Skip to main content

Shards of Knowledge – Modeling Attributions for Event-Centric Knowledge Graphs

  • Conference paper
  • First Online:
Conceptual Modeling (ER 2023)


Recently the usage of narratives as a means of fusing information from large knowledge graphs (KGs) into a coherent line of argumentation has been proposed. Narratives are especially useful in event-centric knowledge graphs in that they provide a means to categorize real-world events by well-known narrations. However, specifically for controversial events a problem in information fusion arises. Namely, the existence of multiple viewpoints regarding the validity of certain event aspects, e.g., regarding the role a participant takes in an event. Expressing those viewpoints into large KGs is challenging, because disputed information provided by different viewpoints may introduce inconsistencies. Hence, most KGs only feature a single view on the contained information, hampering the effectiveness of narrative information access. In this paper, we introduce attributions, i.e., parameterized predicates that allow for the representation of facts that are only valid in a certain viewpoint. For this, we develop a conceptual model that allows for the representation of viewpoint-dependent information and further describes how such information can be fused for querying and reasoning consistently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. 1.

  2. 2.

  3. 3.

  4. 4.

    Note, that the president of Russia is not a member of the Russian government.


  1. AlDayel, A., Magdy, W.: Stance detection on social media: state of the art and trends. J. Inf. Process. Manag. 58(4), 102597 (2021).

    Article  Google Scholar 

  2. Almeida, J.P.A., Falbo, R.A., Guizzardi, G.: Events as entities in ontology-driven conceptual modeling. In: Laender, A.H.F., Pernici, B., Lim, E.-P., de Oliveira, J.P.M. (eds.) ER 2019. LNCS, vol. 11788, pp. 469–483. Springer, Cham (2019).

    Chapter  Google Scholar 

  3. Bestvater, S., Monroe, B.: Sentiment is not stance: target-aware opinion classification for political text analysis. Polit. Anal. 31(2), 235–256 (2023).

    Article  Google Scholar 

  4. Gottschalk, S., Demidova, E.: EventKG: a multilingual event-centric temporal knowledge graph. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 272–287. Springer, Cham (2018).

    Chapter  Google Scholar 

  5. Gottschalk, S., et al.: OEKG: the open event knowledge graph. In: International Workshop on Cross-Lingual Event-centric Open Analytics Co-located with the Web Conference (CLEOPATRA@WWW). CEUR Workshop Proceedings. (2021).

  6. Guizzardi, G., Wagner, G., de Almeida Falbo, R., Guizzardi, R.S.S., Almeida, J.P.A.: Towards ontological foundations for the conceptual modeling of events. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 327–341. Springer, Heidelberg (2013).

    Chapter  Google Scholar 

  7. Gómez Álvarez, L., Rudolph, S., Strass, H.: How to agree to disagree - managing ontological perspectives using standpoint logic. In: Sattler, U., et al. (eds.) ISWC 2022. LNCS, vol. 13489, pp. 125–141. Springer, Cham (2022).

    Chapter  Google Scholar 

  8. Hada, R., et al.: Beyond digital “echo chambers”: the role of viewpoint diversity in political discussion. In: International Conference on Web Search and Data Mining (WSDM). ACM (2023).

  9. van Hage, W.R., Malaisé, V., Segers, R., Hollink, L., Schreiber, G.: Design and use of the simple event model (SEM). J. Web Semant. 9(2), 128–136 (2011).

    Article  Google Scholar 

  10. Hemam, M., Boufaïda, Z.: MVP-OWL: a multi-viewpoints ontology language for the Semantic Web. Int. J. Reason. Based Intell. Syst. (2011).

  11. Herman, D.: Narrative theory and the cognitive sciences. Narrative Inq. 11(1) (2001).

  12. Hernández, D., Hogan, A., Krötzsch, M.: Reifying RDF: what works well with Wikidata? In: International Workshop on Scalable Semantic Web Knowledge Base Systems Co-located with International Semantic Web Conference (SSWS@ISWC). (2015).

