ā€“424 (2008).

    Google ScholarĀ 

  58. Ryu, J-H.; Kim, C-H.; Lee, J-H.; Lee, J-S.; Lee, C-H. and Park, J-H. ā€“ Study of refining effect of mixed pulps using refiner plates with different bar patterns. Applied Sciences, 12: 11445 (2022).

    Google ScholarĀ 

  59. Seth, R. S. ā€“ Optimizing reinforcement pulps by fracture toughness. Tappi Journal, 79 (1): 170ā€“178 (1996).

    Google ScholarĀ 

  60. Niskanen, K.; KƤrenlampi, P. and Alava, M. ā€“ Stochastic analysis of paper toyghness. Journal of Pulp and Paper Science, 22 (10): 392ā€“397 (1996).

    Google ScholarĀ 

  61. Page, D. H. and Seth, R. S. ā€“ The problem of pressroom runnability. Tappi Journal, 65 (8): 92ā€“95 (1982).

    Google ScholarĀ 

  62. Clark, J. dā€™A. ā€“ Mill beating and Refining, In: Pulp Technology and Treatment of Paper. Miller Freeman, San Francisco, 1978 516 pgs.

    Google ScholarĀ 

  63. Seth, R. S. ā€“ Fiber quality factors in papermaking ā€“ II: the importance of fibre coarseness. In: Materials Interactions Relevant to the Pulp, Paper and Wood Industries. Research Society Symposium, San Francisco, 1990 Volume 197 pgs. 143ā€“161.

    Google ScholarĀ 

  64. Lazar, D. R.; Foelkel, C. E. B. and Seiter, D. F. ā€“ Effective TCF bleaching of eucalyptus to market brightness. In: International Pulp Bleaching Conference. TAPPI/CPPA/SPCI/EUCEPA, Vancouver:, 1994 pgs. 69ā€“76.

    Google ScholarĀ 

  65. McKenzie, A. W. ā€“ The tear-tensile relationship in softwood pulps. Appita, 42 (3): 215 (1989).

    Google ScholarĀ 

  66. Silva Jr., F. G. da e Braga, E. P. ā€“ Potencialidade da seleĆ§Ć£o cde E. urophylla em funĆ§Ć£o da qualidade da madeira destinada Ć  produĆ§Ć£o de celulose. In: XXX Congresso anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1997 pg. 281ā€“292.

    Google ScholarĀ 

  67. Bourmaud, A.; Morvan, C.; Bouali, A.; Placet, V.; Perre, P. and Baley, C. ā€“ Relationships between micro-fibrillar angle, mechanical properties and biochemical composition of flax fibers. In: Composites Week @ Leuven and Texcomp Conference, Leuven. 2013 pgs. 2ā€“4.

    Google ScholarĀ 

  68. Paavilainen, L. ā€“ Importance of coarseness and fiber length in papermaking. In: Process Engineering Handbook. Ed. Process Engineering Committee of the Engineering Division. Tappi Press, Atlanta, 1992, 2nd Edition Appendix: 98ā€“108.

    Google ScholarĀ 

  69. Seth, R. S. ā€“ Beating and refining response of some reinforcement pulps. Tappi Journal, 82 (3): 147ā€“155 (1999).

    Google ScholarĀ 

  70. Melander, E. ā€“ The effect of charged groups on the beatability of pulp fibres. Bachelor Thesis, KTH, Stockholm, 2011 31 pgs https://www.diva-portal.org/smash/get/diva2:425918/FULLTEXT01.pdf

  71. Paavilainen, L. ā€“ Effect of sulphate cooking parameters on the papermaking potential of pulp fibres. Paperi ja Puu, 71 (4): 356ā€“363 (1989).

    Google ScholarĀ 

  72. Gurnagul, N.; Ju, S.; Shallhorn, P. and Miles, K. ā€“ Optimizing high-consistency refining conditions for good sack paper quality. Appita Journal, 59 (6): 476ā€“480 (2006).

    Google ScholarĀ 

  73. Singh, S. V. and Rai, A. K. ā€“ Suface property inter-relationship in wood-free paper. IPPTA, 5 (4): 9ā€“15 (1993).

    Google ScholarĀ 

  74. Higgins, H. G. ā€“ Pulp and paper. In: Eucalyptus for wood production. Ed. Hillis, W. E. and Brown, A. G., CSIRO/Academic Press. London Capitulo 13 pg 290ā€“316.

    Google ScholarĀ 

  75. Moore, G. K. and Jopson, R. N. ā€“ The onward march of eucalyptus. Paper 360Ā°, September): 14ā€“15 (2008).

    Google ScholarĀ 

  76. Carvalho, H. G. de; Oliveira, R. C. de; Gomide, J. L. and Colodette, J. L. ā€“ Efeito da idade de corte da madeira e de variĆ”veis de refino nas propriedades da celulose kraft branqueada de eucalipto. In: XXXI Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1998 pg. 367ā€“381.

    Google ScholarĀ 

  77. Kibblewhite, R. P. ā€“ Qualities of kraft and thermomechanical radiata pine papermaking fibres. In: 8th Fundamental Research symposium. BP&BMA, Oxford, 1985 Volume 1 pgs. 93ā€“131.

    Google ScholarĀ 

  78. Scott, W. E. ā€“ Principles of wet end chemistry. Tappi Press, Atlanta, 1996 185 pgs.

    Google ScholarĀ 

  79. Arjas, A.; Huuskonen, J. and Rythi, N ā€“ Principles of the evaluation of the performance of a beating-machine and of the beating result. Part II. Paperi ja Puu, 52 (4): 268y, 379 (A1970) and 52 (6): 379 (1970)

    Google ScholarĀ 

  80. Cort, J. B.; Sabourin, M. J. and Musselman, R. L. ā€“ Optimized low intensity post refining: lower energy and superior pulp quality. In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta, 1995 Paper 19 10 pgs.

    Google ScholarĀ 

  81. Ferreira, C.; Fantini JĆŗnior, M.; Oliveira, R.C. de; Colodette, J.L. and Gomide, J.L. ā€“ CritĆ©rios de seleĆ§Ć£o de clones para maximizar rendimento e qualidade da celulose. In: ColĆ³quio Internacional sobre Celulose Kraft de Eucalipto, UFV, ViƧosa, 2003 pgs. 39ā€“58.

    Google ScholarĀ 

  82. Wang, X.; Maloney, T. C. and Paulapuro, H. ā€“ Internal fibrillation in never-dried and once-dried chemical pulps. Appita Journal, 56 (6): 455ā€“459 (2003).

    Google ScholarĀ 

  83. Beck, M. V. ā€“ The importance of wet end equipment and its influence on retention. In: Retention of Fines and Fillers During Papermaking. Gess, J. M. Ed. Tappi Press, Atlanta, 1998, Chapter 7 pgs. 129ā€“158.

    Google ScholarĀ 

  84. Baker, C. F. ā€“ Good practice for refining the types of fiber found in modern paper furnishes. Tappi Journal, 78 (2): 147ā€“157 (1995).

    Google ScholarĀ 

  85. Rudie, A. W. ā€“ Wood and how it relates with wood products. Tappi Journal, 81 (5): 223ā€“228 (1998).

    Google ScholarĀ 

  86. Kimmo, H.; Markku, P. and HĆ„kan, S. ā€“ New trends and technology in refining. IPPTA Journal, 24 (1): 109ā€“113 (2012).

    Google ScholarĀ 

  87. Baker, C. F. ā€“ Refining review ā€“ changes in refining practice with new sources of fibre. World Pulp and Paper Technology: 95ā€“97, 99 (1992).

    Google ScholarĀ 

  88. Foelkel, C ā€“ Papermaking properties of Eucalyptus trees, woods, and pulp fibers. Eucalyptus Online Book & Newsletter.- Chapter 14 (Jul) 2009 110 pgs www.eucalyptus.com.br/eucaliptos/ENG14.pdf

  89. Lundqvist, S-O. ā€“ Efficient wood and fiber characterization ā€“ a key factor in research and operation. Annals of Forest Science, 59: 491ā€“501 (2002).)

    Google ScholarĀ 

  90. Demuner, B. J., Ratnieks, E. and Robinson, D. ā€“ Ultra low intensity refining of eucalyptus pulps. In: Refining and Mechanical Pulping Conference. PIRA, Barcelona, 2005 Paper 7.

    Google ScholarĀ 

  91. Stark, H. ā€“ Pulp properties of TCF pulps. In: Emerging Pulping & Bleaching Technologies Workshop. TAPPI, Durhan, 1995 Section Bleaching III.

    Google ScholarĀ 

  92. BƤckstrƶm, M ā€“ The effect of environment on refining efficiency of kraft pulps. Doctoral Thesis in Fibre and Polymer Science. KTH Royal Institute of Technology, Stockholm, 2020 53 pgs www.diva-portal.org/smash/getdiva2:1456955/FULLTEXT01

  93. Taher, M. R. B. ā€“ Tailored low consistency refining for targeted fiber properties. Masterā€™s Thesis, Abo Akademi, Gadolinia, 2020 50 pgs. www.doria.fi/bitstream/handle/10024/177080/taher_md.pdf?sequence=2&isAllowed=y

  94. Josephson, W.; Jansson, U.; Sezgi, U. S. and Fagerstrƶn, K. ā€“ Low consistency refining of a non-conventionally cooked pulp. In: Papermakers Conference. TAPPI, Atlanta, 1999 Book 2 pgs. 729ā€“739.

    Google ScholarĀ 

  95. Lennholm, H. and Iversen, T. ā€“ The effects of laboratory beating on cellulose structure. Nordic Pulp and Paper Research Journal, 10 (2): 104ā€“109 (1995).

    Google ScholarĀ 

  96. Scallan, A. M. and Tigerstrƶm, A. C. ā€“ Swelling and elasticity of the cell walls of pulp fibres. Jornal of Pulp and Paper Science, 18 (5): 188ā€“193 (1992).

    Google ScholarĀ 

  97. Sjƶsted A. ā€“ Preparation and characterization of nanoporous cellulose fibres and their use in new material concepts. Doctoral Thesis. KTH Royal Institute of Technology. Stockholm, 2014 65 pgs. https://www.diva-portal.org/smash/get/diva2:761478/FULLTEXT01.pdf

  98. Smook, G. A. ā€“ Preparation of papermaking stock In: Handbook of Pulp and Paper Thechnologists ā€“ Chapter 13. Angus Wilde, 2002. pgs 190ā€“204

    Google ScholarĀ 

  99. Sjƶstrƶm, E. ā€“ Production of microfibrillated cellulose by LC-refining. Masterā€™s Thesis, Abo Akademi, 2018 77 pgs https://www.doria.fi/handle/10024/165125

  100. Gharehkhani, S.; Sadeghinezhada, E.; Kazi, S. N.; Yarmanda, H.; Badarudina, A.; Safaei, M. R. and Zubir, M. N. M. ā€“ Effect of pulp consistency during refining of pulp refining on fiber propertiesā€”A review. Carbohydrate Polymers Journal, 115: 785ā€“803 (2015).

    Google ScholarĀ 

  101. SalmĆ©n, L. ā€“ Micromechanical understanding of the cell-wall structure. Comptes Rendus Biologies, 327 (9ā€“10):873ā€“880 (2004 https://www.sciencedirect.com/science/article/pii/S1631069104001726

  102. Grignon, J. and Scallan, A. M. ā€“ The effect of pH and neutral salts upon the swelling of cellulose gels. Journal of Applied Polymer Science, 25: 2829 (1990).

    Google ScholarĀ 

  103. Berthold, J. and SalmĆ©n, L. ā€“ Effects of mechanical and chemical treatments on the pore-size distribution in wood pulps examined by inverse size-exclusion chromatography. Journal of Pulp and Paper Science, 23 (6): 245ā€“253 (1997).

    Google ScholarĀ 

  104. Dinus, R. J. and Welt, T. ā€“ Tailoring fiber properties to paper manufacture: recent developments. Tappi Journal, 80 (4): 127ā€“139 (1997).

    Google ScholarĀ 

  105. Higgins, H. G.; Young, J. de; Balodis, V.; Phillips, F. H. and Colley, J. ā€“ The density and structure of hardwoods in relation to paper surface characteristics and other properties. In: Process Engineering Handbook. Ed. Process Engineering Committee of the Engineering Division. Tappi Press, Atlanta, 1992, 2nd Edition Appendix: 77ā€“81.

    Google ScholarĀ 

  106. Waterhouse, J. F. and Riipa, T. ā€“ Hardwoods from softwoods? In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta, 1995 Paper 12 24 pgs.

    Google ScholarĀ 

  107. Clayton, D.; Easty, D.; Einspahr, D.; Lonsky, W.; Malcon, E.; McDonough, T.; Schroeder, L. and Thompson, N. ā€“ Part I- chemistry of alkaline pulping. In: Pulp and Paper Manufacture ā€“ Alkaline Pulping, Volume 5. Grace, T. M.; Leopold, B.; Malcon, E. W. and Kokureck, M. J. Ed. The Joint Textbook Committee of the Paper Industry, Atlanta/Montreal, 1989, 3th Edition, pgs. 1ā€“128.

    Google ScholarĀ 

  108. Jardim, C. ā€“ VariaƧƵes na densidade bĆ”sica da madeira versus impacto no processo produtivo. In: 1Ā° Encontro de Operadores de PĆ”tio de Madeira e 5Ā° Encontro de Operadores de Linhas de Fibras. ABTCP. 2019.

    Google ScholarĀ 

  109. Demuner, B. J. Viana Doria, E. L.; Claudio-da-Silva Jr., E. and Manfredi, V. ā€“ As propriedades do papel e as caracterĆ­sticas das fibras de eucalipto. In: XXIV Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1991 pgs. 621ā€“641.

    Google ScholarĀ 

  110. Backstrom, M. and Jensen, A. ā€“ Modified kraft pulping to high kappa numbers. In: Annual General Conference. APPITA, (cidade: 1999 Volume 1 pgs. 101ā€“109.

    Google ScholarĀ 

  111. El-Hosseiny, F. ā€“ Influence of the ā€œGiertz effectā€ on development of short-span compression strength. Tappi Journal, 81 (2): 177ā€“180 (1996).

    Google ScholarĀ 

  112. Genco, J. M. ā€“ Fundamental process in stock preparation and refining. In: Pulping Conference. TAPPI, Orlando, /1999 pgs. 57ā€“95.

    Google ScholarĀ 

  113. Claudio-da-Silva Jr, E. ā€“ The Flexibility of pulp fibers ā€“ a structural approach. In: International Paper Physics Conference. TAPPI/CPPA, Harwichport, 1983 pgs. 13ā€“25.

    Google ScholarĀ 

  114. Regmed IndĆŗstria TĆ©cnica de PrecisĆ£o Ltda. www.regmed.com.br

  115. Parhan, P. A. ā€“ Wood physical properties. In: Pulp and Paper Manufacture ā€“ Volume 1 ā€“ Properties of Fibrous Raw Materials and Their Preparation for Pulping. Ed. Kocureck, M. J. and Stevens, C. F. B. The Technical Committee of the Paper Industry, Atlanta/Montreal, 1983 pg. 46ā€“54

    Google ScholarĀ 

  116. Evans, R.; Kibblewhite, R. P. and Lausberg, M. ā€“ Relationships between wood and pulp properties of twenty-five 13 year old radiata pine trees. Appita Journal, 52 (2): 133ā€“139 (1999).

    Google ScholarĀ 

  117. Dias, R. L. V. and Claudio-da-Silva Jr., E ā€“ Pulp and paper properties as influenced by wood density. In: 8th Fundamental Research Symposium. PIRA, Oxford, 1995 pgs. 7ā€“35.

    Google ScholarĀ 

  118. Dowens, G. M. ā€“ Wood properties of interest in plantation productivity. In: Sampling Plantation Eucalyptus for Wood and Fibres Properties. Chapter 1. Ed. Dewens, G. M. et al CSIRO Publishing, Collingwood, 1997 pgs. 1ā€“8.

    Google ScholarĀ 

  119. Meltzer, F. P. and Sepke, P.-W. ā€“ New ways to forecast the technological results of refining. In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta, 1995 Paper 2 26 pgs.

    Google ScholarĀ 

  120. Eklund, D. and Lindstrƶm, T. ā€“ Paper chemistry ā€“ An introduction. DT Paper Science Publications, Grankulla, Finland, 1991 305 pgs.

    Google ScholarĀ 

  121. Chauhan, A.; Kumari, A. and Ghosh, U. K. ā€“ Blending impact of softwood pulp with hardwood pulp on different paper properties. Tappsa Journal,. 2: 16ā€“22 (2013).

    Google ScholarĀ 

  122. Martinez, P. C. and Park, S. W ā€“ Review of physical principles in low consistency refining. O Papel, 73 (8): 65ā€“72 (2012)

    Google ScholarĀ 

  123. MacLeod, M. and Pelletier, L. J. ā€“ Basket cases: kraft pulps inside digesters. Tappi Journal, 70 (11): 47 (1987)

    Google ScholarĀ 

  124. Lumiainen, J. ā€“ Refining ā€“ a key to upgrading the papermaking potential of recycled fibre. Paper Technology,35 (9): 41ā€“44 (1994).

    Google ScholarĀ 

  125. Liu, H.; Jixian Dong. J.; Guo, X.; Jiang, X.; Luo, C.; Xiaohui Tian, X.; Yang, R.; Zhang, L.; Bo Wang, B.; Yan, Y. ā€“ Refining characteristics of hardwood pulp using straight and curved bar plates. Journal of Korea TAPPI, 51 (5): 45ā€“60 (2019).

    Google ScholarĀ 

  126. Nazhad, M. M. ā€“ Recycled fibre quality ā€“ a review. Journal of Industrial and Engineering Chemistry, 11 (3): 314 (2005).

    Google ScholarĀ 

  127. Sharp, S. ā€“ A technical look at pulp & paper fiber. FI Insights. Fisher International. (2020) www.fisheri.com/blog/a-technical-look-at-pulp-paper-fiber-properties

  128. Mariani, S. A.; Marco Torres U.; Alicia FernĆ”ndez, R. and Eduardo Morales ā€“ Efeito da formaĆ§Ć£o de cerne em Eucalyptus nitens na polpaĆ§Ć£o kraft. O Papel, 65 (6): 55ā€“59 (2004).

    Google ScholarĀ 

  129. Westman, L. ā€“ Iddling losses in the low-consistency refining of chemical pulp. Svensk Papperstiding, 87 (3): 3ā€“8 (1984).

    Google ScholarĀ 

  130. Havelock, G. ā€“ Dynamic simulation of press drying. Paper Technology, 31 (8) (1990).

    Google ScholarĀ 

  131. Pulkkinen, I.; Kuitunen, S.; Alopaeus, V. ā€“ The most important eucalypt fiber properties for fiber network strength and structural property development. In: 5th ICEP International Colloquium on Eucalyptus Pulp. Porto Seguro, 2011 9 pgs www.eucalyptus.com.br/artigos/outros/49_Fibers_Characteristics.pdf

  132. Seth, R. S. ā€“ The effect of fiber length and coarseness on the tensile strength of wet-webs: a statistical geometry explanation. Tappi Journal, 78 (3): 99ā€“102 (1995).

    Google ScholarĀ 

  133. Gao, Y.; Li, K. and Wang, Z. ā€“ The influence of pulp furnish components on the property of supercalendered paper. Pulp and Paper Canada, 108 (1): 44ā€“49 (2007).

    Google ScholarĀ 

  134. Maloney, T. C. ā€“ On the pore structure and dewatering properties of the pulp fiber cell wall. Doctoral Thesis, Helsinki University of Technology, Esppo, 2000. 52 pgs https://www.researchgate.net/publication/34731327_On_the_pore_structure_and_dewatering_properties_of_the_pulp_fiber_cell_wall

  135. Yu, Y.; Kettunen, H.; Hiltunen, E. and Niskanen, K. ā€“ Comparison of abaca and spruce as reinforcement. In: International Paper Phuysics Conference. TAPPI, Sao Diego, 1999 p. 161ā€“169.

    Google ScholarĀ 

  136. Karnis, A. ā€“ The mechanism of fiber development in mechanical pulping. Journal of Pulp and Paper Science, 20 (10): 280ā€“288 (1994).

    Google ScholarĀ 

  137. AtaĆ­de, M. R. and Figueiredo, M. M. L. ā€“ Algumas consideraƧƵes sobre a caracterizaĆ§Ć£o de fibras celulĆ³sicas. Pasta e Papel (4): 55ā€“58 (1992).

    Google ScholarĀ 

  138. Lumiainen, J. ā€“ Energy saving in low consistency refining. Journal of Pulp and Paper Science, 19 (3): J125-J130 (1993).

    Google ScholarĀ 

  139. Dillner, B e Tibbing, P. ā€“ Iso-thermal cooking to low kappa numbers facilitates TCF bleaching to full brightness. In: International Non-Chlorine Bleaching Conference. Pulp & Paper/Emerging Technology Transfer, Hilton Head, 1993 Paper 37 27 pgs.

    Google ScholarĀ 

  140. Carlsson, J.; Persson, W.; Hellentin, P. and Malmqvist, L. ā€“ The propagation of light in paper: modeling and Monte Carlo simulations. In: International Paper Physics Conference. TAPPI, Niagara-on-the-lake, 1995 pgs. 83ā€“86.

    Google ScholarĀ 

  141. Laivins, G. V. and Scallan, A. M. ā€“ Removal of water from pulps by pressing. Part 1: inter- and intra-wall water. Tappi Journal, 77 (3): 125ā€“131 (1994).

    Google ScholarĀ 

  142. Heikkurinen, A.; Levlin, J.-E. and Paulapuro, H. ā€“ Principles and methods in pulp characterization ā€“ basic fiber properties. Papperi ja Puu, 73 (5): 411ā€“417 (1991).

    Google ScholarĀ 

  143. Lumiainen, J. ā€“ Specific surface load theory. In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta, 1995. Paper 5 15 pgs.

    Google ScholarĀ 

  144. Kibblewhite, R. P. and Bawden, A. D. ā€“ Blends of extreme high and low coarseness radiata pine kraft pulps ā€“ fibre and handsheet properties. Appita, 43 (3): 199ā€“207 (1990).

    Google ScholarĀ 

  145. Carpim, M. A.; Barrichelo, L. E. G.; Claudio-da-Silva Jr., E. and Dias, R. L. de V. ā€“ A influĆŖncia do nĆŗmero de fibras por grama nas propriedades Ć³pticas do papel. In: XX Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1987 pgs. 183ā€“205.

    Google ScholarĀ 

  146. Kibblewhite, R. P. ā€“ Effects of pulp drying and refining on softwood fibre wall structural organizations. In: 9th Fundamental Research Symposium, PIRA, Cambridge, 1989 pgs. 121ā€“152.

    Google ScholarĀ 

  147. Hortal, J. G. ā€“ Composicion quimica y estructura de la fibra. In: Constituyentes fibrosos de pastas y papeles. Ed. Escuela TĆ©cnica Superior de Ingenieros Industriales de Terrassa, 1988 Capitulo 2 pgs. 11ā€“36.

    Google ScholarĀ 

  148. Ratnieks, E.; Massoquete, A.; Demuner, B.J.; Robinson, D. and DeFoe, R. ā€“ Ultra low intensity refining of eucalyptus pulp for papermaking. In: International Pulp Refinig Seminar. HUT, Helsinki (2007) 7 pgs

    Google ScholarĀ 

  149. Schakford, L. D.; Miller, W. J. and Foelkel, C. E. B. ā€“ Commercial TCF bleach plant designed and effect of solids and thermal balance on operations. In: XXVII Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1994 pgs. 179ā€“194.

    Google ScholarĀ 

  150. LeskelƤ, M. ā€“ A model for the optical properties of paper. Part 1: theory. Paperi ja Puu, 75 (9ā€“10): 683ā€“688 (1993).

    Google ScholarĀ 

  151. Mark, R. E. ā€“ Handbook of physical and mechanical testing of paper and paperboard. Marcel Deckker, Inc., New York, 1984 508 pgs.

    Google ScholarĀ 

  152. Liu, H.; Dong, J.; Jing, H.; Guo, X.; Duan, C.; Qi, K.; Yang, R.; Guo, H.; Wang, B, e Qiao, L. ā€“ Refining characteristics of isometric straight bar plates with different bar angles. BioResources, 15 (4): 7844ā€“7860 (2020).

    Google ScholarĀ 

  153. Motamedian, H. R.; Halilovic, A. E. and Kulachenko, A. ā€“ Mechanisms of strength and stiffness improvement of paper after PFI refining with a focus on the effect of fines. Cellulose 26: 4099ā€“4124 (2019).

    Google ScholarĀ 

  154. BƤckstrƶm, M.; Kolar, M.-C. and Htun, M. ā€“ Characterization of fines from unbleached kraft pulps and their impact on sheet properties, Holzforschung, 62 (5): 546ā€“552 (2008).

    Google ScholarĀ 

  155. Lƶnnberg, L B.; JƤkƤrƤ, J.; ParĆØn, A. and Lundin, T. ā€“ Beating of chemical pulps from various wood raw materials. In: PTS Symposium (1999) https://www.researchgate.net/publication/284187811_Beating_of_chemical_pulps_made_from_various_wood_raw_materials

  156. Ratnieks, E. and Martins, M. A. L. ā€“ Eucalyptus refining and white water quality. In: XXXV Congresso Anual. ABTCP, SĆ£o Paulo, 1992 11 pgs.

    Google ScholarĀ 

  157. Lindstrƶm, T. ā€“ Chemical factors affecting the behavior of fibres during papermaking. Nordic Pulp and Paper Research Journal, 7 (4): 181ā€“192 (1992).

    Google ScholarĀ 

  158. Scallan, A. M. ā€“ The Effect of Acidic Groups on the Swelling of Pulps, Tappi Journal, 66(11), 73 (1983).

    Google ScholarĀ 

  159. Hammar, L-ƅ; BƤckstrƶm, M. and Htun, M. ā€“ Efeitos da concentraĆ§Ć£o de eletrĆ³lito e do pH na caracterĆ­stica de refino de celuloses kraft nĆ£o branqueadas. O Papel, 63 (8): 79ā€“86 (2003).

    Google ScholarĀ 

  160. Kuitunen; S.; Pulkkinen, I.; Tarvo, V. and Alopaeus, V. ā€“ Modeling of fiber swelling. In: 5th ICEP ā€“ International Colloquium on Eucalyptus Pulp, Porto Seguro, 2011 9 pgs.

    Google ScholarĀ 

  161. Kuitunen, S., and, Tarvo, V. ā€“ Modeling of fiber swelling. In: 5th International Colloquium on Eucalyptus Pulp. Porto Seguro, 2011 9 pgs.

    Google ScholarĀ 

  162. Lobben, H. T. ā€“ The tensile stiffness of paper. Part 2: Activation studied by freeze drying. Nordic Skogindustri, 30 (3): 43ā€“48 (1976)

    Google ScholarĀ 

  163. Lindstrƶm, T. and Carlsson, G. ā€“ The effect of carboxyl groups and their ionic form during drying aon the hornification of cellulose fibers. Svensk Papperstiding,85 (15): 146ā€“151 (1982).

    Google ScholarĀ 

  164. Wang, X., Paulapuro, H. and Maloney, T. C. ā€“ Chemical pulp refining for optimum combination of dewatering and tensile strength. Nordic Pulp and Paper Research Journal, 20 (4): 442ā€“447 (2005)

    Google ScholarĀ 

  165. Joris, G. ā€“ Optimized fillings for LC refiners. In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta, 1995 Paper 22 89 pgs.

    Google ScholarĀ 

  166. Stone, J. E. and Scallan, A. M. ā€“ The effect of component removal upon the porous structure of the cell wall of wood. Part 2 ā€“ swelling in water and the fibre saturation point. Tappi, 50 (10): 496ā€“501 (1967).

    Google ScholarĀ 

  167. Lindstrƶm, T. and Kolman, M. ā€“ The effect of pH and electrolyte concentration during beating and sheet forming on paper strength. Svensk Paperstiding, 85 (15): 140 (1982).

    Google ScholarĀ 

  168. Katz, S. and Scallan, A. M. ā€“ Ozone and caustic soda treatments of mechanical pulps. Tappi Journal, 66 (1): 85ā€“87 (1983).

    Google ScholarĀ 

  169. Scallan, A. M. and Grignon, J. ā€“ The efeect of cations on pulp and paper properties. Svensk Papperstiding., 82 (2): 40ā€“47 (1979)

    Google ScholarĀ 

  170. Laivins, G. and Scallan, T. ā€“ Acidic versus alkaline beating of pulp. Journal of Pulp and Paper Science, 26 (6): 228ā€“233 (2000).

    Google ScholarĀ 

  171. Babusā€™Haq, R. F.; Oā€™Callaghan, P. W.; Al-Kader, M. and Nagle, L. ā€“ Development of an interative multimedia training package for stock refining in the paper and board industry. In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta, 1995 Paper 8 6 pgs.

    Google ScholarĀ 

  172. BƤckstrƶm, M. and Hammar, L-A ā€“ The influence of the counter-ions to the charged groups on the refinability of the never-dried bleached pulps. BioResources, 5(4): 2751ā€“2764 (2010).

    Google ScholarĀ 

  173. NiemelƤ, K.; AlĆ©n, R. and Sjƶstrƶm, E. ā€“ The formation of carboxylic acids during kraft and kraft-anthraquinone pulping of birch wood. Hozforschung, 39: 167ā€“172 (1985).

    Google ScholarĀ 

  174. Sjƶstrƶm, E. ā€“ The origin of charge on cellulosic fibres. Nordic Pulp and Paper Research Journal, 4 (4): 181 (1989).

    Google ScholarĀ 

  175. Jansson, J. ā€“ The influence of pH on fiber and paper properties: Different pH levels during beating and sheet forming. Masterā€™s Thesis. Karlstad University, Karlstad, 2015 43 pgs www.diva-portal.org/smash/get/diva2:823180/FULLTEXT01

  176. Choi, K. H.; Kim, A. R. and Cho, B. U. ā€“ Effects of alkali swelling and beating treatments on properties of kraft pulp fibers. BioResources, 11 (2): 3769ā€“3782 (2016).

    Google ScholarĀ 

  177. Katz, S.; Liebergott, N. and Scallan, A. M. ā€“ A mechanism for the alkali strengthenin of mechanical pulps. Tappi Journal, 64 (7): 97ā€“100 (1981).

    Google ScholarĀ 

  178. Levlin, J. E. ā€“ Some differences in the beating behavior of softwood and hardwood kraft pulps. In: International Symposium on Fundamental Concepts of Refining. IPC, Appleton, 1980.

    Google ScholarĀ 

  179. Fiskari, J. ā€“ Oxalic acid formation in oxygen chemical bleaching. In: Pulping Conference. TAPPI, Orlando, 1999, volume 2, pgs. 7ā€“10.

    Google ScholarĀ 

  180. Keckes, J.; Burgert, I.; Fruhmann, K.; Muller, M.; Kolling, K.; Hamilton, M.; Burghammer, M.; Roth, S.V.; Stanzl-Tschegg, S. and Fratzl, P. ā€“ Cell-wall recovery after irreversible deformation in wood. Natural Materials, 2: 810ā€“814 (2003).

    Google ScholarĀ 

  181. VĆ”zquez, G.; LĆ³pez, M.; GonzĆ”lez, J. and Antorrena, G. ā€“ Adsorption of sodium on O2-prebleached Eucalyptus globulus Kraft pulp. Solutions, 85 (1): 1ā€“3 (2002).

    Google ScholarĀ 

  182. Torgnysdotter, A. and WĆ„gberg, L. ā€“ Influence of electrostatic interactions on fibre/fibre joint and paper strength. Nordic Pulp and Paper Research Journal, 19 (4): 440ā€“447 (2004).

    Google ScholarĀ 

  183. Evans, B. E. ā€“ The effect of process water on paper properties. Paper Technology Ind., 22 (3): 99 (1981).

    Google ScholarĀ 

  184. RƤsƤnen, E. ā€“ Modelling ion exchange and flow in pulp suspensions. Doctoral Thesis, Helsinki University of Technology, Espoo, 2003 62 pgs www.vttresearch.comsitesdefaultfilespdfpublications2003P495.pdf

  185. Wang, F. and Hubbe, M. A. ā€“ Charge properties of fibers in the paper mill environment. 1. effect of electrical conductivity. Journal of Pulp Paper Science, 28 (10): 347ā€“353 (2002).

    Google ScholarĀ 

  186. Hiltunen, E. ā€“ Papermaking properties of pulp. In: Papermaking Science and Technology. Volume 17 ā€“ Pulp and paper testing, Chapter 3, Ed. Gullichsen, J. and Paulapuro, H. Finnish Paper Engineersā€™ Association/Paperi ja Puu Oy, Hesinki: 1999.

    Google ScholarĀ 

  187. Lumiainen, J. ā€“ Comparison of the mode of operation between conical and disc refiners. In: IV International Refining Conference. PIRA, Fiuggi, 1997 Paper 14 pgs. 227ā€“236.

    Google ScholarĀ 

  188. Lee, J-Y.; Kim, C-H.; Kwon, S.; Park, H-H.; Yim, H-T.; Gu, H-G. and Min, B-G. ā€“ Study of mixed refining behaviors of softwood kraft pulps and hardwood kraft pulps using different bar fillings. Journal of Korea TAPPI, 50(5): 31ā€“38 (2018).

    Google ScholarĀ 

  189. Mayr, M.; Eckhart, R.; Winter, H. and Bauer, W. ā€“ A novel approach to determining the contribution of the fiber and fines fraction to the water retention value (WRV) of chemical and mechanical pulps. Cellulose 24: 3029ā€“3036 (2017

    Google ScholarĀ 

  190. Koskenhely K.; ƄmmƤlƤ, A.; Jokinen, H. and Paulapuro, H. ā€“ Effect of refining intensity on pressure screen fractionated softwood kraft. Nordic Pulp and Paper Research Journal, 20 (2): 169ā€“175 (2005).

    Google ScholarĀ 

  191. BƤckstrƶm, M.; Lindblom, A. T. and WĆ„gberg, L. ā€“ Studies of the influence of deflocculants and flocculants on the refining efficiency on a pilot scale. Nordic Pulp and Paper Research Journal, 24 (3): 319ā€“326 (2006)

    Google ScholarĀ 

  192. Springer, A.; Nabors, L. A. and Bhatia, O. ā€“ The influence of fiber, sheet structual properties and chemical additives on wet pressing. Tappi Journal, 74 (4):221 (1991).

    Google ScholarĀ 

  193. Santos, A.; Amaral, M. E.; Vaz, A.; Anjos, O. and SimƵes, R. ā€“ Effect of Eucalyptus globulus wood density on papermaking potential. Tappi Journal, 7 (5): 25ā€“32 (2008).

    Google ScholarĀ 

  194. Bentley, R. G.; Hamilton, R. K. and Jack, J. S. ā€“ An optical method for monitoring pulp refining. Journal of Pulp and Paper Science, 23 (10): 504ā€“509 (1997).

    Google ScholarĀ 

  195. Shekhar, C. D. ā€“ Fine edged parallel and curved bar plates in refining system for pulp and paper industries. IPPTA Journal, 24 (1): 115ā€“119 (2012).

    Google ScholarĀ 

  196. Shekhar, C. D. ā€“ Fine bar technology in refining system for pulp and paper industries. IPPTA Journal, 22 (3): 109ā€“112 (2010).

    Google ScholarĀ 

  197. Arjas, A. ā€“ Effect of the evenness of the pulp bleaching stage on fibre bonding. Paperi Ja Puu, 52 (12): 825ā€“829 (1970).

    Google ScholarĀ 

  198. Allison, R. W.; Ellis, M. J. and Wrathall, S. H. ā€“ Interaction of mechanical and chemical treatments on pulp strength during kraft pulp bleaching. Appita Journal, 51 (2): 107ā€“113 (1998).

    Google ScholarĀ 

  199. Duker, E. and Lindstrƶm, T. ā€“ On the mechanisms behind the ability of CMC to enhance paper strength. Nordic Pulp and Paper Research Journal, 23 (1): 57ā€“64 (2008).

    Google ScholarĀ 

  200. Baker, C. ā€“ Introduction to control in the refining process. In: African Pulp and Paper Week. TAPPSA (2002) http://www.tappsa.co.za/archive2/APPW_2002/Title/Introduction_to_control_in_the_refining_process.html

  201. Stoere, P.; Nazhad, M. and Kerekes, R. J. ā€“ An experimental study of the effect of refining on paper formation. Tappi Journal, 84 (7): 52ā€“58 (2001)

    Google ScholarĀ 

  202. Steenberg, B. ā€“ A model of refining as a special case of milling. In: International Symposium on Fundamental Concepts of Refining. IPC, Appleton, 1980 pgs 107.

    Google ScholarĀ 

  203. Koskenhely, K.; ƄmmƤlƤ, A.; Jokinen, H. and Paulapuro, H. ā€“ Refining characteristics of softwood fibre fractions. In: 13th Fundamental Research Symposium ā€“ Advances in Paper Science and Technology Cambridge. 2005 pgs. 427ā€“456.

    Google ScholarĀ 

  204. Manfredi, V. and Claudio-da-Silva Jr, E. ā€“ Refining operating variables vs raw material. In: International Conference ā€“ Advances in Refining Technologies. PIRA, Birmingham, 1986 41 pgs.

    Google ScholarĀ 

  205. Joy, E.; Robinson, D. and Mathew, J. ā€“ Deformation of fiber flocs in refining. In: Papermakers Conference. TAPPI, 2001 5 pgs.

    Google ScholarĀ 

  206. Holik, H. ā€“ Mais rĆ”pidas, mais largas, melhores ā€“ progresso em mĆ”quinas de papel nos Ćŗltimos 100 anos. O Papel, 71 (8): 66ā€“93. (2010)

    Google ScholarĀ 

  207. Rihs, J. and Josephson, W. E. ā€“ Refining systems with flow recirculation. In: IV International Refining Conference. PIRA, Fiuggi, 1997 Paper 7 pgs. 117ā€“124.

    Google ScholarĀ 

  208. Almeida, M. D. de; Sevrini, G. I.; Leodoro, L. M., Faez, M. S., Soto, M. R., Kaneco, S. Y. ā€“ Tratamento mecĆ¢nico de fibra curta de eucalipto com utilizaĆ§Ć£o de discos de refino com maior comprimento de corte. O Papel, 66 (6): 80ā€“87 (2006).

    Google ScholarĀ 

  209. El-Sharkawy, K.; Haavisto, S.; Koskenhely, K. and Paulapuro, H. ā€“ Effect of fiber flocculation and filling design on refiner loadability and refining characteristics. BioResources, 3 (2):403ā€“424 (2008).

    Google ScholarĀ 

  210. Batchelor, W., Lundin, T. and Fardim, P. ā€“ A method to estimate fiber trapping in low-consistency refining. Tappi Journal, 5 (8): 31ā€“36 (2006).

    Google ScholarĀ 

  211. Demuner, B. J.; Viana Doria, E. L.; Claudio-da-Silva Jr., E. and Manfredi, V. ā€“ InfluĆŖncia das caracterĆ­sticas dos flocos sobre o refino de polpas quĆ­micas. O Papel, 54 (2): 29ā€“39 (1993).

    Google ScholarĀ 

  212. Lumiainen, J. ā€“ Behavior of fibres in mixed low consistency refining. Paper Technology, 38 (6): 26ā€“33 (1997).

    Google ScholarĀ 

  213. Lumiainen, J. ā€“ Refining performances with separated and mixed pulps for fine-paper production. Revue ATIP, 51 (3): 99ā€“107 (1997).

    Google ScholarĀ 

  214. Joris, G. ā€“ Optimization of industrial refining unit through Fibrologic 4.0. In: IV International Refining Conference. PIRA, Fiuggi, 1997 Paper 17 pgs. 267ā€“303.

    Google ScholarĀ 

  215. Lumiainen, J. ā€“ Refining of fine paper fibers ā€“ separate or mixed refining?. In: Papermakers Conference. TAPPI, Philadelphia, 1996 pgs. 175ā€“186.

    Google ScholarĀ 

  216. Stevens, W. V. ā€“ Principles of stock preparation and refining ā€“ refiners and refiner systems. In: Pulping Conference. TAPPI, Orlando, 1999, pgs. 97ā€“102.

    Google ScholarĀ 

  217. Lundin, T.; Lƶnnberg, B.; Soini, P. and Harju, K ā€“ Laboratory LC-refining of SBK pulps: effects of pulp consistency and dispersion. In: Scientific and Technical Advances in Refining & Mechanical Pulping ā€“ Course Notes. PIRA, Stockholm, 2003 Paper 5.

    Google ScholarĀ 

  218. Bajpai, P. ā€“ Technology developments in refining. Pira International Ltd. Surrey, UK. 140 pgs (2005).

    Google ScholarĀ 

  219. Strƶmberg, B. ā€“ Hardwood yield increases with Lo-solidsĀ® cooking and Lo-levelĀ® feed system at Papelera Guipuzcoana de ZicuƱaga, Spain. In: Pulping Conference, TAPPI, Quebec, 1998 7 pgs https://www.eucalyptus.com.br/artigos/2002_LoSolids+Pulping.pdf

  220. Gabl, H. and Gorton-Heulgerth, A. ā€“ A new low consistency refiner yields improved fibre properties while reducing idle energy by up 40%. In: Scientific and Technical Advances in Refining & Mechanical Pulping ā€“ Course Notes. PIRA: Stockholm, 2003 Paper 8.

    Google ScholarĀ 

  221. Dillen, S. ā€“ Heterogeneity ā€“ An Important Parameter in Low Consistency Refining. In: International Symposium of Fundamental Concepts of Refining. IPC, Appleton: 16-18/09/1980 pgs. 331.

    Google ScholarĀ 

  222. Olson, J. A.; Robertson, A. G.; Finnigan, T. D. and Turner, R. R. H. ā€“ An analyzer for fibre shape and length. Journal of Pulp and Paper Science, 21 (11): 367ā€“373 (1995).

    Google ScholarĀ 

  223. Foelkel, C. ā€“ O processo de refinaĆ§Ć£o da celulose. Eucalyptus Newsletter nĀ° 89 (Jul) 2021 206 pgs https://www.eucalyptus.com.br/news/pt_jul2021.pdf

  224. Lindau, J.; Theliander, H. and Sjƶstrƶm, K. ā€“ The compression of pulp before and during brown stock washing ā€“ Its influence on fibre properties. Nordic Pulp and Paper Research Journal, 23 (2): 195ā€“201 (2008).

    Google ScholarĀ 

  225. Page, D. H. and Tydeman, P. A. ā€“ Transverse swelling and shrinkage of softwood tracheids. Nature, 199 (4892): 471ā€“472 (1963).

    Google ScholarĀ 

  226. Kibblewhite, R. P. and Bailey, D. ā€“ Measurement of fibre cross-section dimensions using image processing. Appita Journal, 41 (4): 297ā€“303 (1988).

    Google ScholarĀ 

  227. Seth, R. S. ā€“ The difference between never dried and dried chemical pulps. Solutions, 1 (1): 95 (2001).

    Google ScholarĀ 

  228. Arroyo, L. M. ā€“ OptimizaciĆ³n energĆ©tica de una fĆ”brica de papel de nueva planta. El Papel (46): 35ā€“39 (1995).

    Google ScholarĀ 

  229. Glowacki, J. J. ā€“ Refiners: new designs achieved higher efficiency/capacity. Pulp and Paper 70, (1): 113ā€“114 (1996).

    Google ScholarĀ 

  230. Arjas, A.; Aario, M. and Rythi, N. ā€“ Influence of the residence time distribution on the beating result of a Mill-size conical refiner. Paperi ja Puu, 52 (10): 639ā€“649 (1970)

    Google ScholarĀ 

  231. Batchelor, W. J. and Kibblewhite, R. P. ā€“ Calculation of relative bonded area and scattering coefficient from sheet density and fibre shape. Holzforschung, 60 (3): 253 (2006).

    Google ScholarĀ 

  232. Martinez, P.C. and Park, S. W. ā€“ AƧƵes das forƧas em processo de refino em baixa consistĆŖncia. In: 40th Congresso Anual. ABTCP: SĆ£o Paulo, 2007 12 pgs.

    Google ScholarĀ 

  233. Anand, S. H.; Manigandan, P.; Kumar, S. and Jeffrey, J. E. C. ā€“ Design and manufacturing of disc refiner. International Journal of Emerging Technology in Computer Science and Electronics, 21 (3): 79ā€“82 (2016)

    Google ScholarĀ 

  234. Banks, W. A. ā€“ Design considerations and engineering characteristics of disc refiners. Paper Technology, 8 (4): 363ā€“369 (1967).

    Google ScholarĀ 

  235. Stationwala, M. I.; Atack, D. and Karnis, A. ā€“ Distribution and motion of pulp fibres on refiner bar surface. Journal of Pulp and Paper Science, 18 (4): 131ā€“137 (1992).

    Google ScholarĀ 

  236. Atalla, R. H. and Wahren, D. On the energy requirement in refining. Tappi, 63 (6): 121 (1980).

    Google ScholarĀ 

  237. Demler, C. L. ā€“ Fundamentals of papermill refining for chemical, mechanical and secondary fibers. In: TECH95 Theory & Practice of Papermaking Course. CPPA;. Ottawa, 1995 Section A2 23 pgs.

    Google ScholarĀ 

  238. Hartman, R. R. ā€“ Mechanical treatment of pulp fibers for property development. Doctoral Thesis, Institute of Paper Chemistry, Atlanta, 1984 131 pgs https://smartech.gatech.edu/handle/1853/5510

  239. Kerekes, R. J. ā€“ Characterizing the refining action ā€“ linking the process to the refining result. In: Refining and Mechanical Pulping Conference. PIRA, Barcelona, 2005 Paper 1.

    Google ScholarĀ 

  240. Martinez, M. and Kerekes, R. J. ā€“ Forces on fibres in low-consistency refining. Tappi Journal, 77 (12): 119ā€“123 (1994).

    Google ScholarĀ 

  241. Nissan, A. H. ā€“ Lectures on fiber science in paper. Edited by W.C. Walker, Pulp and Paper Technology Series. Joint Textbook Committee of the Paper Industry. NĀ°4. p27

    Google ScholarĀ 

  242. Kerekes, R. J. ā€“ Energy and forces in refining. Journal of Pulp and Paper Science, 30 (1): 10ā€“15 (2010).

    Google ScholarĀ 

  243. Kerekes, R. J. ā€“ Force-based characterization of refining intensity. Nordic Pulp and Paper Research Journal, 26 (1): 14ā€“20 (2011).

    Google ScholarĀ 

  244. Martinez, M.; Batchelor, W. J.; Kerekes, R. J. e Ouellet, D. ā€“ Forces on fibres in low-consistency refining: normal force. Journal of Pulp and Paper Science, 23 (1): J11ā€“J18 (1997).

    Google ScholarĀ 

  245. Batchelor, W. J.; Martinez, M.; Kerekes, R. J. and Ouellet, D. ā€“ Forces on fibres in low-consistency refining: shear force. Journal of Pulp and Paper Science, 23 (1): J40ā€“J45 (1997).

    Google ScholarĀ 

  246. Joris, G. ā€“ Gestion optimale dā€™une unite industrielle de raffinage. Revue ATIP, 61 (2): 6ā€“25 (2007).

    Google ScholarĀ 

  247. Kerekes, R. J. ā€“ Characterizing refining action in PFI mills, Tappi Journal, 4 (3): 9ā€“13 (2005).

    Google ScholarĀ 

  248. Mason, S. G. ā€“ Some factors involved in the flocculation of pulp suspension and the formation of paper. Pulp and Paper Magazine Canada, 52 (51): 94ā€“98 (1950).

    Google ScholarĀ 

  249. Molin, U. and Daniel, G. ā€“ Effects of refining on the fibre structure of kraft pulps as revealed by FE-SEM and TEM: influence of alkaline degradation. Holzforschung, 58 (3): 226ā€“232 (2004).

    Google ScholarĀ 

  250. Ebeling, K. ā€“ A critical review of current theories for the refining of chemical pulps. In: International Symposium of Fundamental Concepts of Refining. IPC, Appleton, 1980 pgs. 1ā€“33.

    Google ScholarĀ 

  251. Gassman, H. ā€“ Influences on the screening and fractionating processes. World Pulp and Paper Technology, 1998/9: 40ā€“41.

    Google ScholarĀ 

  252. Senger, J. and Ouellet, D. ā€“ Factors affecting the shear forces in high-consistency refining. Journal of Pulp and Paper Science, 28 (11): 364ā€“368 (2002).

    Google ScholarĀ 

  253. Hietanen, S. and Ebeling, K. ā€“ Fundamental aspects of the refining process. Paperi ja Puu, 72 (2): 158ā€“170 (1990)

    Google ScholarĀ 

  254. Kure, K. A.; Saborin, M. J.; Dahlqvist, G. and Helle, T. ā€“ Adjusting refining intensity by changing refiner plate design and rotational speed-effects on structural fibre properties. Journal of Pulp and Paper Science, 26 (10): 346ā€“352 (2000).

    Google ScholarĀ 

  255. Nasab, N. R. ā€“ Understanding of no-load power in low consistency refining. Doctoral Thesis, The University of British Columbia, Vancouver, 2013. 106 pgs www.open.library.ubc.ca/media/download/pdf/24/1.0074101BARRA1

  256. Meltzer, F. P. and Rauntnbach, R. ā€“ Neue mƶglichkeiten zur vorherbestimmung des technologischer mahlergebnisses. Das Papier, 47 (3): 578ā€“583 (1994).

    Google ScholarĀ 

  257. Sepke, P.-W.; Meltzer, F. P. and Musselmann, W. ā€“ Influencing specific energy in low consistency refining ā€“ a new approach. In: III International Refining Conference and Exhibition. PIRA/PST, Atlanta, 1995 Paper 21.dillen

    Google ScholarĀ 

  258. Crow, H. ā€“ Energy saving in the refining of shor fibre pulps. In: Papermakers Conference. TAPPI, Philadelphia, 1996 pg. 9.

    Google ScholarĀ 

  259. Kerekes, R. ā€“ Characterization of pulp refiners by a C-factor. Nordic Pulp and Paper Research Journal, 05 (1): 3ā€“8 (1990).

    Google ScholarĀ 

  260. Lumiainen, J. ā€“ New theory can improve practice. Pulp and Paper International, 32 (8): 46ā€“47, 54 (1990).

    Google ScholarĀ 

  261. Kerekes, R. J.; Clara, M.; Dharni, S. and Martinez, M. ā€“ Application of the C-factor to characterize pulp refiners. Journal of Pulp and Paper Science, 19 (3): J125ā€“130 (1993).

    Google ScholarĀ 

  262. Kerekes, R. J.; Ouellet, D. and Martinez, M. ā€“ New perspectives on refining intensity. In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta, 1995 Paper 3 23 pgs.

    Google ScholarĀ 

  263. Musselman, R.; Letarte, D. and Simard, R. ā€“ Trial stage low consistency refining o TMP for energy savings and quality enhancement. In: IV International Refining Conference. PIRA, Fiuggi, 1997 Paper 9 pgs. 141ā€“147.

    Google ScholarĀ 

  264. Lumiainen, J. ā€“ Refining intensity at low consistency ā€“ critical factors. Paper Technology, 32 (11): 22ā€“26 (1991).

    Google ScholarĀ 

  265. Kerekes, R. and Meltzer, F. ā€“ The influence of bar width on bar forces and fibre shortening in low consistency pulp refining. Nordic Pulp & Paper Research Journal 33(2): 220ā€“225 (2018).

    Google ScholarĀ 

  266. Berna, J. E. R.; Martinez, M. and Olson, J. ā€“ Powerā€“gap relationships in low consistency refining. Nordic Pulp and Paper Research Journal, 34 (1): 36ā€“45 (2019).

    Google ScholarĀ 

  267. Demuner, B. J. ā€“ Alternatives to improve eucalypt kraft pulp refining. https://www.eucalyptus.com.br/artigos/outros/2001_Refining_7thBSCL_final.pdf

  268. Barbosa, F. E. V. ā€“ AnĆ”lise das variĆ”veis operacionais de um processo de produĆ§Ć£o de papel visando maior eficiĆŖncia da operaĆ§Ć£o. DissertaĆ§Ć£o de Mestrado, Universidade Estadual de Campinas, Campinas. 2015 145 pgs. http://repositorio.unicamp.br/bitstream/REPOSIP/265981/1/Barbosa_FranciscoElpidioViana_M.pdf

  269. Kondora G. and Asendrych, D ā€“ Flow modelling in a disc refinier. In: 14th International Conference on Fluid Flow Technologies, Budapest, 2009 8 pgs https://www.researchgate.net/publication/265563544_Flow_Modelling_in_a_Disc_Refiner

  270. Lundin, T.; Wurlitzer, F.; Park, S. W. and Fardim, P. ā€“ AnĆ”lise energĆ©tica em refinaĆ§Ć£o de baixa consistĆŖncia de madeira de conĆ­feras. O Papel, 70 (10): 41ā€“60 (2009).

    Google ScholarĀ 

  271. Kurdin, J. A. ā€“ High consistency refining of chemical (pulp) fibres. In: Refining Chemical Pulps Seminar. Doschi Association, Appleton, 1986 pg 15.

    Google ScholarĀ 

  272. Lumiainen, J. ā€“ Refining of chemical pulp. In: Papermaking Science and Technology. Volume 8 ā€“ Papermaking Part 1 ā€“ Stock preparation and wet end, Chapter 4. Ed. Gullichsen, J. and Paulapuro, H. Finnish Paper Engineersā€™ Association/Paperi ja Puu Oy, Hesinki: 2000 pg. 86.

    Google ScholarĀ 

  273. Roux, J. C. and Bloch, J. F. ā€“ Lubrication theory explains the modification of fiber properties in the refining process. AIP Conference Proceedings 1558, 1095 (2013) https://aip.scitation.org/doi/10.1063/1.4825697

  274. Min, B. G.; Lee, J. Y.; Kim, C. H.; Park, S. H.; Lee, M. S.; Gu, H. G. and Lee, C. Y. ā€“ New technology for developing a lightweight refiner plate for hardwood kraft pulp fibers. BioResources, 15 (4): 9128ā€“9142 (2020).

    Google ScholarĀ 

  275. Baker, C. F. ā€“ Optimization of paper mill refining systems. In: 3rd International Refining Conference. PIRA/IPST, Atlanta, 1995 Paper 13.

    Google ScholarĀ 

  276. Rihs, J. ā€“ Low consistency refining ā€“ theory vs practice. In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta, 1995 Paper 10 15 pgs.

    Google ScholarĀ 

  277. Radoslavova, D.; Roux, J. C. and Silvy, J. ā€“ The beating of pulp considered as a hydrodynamic process. In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta, 1995 Paper 6 32 pgs.

    Google ScholarĀ 

  278. Crook, J. ā€“ The dream revisited ā€“ an update on Brazilian refining technology. In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta: 20-22/03/1995 Paper 14 12 pgs.

    Google ScholarĀ 

  279. Luengo, J.; Segura, C. and GonzĆ”lez, R. ā€“ Effect of refining intensity on properties of eucalyptus fibers ā€“ Santa Fe pulp ā€“ CMPC. In: 8th International Colloquium on Eucalyptus Pulp, ConcepciĆ³n, 2012 28 slides

    Google ScholarĀ 

  280. Lumiainen, J. ā€“ Is the lowest refining intensity the best in the consistency refining of hardwood pulps? In: Papermakers Conference, Atlanta, 1994. 12 pgs.

    Google ScholarĀ 

  281. Baker, C. F. ā€“ Various options for the control of refining process. In: IV International Refining Conference. PIRA, Fiuggi: 18-20/03/1997 Paper 16 pgs. 249ā€“264.

    Google ScholarĀ 

  282. Baker, C. F. ā€“ Critical review of refiner theory. In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta: 20-22/03/1995 Paper 7 22 pgs.

    Google ScholarĀ 

  283. Ratnieks, E. and Demler, C. ā€“ O refino da polpa de eucalipto. O Papel, 54(8):22ā€“25 (1993).

    Google ScholarĀ 

  284. Welch, L. V. and Kerekes, R. J. ā€“ Characterization of the PFI mill by t

    Google ScholarĀ 

  285. Berger, T. H. ā€“ The impact of plate material on pulp quality over time. In: IV International Refining Conference. PIRA, Fiuggi: 18-20/03/1997 Paper 18 pgs. 307ā€“315.

    Google ScholarĀ 

  286. Mayade, T. L. ā€“ Statistical theory of chemical pulp refining: an innovative combined approach. Appita Journal, 50 (3): 237ā€“244 (1997).

    Google ScholarĀ 

  287. Li, S.; He, H. Z.; Yu, G. F. and Wei, Y. S. ā€“ Study on thickening-refining with a low-consistency disk refiner. China Pulp and Paper, 13 (2): 29ā€“34 (1994.

    Google ScholarĀ 

  288. Baker, C. F. ā€“ Optimisation of refining in fine and speciality paper mill systems. In: Papermakers Conference. TAPPI, Philadelphia: 24-27/03/1996 pgs. 215ā€“224.

    Google ScholarĀ 

  289. Levlin, J. E. ā€“ Characterisation of Beating Result. In: International Symposium of Fundamental Concepts of Refining. IPC, Appleton: 16-18/09/1980 pgs. 131.

    Google ScholarĀ 

  290. Baker, C. F. ā€“ The refining of nonwood fibres. In: IV International Refining Conference. PIRA, Fiuggi: 18-20/03/1997 Paper 10 pgs. 151ā€“180.492. Prasad, D. Y.; Jameel, H. and Gratzl, J. ā€“ Extended delignification of hardwood with AQ/Polysulfide. Tappi Journal, 78 (9): 151 (1995).

    Google ScholarĀ 

  291. Pycraft, C. ā€“ The optimization of energy consumption and strength during refining. Paper Southern Africa, 6: 6ā€“8, 10, 14 (1986).

    Google ScholarĀ 

  292. Manfredi, V.; Vilela, C. B. and Claudio-da-Silva Jr. E. ā€“ Efeito das variĆ”veis operacionais de refino na evoluĆ§Ć£o das propriedades da polpa refinada. In: Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1986 pgs. 189ā€“207.

    Google ScholarĀ 

  293. Manfredi, V. ā€“ Optimizing eucalyptus pulp refining. In: International Papermaking & Environment Conference. Ed. Yang, S.; Ni, Y e Liu, Z. Tianjin University of Science and Technology, Tianjin ā€“ China: 12-14/05/2004 Book A pgs. 41ā€“50.

    Google ScholarĀ 

  294. Lundin, T.; Batchelor, W. and Fardim, P. ā€“ Fiber trapping in low-consistency refining: new parameters to describe the refining process. Tappi Journal, 7 (7): 15ā€“21 (July 2008).

    Google ScholarĀ 

  295. Shekhar, C. D. ā€“ Fine edged parallel and curved bar plates in refining system for pulp and paper industries. IPPTA Journal, 24 (1): 115ā€“119 (2012).

    Google ScholarĀ 

  296. Ratnieks, E. and Mora, E. ā€“ How the dryness of pulp influences the stock preparation. In: XXVI Congresso Anual de Celulose e Papel, ABTCP, SĆ£o Paulo, 1993 pgs. 715ā€“731.

    Google ScholarĀ 

  297. Page, D. H. ā€“ The beating of chemical pulps ā€“ the action and the effects. In Fundamentals of Papermaking, Trans. of the IXth Fund. Res. Symp. Cambridge, 1989, pgs. 1ā€“38.

    Google ScholarĀ 

  298. Sha, J.; Nikbakht, A.; Wang, C.; Zhang, H. and Olson, J. ā€“ The effect of consistency and freeness on the yield stress of chemical pulp fibre suspensions. BioResources, 10(3), 4287ā€“4299 (2015).

    Google ScholarĀ 

  299. Koskenhely, K.; Nieminen, K. and Paulapuro, H. ā€“ Edge form profile of refiner filling bars and its impact on softwood fibre shortening. Paperi ja Puu ā€“ Paper and Timber, 89 (4): 1ā€“6 (2007).

    Google ScholarĀ 

  300. Lundin, T.; Batchelor, W. and Fardim, P. ā€“ Effect of bar edge conditions on fibre trapping in low consistency refining. In: 62nd Appita Annual Conference and Exhibition, Rotorua, 2008 pgs. 199ā€“2006 https://search.informit.org/doi/book/10.3316/informit.APP62

  301. Fox, T. S.; Brodkey, R. S. and Nissan, A. H. ā€“ High-speed photography of stock transport in a disk refiner. Tappi Journal, 62 (3): 55ā€“58 (1979)

    Google ScholarĀ 

  302. Fox, T. S. ā€“ Inside a disc refiner. In: International Symposium of Fundamental Concepts of Refining. IPC, Appleton, 1980 pgs. 281ā€“313.

    Google ScholarĀ 

  303. Baker, C. F. ā€“ Specific edge load theory ā€“ application and limitations. In: Current and Future Technologies of Refining Conference. PIRA, 1991 Volume 2 pg. 18.

    Google ScholarĀ 

  304. Parola, M. J. and Linna, H. I. ā€“ Runnability and the unstable stress fields in paper web. Graphics Arts, 29 (3): 9 (2000).

    Google ScholarĀ 

  305. Kibblewhite, R. P. ā€“ Refining requirements of softwood and eucalypt market pulps and blends. Appita Journal, 47 (5): 375ā€“379, 401 (1994).

    Google ScholarĀ 

  306. Saltarelli, M. O. ā€“ Stock preparation process requirements. Tappi, 57 (7): 83ā€“85 (1974).

    Google ScholarĀ 

  307. Soza, J. and Gonzalez, R. ā€“ Estudio de refinaciĆ³n de mesclas de celulosa fibra corta fibra larga em refinador piloto Escher Wyss. www.eucalyptus.com.bricep03190Soza.text.pdf

  308. Chauhan, V. S.; Kumar, N.; Kumar, M.; Chakrabarti, S. K. and Thapar, S. K. ā€“ Effect of separate and mixed refining of hardwood and softwood pulps on paper properties. Journal of Korea TAPPI, 43 (4): 1ā€“10 (2011).

    Google ScholarĀ 

  309. Panthai, S. and Somboon, P. ā€“ Examination of separate and mixed refining methods on softwood and hardwood pulps for linerboard production. Kasetsart Journal ā€“ Natural Science, 48: 540ā€“547 (2014).

    Google ScholarĀ 

  310. Brindley, C. L. and Klibbewhite, R. P. ā€“ Comparison of refining response of eucalypt and a mixed hardwood pulp and their blends with softwood. Appita, 49 (1): 37ā€“49 (1996).

    Google ScholarĀ 

  311. Kerekes, R. J. and Tam Doo, P. A. ā€“ The effect of beating and low-amplitude flexing on pulp fibre flexibility. Journal of Pulp and Paper Science, 15 (1): 36 (1989).

    Google ScholarĀ 

  312. Yasumura, P. K. and Park, S. W. -Novos aspectos sobre aƧƵes de refino do moinho PFI e refinadores industriais de disco em fibras. In: 45th ABTCP International Pulp and Paper Congress e VII IberoAmerican Congress on Pulp and Paper Research. SĆ£o Paulo, 2012 8 pgs

    Google ScholarĀ 

  313. Khokhar, G. M. ā€“ Numerical simulation of the flow in a disc refiner. Masterā€™s Thesis. Royal Institute of Technology, Stockholm, 2011 59 pgs https://www.lcrl.ppc.ubc.ca/files/2013/02/2011-Khokhar-MSc-Thesis.pdf

  314. Ouellet, D.; Bennington, C. P. J.; Senger, J. J.; Borisoff, J. F. and Martiskainen, J. M. ā€“ Measurement of pulp residence time in a high-consistency refiner. Journal of Pulp and Paper Science, 22 (8): J301ā€“305 (1996).

    Google ScholarĀ 

  315. Bordin, R.; Toux, J-C. and Block, J-F. ā€“ No-load characterization of a low-consistency disc refiner for na efetive application of refining theories. Engineering, Pulping and Environmental Conference, TAPPI, TAPPI Engineering, Pulping and Environmental Conference, Jacksonville, 2007 33 pgs.

    Google ScholarĀ 

  316. Hietanen, S. ā€“ The role of fiber flocculation in chemical pulp refining. Paperi ja Puu, 73 (3): 249ā€“259 (1991).

    Google ScholarĀ 

  317. Page, D. H., Kosky, J. and Booth, D. ā€“ Some initial observations on the action of the beater. BP&BIRA Bulletin, 28: 15ā€“21 (1962).

    Google ScholarĀ 

  318. Waterhouse, J. F. ā€“ Characterizing pulps for paper-machine runnability. In: Engineering/Process and Product Quality Conference & Trade Fair. TAPPI, Anaheim, 1999 Volume 3 pgs. 1195ā€“1204.

    Google ScholarĀ 

  319. Liu, H.; Dong, J.; Jing, H.; Guo X.; Duan, C.; Qi, K.; Yang, R.; Gio, H.; Wang, B. and Qiao, L. ā€“ Correlation between bar angle and characterization parameters of the isometric straight bar plate. BioResources 15 (4), 7844ā€“7860 (2020).

    Google ScholarĀ 

  320. Eriksen, O.; Holmqvist, C. and Mohlin, U-B. ā€“ Fibre floc drainage ā€“ a possible cause for substantial pressure peaks in low-consistency refiners. Nordic Pulp and Paper Research Journal, 23 (3): 321ā€“326 (2008).

    Google ScholarĀ 

  321. Wittberg, L. P.; Bjƶrkman, M.; Khokhar, G.; Mohlin, U-B. and Dahlkild, A. ā€“ Flow conditions in the grooves of a low-consistency refiner. Nordic Pulp & Paper Research Journal, 27 (2): 173ā€“183 (2012).

    Google ScholarĀ 

  322. Fox, T. S.; Brodkey, R. S. and Nissan, A. H. ā€“ Inside a disk refiner. Tappi Journal, 65 (7): 80ā€“83 (1982).

    Google ScholarĀ 

  323. Groome, E. J. and Gerhardt, T. D. ā€“ Fiber retention time in a disk refiner. In: International Symposium on Fundamental Concepts of Refining. IPC, Appleton, 1980. pgs. 21ā€“29.

    Google ScholarĀ 

  324. Bordin R.; Roux, J.-C. and Bloch, J.-F. ā€“ New technique for measuring clearance in low-consistency refiners. Appita Journal, 61 (1): 71ā€“77 (2008).

    Google ScholarĀ 

  325. Arjas, A. ā€“ Influence of residence time distribution on pulp properties. In: International Symposium of Fundamental Concepts of Refining. IPC, Appleton, 1980 pg 61

    Google ScholarĀ 

  326. Lumiainen, J. ā€“ Post-refining of mechanical pulps. In: IV International Refining Conference. PIRA, Fiuggi, 1997 Paper 8 pgs. 127ā€“137.

    Google ScholarĀ 

  327. Steffens, D. ā€“ Ultrasonic technology ā€“ measurements of paper orientation and elastic properties. In: XXVII Congresso Anual de Celulose e Papel. ABTCP, SĆ£o Paulo, 1994 pgs. 661ā€“681.

    Google ScholarĀ 

  328. Basile, F. C. ā€“ Energy considerations in stock preparation refining. Tappi Journal, 97 (4): 84ā€“88 (1984).

    Google ScholarĀ 

  329. Vainio A. K. and Paulapuro, H ā€“ Interfiber bonding and fiber segment activation in paper. Bioresources, 2 (3):442ā€“458 (2007).

    Google ScholarĀ 

  330. Heitmann, J. A. ā€“ Pulp properties. In: Pulp and Paper Manufacture ā€“ Mill Control & Control Systems: Quality & Testing, Environmental, Corrosion, Electrical. Ed.: Kouris, M e Kocurek, M. J. The Textbook, Committee of the Paper Industry, Atlanta/Montreal, 1992, pgs. 85ā€“98.

    Google ScholarĀ 

  331. Curto, J.; SimƵes, R. and Silvy, J. ā€“ The influence of bleaching, beating and drying in the wet fibre flexibility of Pinus pinaster kraft pulp. In: 12th International Symposium on Wood and Pulping Chemistry. Madison, 2003 Volume 3 pgs. 287ā€“289.

    Google ScholarĀ 

  332. Mohlin, U.-B. and Wennberg, K. ā€“ Some aspects of the interaction between mechanical and chemical pulps. Tappi Journal, 67 (1): 90ā€“93 (1984).

    Google ScholarĀ 

  333. Kure, K. A. and Dahlqvist, G. ā€“ Development of structural fibre properties in high intensity refining. Pulp and Paper Canada, 99 (7): 59ā€“63 (1998).

    Google ScholarĀ 

  334. Lonnberg, B. ā€“ Energy balance in low consistency (LC) refining. In: Refining and Mechanical Pulping conference. PIRA, Barcelona, 2005 Paper 7.

    Google ScholarĀ 

  335. Turt, V.; Genco, J. M. and Co A. ā€“ Effect of refining on fiber properties. In: Engineering Conference. TAPPI, San Francisco, 1994 pg. 273ā€“280.

    Google ScholarĀ 

  336. Joris, G. and Roux, J-C. ā€“ The dynamic freeness tester. In: Scientific and Technical Advances in Refining & Mechanical Pulping ā€“ Course Notes. PIRA: Stockholm, 2003 Paper 6.

    Google ScholarĀ 

  337. Wultsch, F e Flucher, W. ā€“ Small Escher-Wyss refiner as a standard testing instrument for modern stock preparation plants. Das Papier, 12 (13/14): 334ā€“342 (1958).

    Google ScholarĀ 

  338. Brecht, W. and Siewert, W. H. ā€“ Zur theoretish technischen beurteilung des mahlprozesses. Das Papier, 20 (1): S4ā€“14. (1966).

    Google ScholarĀ 

  339. Brecht, W. ā€“ A method for the comparative evaluation of bar-equipped beating devices. Tappi, 50 (8): 40ā€“44 (1967).

    Google ScholarĀ 

  340. Bian, L.; Liu, S.; Pu, Y.; Liu, C. and Yuan, L. ā€“ Appraisal of a disk refiner performance. Guowai Zaozshi, 16 (1): 28ā€“31 (1997) according to ABIPST, 68 (2): 123 reference 1409(AS).

    Google ScholarĀ 

  341. Fan, X.; Jeffrey, D. J. and Ouellet, D. ā€“ A stochastic model for the residence time of pulp in a single-disc chip refiner. Journal of Pulp and Paper Science, 20 (11): 343ā€“349 (1994).

    Google ScholarĀ 

  342. Tonoli, G. H. D.; Teixeira, E. M.; CorrĆŖa, A. C.; Marconcini, J. M.; Caixeta, L. A.; Silva, M. A. P. da e Mattoso, L. H. C. ā€“ Cellulose micro/nanofibres from eucalyptus kraft pulp: Preparation and properties. Carbohydrate Polymers, 89 (1): 80ā€“88 (2012).

    Google ScholarĀ 

  343. Eibinger, K; Eichinnger, R. and Bauer, W. ā€“ Property development of virgin and recycled fibres treated with compression refining in a PFI mill, In: International Refining Conference, PIRA, 2005 12 pgs https://www.researchgate.net/publication/267694160_Property_development_of_virgin_and_recycled_fibres_treat

  344. Khlebnikov, A. A.; Pashinnskii, V. F.; Gonharov, V. N. and Smirnova, E. A. ā€“ Analysis of the forces involved in the operation of a conical refiner. Tr. Leningr., 22: 129ā€“136 (1969) [1039, 1163].

    Google ScholarĀ 

  345. Goncharov, V. N.; Smirnova, E. A. and Shemyakin, E. V. ā€“ Method for the determination of stresses between refiner blades. Bumazh. Prom. (27): 134ā€“138 [1163]

    Google ScholarĀ 

  346. Goncharov, V. N. ā€“ Force factors in a disk refiner and their effect on the beating process. Bumazh. Prom., (5): 12ā€“14 [1163]

    Google ScholarĀ 

  347. Koskenhely K.; Nieminen, K.; Hiltunen, E. and Paulapuro, H. ā€“ Comparison of plate and conical fillings in refining of bleached softwood and hardwood pulps. Paperi ja Puu, 87 (7): 458ā€“463 (2005).

    Google ScholarĀ 

  348. Stephansen, E. ā€“ Contribution to the understanding of the mechanism of the beating process. Norsk Skogindustri, 21 (8): 266 (1967).

    Google ScholarĀ 

  349. Odabas, N.; Henniges, U.; Potthast, A. and Rosenau, T. ā€“ Cellulosic fines: properties and effects. Progress in Materials Science, 83: 574ā€“594 (2006).

    Google ScholarĀ 

  350. Koskenhely, K. ā€“ Effect of selected filling and pulp suspension variables in improving the performance of low consistency refining. Doctoral Thesis, Helsinki, Espoo, 2007 xx pgs www.core.ac.uk/download/pdf/80701885.pdf

  351. Peralta, C.; PiƧarra, E.; Santos, A.; Anjos, O. and SimƵes, R. ā€“ Effect of specific edge load on Eucalyptus globulus paper properties. In: 2Ā° International Conference on Environmentally ā€“ Compatible Forest Products. Proceedings of Ecowwod ā€“ 2006 pgs: 499ā€“505 https://www.researchgate.net/publication/259822897_Effect_of_specified_edge_load_on_Eucalyptus_globulus_paper_properties

  352. Page, D. H. ā€“ The axial compression of fibres ā€“ a newly discovered beating action. Pulp and Paper Magazine Canada, 67 (1): 2ā€“12 (1966

    Google ScholarĀ 

  353. Bhardwaj, N. K. ā€“ Refining of bamboo long fiber fraction pulp effects on wet web and dry strength properties of paper. Cellulose Chemistry and Technology, 53 (1ā€“2): 113ā€“120 (2019).

    Google ScholarĀ 

  354. Yasumura, P. K.; Dā€™Almeida, M. L. O. and Park, S. W. ā€“ Multivariate statistical evaluation of physical properties of pulps refinied in a PFI mil. O PapeL, 73 (3): 59ā€“65 (2012)

    Google ScholarĀ 

  355. Goncharov, V. N. ā€“ Stostoyanie i perspektivy sovershnstvovaniya oborudovaniya dlya razmola voloknistykh materialov. Tsellyul. Bum. Karton, 7/8: 20ā€“24 (1995) according to ABIPST, 67 (9): 1337 reference 12645(AS)

    Google ScholarĀ 

  356. Rissato, T. C. ā€“ InfluĆŖncia do refino de baixa intensidade no consumo energĆ©tico e nas propriedades do papel. Monografia Latu-sensu. Universidade Federal de ViƧosa, ViƧosa, 2010 71 pgs

    Google ScholarĀ 

  357. Levlin, J. E. ā€“ The response of different fibre raw materials to refining. In: Advances in Refining Technologies Conference. PIRA, Birmingha, 1986.

    Google ScholarĀ 

  358. Olejnik, K. ā€“ Impact of pulp consistency on refining process conducted under constant intensity determined by SEL and SEC factors. BioResources, 8(3): 3212ā€“3230 (2013).

    Google ScholarĀ 

  359. Claudio-da-Silva Jr., E. ā€“ Chemical pulp beating related to fiber structure. Doctoral Thesis, College of Environmental Science and Forestry, Syracuse, 1991 295 pgs.

    Google ScholarĀ 

  360. Kerekes, R. J. and Senger, J. J. ā€“ Characterizing refining action in low-consistency refiners by forces on fibres. Journal of Pulp and Paper Science, 32 (1): 1ā€“8 (2006).

    Google ScholarĀ 

  361. van den Akker, J. A. ā€“ Energy considerations in the beating of pulp. In: Trans. Fund. Res. Symposium. Ed. F. Bolam, BPBMA, Cambridge, 1957 pgs. 435ā€“446.

    Google ScholarĀ 

  362. Bordin, R.; Roux, J-C. and Bloch, J-F. ā€“ No-load power evolution during low-consistency pulp beating. Nordic Pulp and paper Research Journal, 23 (1): 34ā€“38 (2008).

    Google ScholarĀ 

  363. Amero, B. A. ā€“ Refining optimization single-pass refiners versus multiple-pass laboratory beaters. In: International Symposium on Fundamental Concepts of Refining. IPST, Appleton, 1980 pg. 179

    Google ScholarĀ 

  364. Liu, H.; Dong, J.; Qi, K.; Guo, X.; Yan, Y, Qiao, L.; Duan, C. and Zhao, Z. ā€“ The effect of pulp properties on the consumption in low consistency refining. Journal of Korean Wood Science and Technology, 48 (6): 869ā€“877 (2020)

    Google ScholarĀ 

  365. Kerekes, R. J. ā€“ A theoretical analysis of recirculation in pulp refiners. Tappi Journal, 13 (4):29ā€“32 (2014).

    Google ScholarĀ 

  366. Kral, P.; Klimek, P. and Mishra, P. K. ā€“ Effect of refiner plate pattern design on refined fibre size distribution ā€“ a time series study. Drvna Industrua, 66 (1): 63ā€“67 (2015).

    Google ScholarĀ 

  367. Liu, H.; Dong, J.; Guo, X.; Wang, B.; Lijie, Q.; Chuanwu Duan, C.; Kai Qi, K.; Kong, L. ā€“ No-load power of disc refiner in low consistency refining. Journal of Korea TAPPI, 52(2): 87ā€“96 (2020).

    Google ScholarĀ 

  368. Oslon, J.; Allison, B.; Friesen, A. and Petrs, C. ā€“ Fibre fractionation for high porosity sack paper. Tappi Journal, 84 (6): 1-xx (2001).

    Google ScholarĀ 

  369. Hill, H. S.; Edwards, J. and Beath, L. R. ā€“ Curlated pulp ā€“ a new approach to pulp processing. Tappi, 33 (1):36 (1950

    Google ScholarĀ 

  370. Herbert, W.; Marsh, P. G. and Harbron, D. L. ā€“ New kinks in refining with the chemifiner. Paper Trade Journal, 42 (1967)

    Google ScholarĀ 

  371. McKenzie, A. W. and Prosser, N. A. ā€“ The beating action of a PFI Mill. Appita Journal, 34 (4): 239ā€“297 (1981).

    Google ScholarĀ 

  372. Arjas, A. ā€“ Residence time distribution in conical refiners and refining systems. In: International symposium of Fundamental Concepts of Refining. Appleton, 1980 pgs. 8ā€“20.

    Google ScholarĀ 

  373. Lindstrƶm, T. ā€“ Der einfluss chemischer factoren auf faserquellung und papierfestigkeit. Das Papier, 34 (12): 561 (1980)

    Google ScholarĀ 

  374. Mohlin, U-B. ā€“ Industrial refining of unbleached kraft pulps ā€“ the effect of pH and refining intensity, In: Technology Summit Proceedings. TAPPI, 2002 https://imisrise.tappi.org/TAPPI/Products/ts/ts0226.aspx

  375. Meltzer, F. P. ā€“ Reducing specific energy in refining with a new key figure and innovative fillings materials. In: Papermakers Conference. TAPPI, Philadelphia, 1996 pgs. 187ā€“194.

    Google ScholarĀ 

  376. Harju, K. and Hietanummi, J. ā€“ Low and high consistency refining of reiforcement pulp. In: Scientific and Technical Advances in Refining & Mechanical Pulping ā€“ Course Notes. PIRA: Stockholm: 25-26/03/2003 Paper 11.

    Google ScholarĀ 

  377. Espenmiller, H. P. ā€“ The theory and practice of refining. Southern Pulp and Paper Manufacturing, 32 (4): 50ā€“57 (1969).

    Google ScholarĀ 

  378. Szwarcsztajn, E. and Przybysz, K. ā€“ External fibrilation of beaten cellulose fibres. Cellulose Chemistry and Tecnhology (6): 223ā€“238 (1972).

    Google ScholarĀ 

  379. Dietmann, P. and Roux, J-C. ā€“ A study of disc refiner running in no-load conditions. Cellulose Chemistry Technology, 39 (5ā€“6): 459ā€“471 (2005).

    Google ScholarĀ 

  380. Batchelor, W.; Krizinger, J.; Bauer, W.; Kuntzsch, T. and Meinl, G. ā€“ Improved characterization of changes in fibre coross section during sheet forming and drying using optical fibre analyzer data and a serial sectioning technique. In: COST Action E54 Fine Structure of Papermaking Fibres. Cost Action, Brussels, 2011 pgs 191ā€“196.

    Google ScholarĀ 

  381. Kerekes, R. J.; Soszynski, R. M. and Tam Doo, P. A. ā€“ The flocculation of pulp fibres. In: Papermaking Raw Materials, Transactions 8th Fundamental Research Symposium, Ed. Ponton, V., Mech. Eng. Publ. Ltd., Oxford: 1985 pgs. 265ā€“310.

    Google ScholarĀ 

  382. Rihs, J.; Albert, K. and Josephson, W. ā€“ Optimal refining of bleached tropical hardwood kraft for uncoated paper. In: 51st Annual General Conference. APPITA, Melbourne, 1997 Paper 4B21 pgs. 627ā€“634.

    Google ScholarĀ 

  383. Soini, P. and Partanen, M. ā€“ The effect of recirculation on pulp properties in refining of bleached hardwood and softwood pulps with a conical refiner. In: Preparing for the Next Millennium Conference. TAPPI, Atlanta, 1999 Volume 2 pgs. 711ā€“727.

    Google ScholarĀ 

  384. Bonfiglio, F.; Curbelo, V.; Santana, E. and DoldĆ”n, J. ā€“ Grinding of a PFI mill: a comparison between two PFI mills by evaluation of Eucalyptus pulp physical properties. In: 6th International Colloquium on Eucalyptus Pulp. Colonia del Sacramiento, 2013 10 pgs. www.researchgate.net/publication/308902583_Grinding_of_a_PFI_Mill_a_comparison_between_two_PFI_mills_by_evaluation_of_Eucalyptus_pulp_physical_properties

  385. Wang, X.; Maloney, T. and Paulapuro, H. ā€“ Fibre fibrillation and its impact on sheet properties. Paperi ja Puu ā€“ Paper and Timber, 89 (3):148ā€“151 (2007).

    Google ScholarĀ 

  386. Somboon, P. ā€“ Quality developments in pulp fibers using conventional papermaking laboratory beaters and an industrial pilot refiner. Kasetsart Journal (Natural Science), 45: 883ā€“890 (2011)

    Google ScholarĀ 

  387. Keays, J. L.; McDowell, P. F. and Hatton, J. V. ā€“ Single-point procedure for PFI-mill evaluation of softwood kraft pulps. Tappi Journal, 60 (6): 81ā€“83 (1977).

    Google ScholarĀ 

  388. Demler, C. L. Low consistency refiner mechanics & troubleshooting. In: PaperCon, 2013 Oral presentation. https://www.eucalyptus.com.br/artigos/2013Low+Consistency+Refiners_Mechanics.pdf

  389. Dƶlle, K. and Bardhyl Bajrami, B. ā€“ Beating of eucalyptus pulp fibers under neutral and alkaline conditions ā€“ A Valley beater study. Journal of Engineering Research and Reports, 20 (8): 86ā€“96 (2021).

    Google ScholarĀ 

  390. Mohlin, U-B. ā€“ Refining of unbleached kraft pulps ā€“ the effect of pH and refining intensity. In: Tappi Paper Summit. TAPPI, Atlanta, 2002

    Google ScholarĀ 

  391. Manfredi, V. ā€“ Analisando curvas de refino de polpa kraft de eucalipto: efeitos do pH e da consistĆŖncia de refino. Eucalyptus Newsletter (89): 17ā€“28 (2021) https://www.eucalyptus.com.br/news/pt_jul2021.pdf

  392. Lundberg, R. and De Ruvo, A. ā€“ The influence of defibration and beating conditions on the paper making potential of recycled paper. Svensk Papperstiding, 81 (12): 383ā€“386 (1978).

    Google ScholarĀ 

  393. Mangini, L. F. K. and Andrade, A. A. ā€“ AĆ§Ć£o de diferentes tipos de discos de refinaĆ§Ć£o sobre as caracterĆ­sticas das fibras quĆ­micas. In: 43th Congresso e ExposiĆ§Ć£o Internacional de Celulose e Papel. ABTCP, SĆ£o Paulo, 2010 11 pgs.

    Google ScholarĀ 

  394. Cai, H.; Yuan, Z.; Tong, G.; Zhang, X. and Zhang, H. ā€“ Comparison of two bar edge lengths of refining plates on the properties of American old corrugated container pulp during low consistency refining. BioResources, 15 (1):347ā€“359 (2020).

    Google ScholarĀ 

  395. Steel, C. L. ā€“ Evaluation of cell-wall modifying enzymes for improved refining of pulp from two eucalyptus species. Masterā€™s Thesis. University of the Free State, Bloemfontein, 2010 145 pgs https://scholar.ufs.ac.za/xmlui/handle/11660/5576

  396. Joy, E.; Rintamaki, J.; Weckroth, R. and Tuomelai, P. ā€“ Ultra-low intensity refining of short fibered pulps. In: African Pulp and Paper Week, 2004 7 pgs https://www.eucalyptus.com.br/artigos/2004_Ultra-low+Intensity+Refining.pdf

  397. Sanjay, C.; Akansha, S.; Rajeev, S.; Shankarshan, S. and Narendra, A. ā€“ Optimization of fibre properties using single pass refining vs recirculation ā€“ A Case Study. IPPTA, 27 (04): 58ā€“66 (2015).

    Google ScholarĀ 

  398. Crook, J. ā€“ The practical refiner. In: IV International Refining Conference. PIRA, Fiuggi, 1997 Paper 11 pgs. 185ā€“189.

    Google ScholarĀ 

  399. Metelski, L. ā€“ AnĆ”lise da aĆ§Ć£o enzimĆ”tica na produĆ§Ć£o de papel visando a economia de energia. Trabalho de conclusĆ£o de curso, Universidade TecnolĆ³gica Federal do ParanĆ”, Ponta Grossa, 2018 53 pgs. www.repositorio.utfpr.edu.br:8080/jspui/bitstream/1/16466/1/PG_COENQ_2018_2_18

  400. Elahimehr, A. ā€“ Low consistency refining of mechanical pulp: the relationship between plate pattern, operating variables and pulp properties. Doctoral Thesis, University of British Columbia, Vancouver, 2014 120 pgs. https://central.bac-lac.gc.ca/.item?id=TC-BVAU-50745&op=pdf&app=Library&oclc_number=1032967384

  401. Cisneros, H. A.; Williams, G. J. Hatton, J. V. ā€“ Fibre surface characteristics of hardwood refiner pulps. Journal of Pulp and Paper Science, 21 (5): 178ā€“184 (1995).

    Google ScholarĀ 

  402. Liu, H.; Dong, J. X.; Guo, X. Y.; Luo, C.; Tian, X. H.; Jiang, X. J.; Wang, S.; Yang, R. F.; Duan, C. W.; Wang, B.; Qi, K. ā€“ Study on fiber cutting performance of isometric straight bar plate with different bar angle. Journal of Korea TAPPI, 51 (5): 16ā€“26. (2019).

    Google ScholarĀ 

  403. Ryti, N. and Arjas, A. ā€“ Influence of residence time distribution of the flowing stock on the beating effect of a beating machine, Part II. Paperi ja Puu, 51 (1): 69ā€“84 (1969).

    Google ScholarĀ 

  404. Bedretchuk, J. P. ā€“ Estudo de caso: aplicaĆ§Ć£o de um controle de energia especĆ­fica em refinadores a disco. Monografia de EspecializaĆ§Ć£o. Universidade TecnolĆ³gica Federal do ParanĆ”, Curitiba. 2016 51 pgs http://repositorio.roca.utfpr.edu.br/jspui/bitstream/1/13164/1/CT_CEAUT_2015_16.pdf

  405. Noe, P.; Joris, G. and Roux, J. C. ā€“ Pulp refining process. Volume I. Bonpertuis [710]

    Google ScholarĀ 

  406. Marton, R.; Crosby, C.; Brown, A.; Bachorik, R. and Shook, P. ā€“ High-consistency refining. Espra Research Reports, 44 (III): 18ā€“19 (1967) according to ABIPST, 67 (5): 728 reference 6663(BS).

    Google ScholarĀ 

  407. Kerekes, C. and McDonald, J. D. ā€“ Fiber-based characterization of pulp refining. Tappi Journal, 21 (9): 497ā€“503 (2022)

    Google ScholarĀ 

  408. Zhang, Q., Xu, M., Xing, L., Dang, C., Han, X., and Pu, J. ā€“ Enzymatic assisted ultrasonic pretreatmentā€™s effect on poplar pulp properties. BioResources, 12 (3): 6832ā€“6843 (2017).

    Google ScholarĀ 

  409. Liu, H.; Dong, J.; Luo, C.; Duan, C., Guo. X.; Qi, K.; Qiao, L.; Zhao, Z. ā€“ Accuracy of the different calculation methods of specific edge load. Journal of Korea TAPPI, 52 (5): 45ā€“54 (2020) http://www.ktappi.kr/xml/26604/26604.pdf

  410. Liu, H.; Dong, J.; Jing, H.; Xiya Guo, X. and Qiao, L. ā€“ Characterization of the parameters for the refining Intensity in terms of performance. Journal of Korea TAPPI, 51 (2): 26ā€“39 (2019);

    Google ScholarĀ 

  411. Lee, J-Y.; Kim, C-H.; Park, S-H. and Sol Kwon, S. ā€“ Effects of refining intensities on physical properties of Interleaving paper for Stainless Steel. Journal of Korea TAPPI, 51 (6): 45ā€“51 (2019).

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manfredi, V. (2024). Refining Operating Variables. In: Eucalyptus Kraft Pulp Refining. Springer, Cham. https://doi.org/10.1007/978-3-031-47285-5_10

Download citation

Publish with us

Policies and ethics