  13. Klyne, G., Carroll, J., McBride, B.: RDF 1.1 concepts and abstract syntax (2014).

  14. Kotonya, G., Sommerville, I.: Requirements engineering with viewpoints. Softw. Eng. J. 11(1), 5–18 (1996).

    Article  Google Scholar 

  15. Kroll, H., Nagel, D., Balke, W.-T.: Modeling narrative structures in logical overlays on top of knowledge repositories. In: Dobbie, G., Frank, U., Kappel, G., Liddle, S.W., Mayr, H.C. (eds.) ER 2020. LNCS, vol. 12400, pp. 250–260. Springer, Cham (2020).

    Chapter  Google Scholar 

  16. Kublauch, H., Kontokostas, D.: Shapes constraint language (SHACL) (2017).

  17. László, J.: The Science of Stories: An Introduction to Narrative Psychology. Routledge, Oxfordshire (2008).

  18. Nguyen, V., Bodenreider, O., Sheth, A.: Don’t like RDF reification?: making statements about statements using singleton property. In: International World Wide Web Conference (WWW). ACM (2014).

  19. Osman, I., Yahia, S.B., Diallo, G.: Ontology integration: approaches and challenging issues. Inf. Fusion 71, 38–63 (2021).

    Article  Google Scholar 

  20. Plötzky, F., Balke, W.: It’s the same old story! Enriching event-centric knowledge graphs by narrative aspects. In: Web Science Conference (WebSci). ACM (2022).

  21. Porzel, R., Pomarlan, M., Spillner, L., Bateman, J., Mildner, T., Santagiustina, C.: Narrativizing knowledge graphs. In: International Workshop on AI Technology for Legal Documentations and International Workshop on Knowledge Graph Summary Co-located with the International Semantic Web Conference (AI4LEGAL/KGSum@ISWC). CEUR Workshop Proceedings, (2022).

  22. Quraishi, M., Fafalios, P., Herder, E.: Viewpoint discovery and understanding in social networks. In: Web Science Conference (WebSci). ACM, Amsterdam (2018).

  23. Rospocher, M., et al.: Building event-centric knowledge graphs from news. J. Web Semant. (2016).

    Article  Google Scholar 

  24. Rudnik, C., Ehrhart, T., Ferret, O., Teyssou, D., Troncy, R., Tannier, X.: Searching news articles using an event knowledge graph leveraged by Wikidata. In: Companion of World Wide Web Conference (WWW). ACM (2019).

  25. Scherp, A., Franz, T., Saathoff, C., Staab, S.: F - a model of events based on the foundational ontology DOLCE+DnS ultralite. In: International Conference on Knowledge Capture (K-CAP). ACM (2009).

  26. Schreiber, G., Raimond, Y.: RDF 1.1 Primer (2014).

  27. Sommerville, I., Sawyer, P., Viller, S.: Managing process inconsistency using viewpoints. IEEE Trans. Softw. Eng. 25(6), 784–799 (1999).

    Article  Google Scholar 

  28. Stuckenschmidt, H.: Toward multi-viewpoint reasoning with OWL ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 259–272. Springer, Heidelberg (2006).

    Chapter  Google Scholar 

  29. Sultan, M., Miranskyy, A.: Ordering stakeholder viewpoint concerns for holistic enterprise architecture: the W6H framework. In: Proceedings of the 33rd Annual ACM Symposium on Applied Computing, (SAC), pp. 78–85. ACM (2018).

  30. Thonet, T., Cabanac, G., Boughanem, M., Pinel-Sauvagnat, K.: Users are known by the company they keep: topic models for viewpoint discovery in social networks. In: Conference on Information and Knowledge Management (CIKM) (2017).

  31. Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014).

    Article  Google Scholar 

Download references


Supported by the Leibniz-ScienceCampus Postdigital Participation funded by the Leibniz Association (Leibniz-Gemeinschaft).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Florian Plötzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Plötzky, F., Britz, K., Balke, WT. (2023). Shards of Knowledge – Modeling Attributions for Event-Centric Knowledge Graphs. In: Almeida, J.P.A., Borbinha, J., Guizzardi, G., Link, S., Zdravkovic, J. (eds) Conceptual Modeling. ER 2023. Lecture Notes in Computer Science, vol 14320. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47261-9

  • Online ISBN: 978-3-031-47262-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics