Skip to main content

Current Advances and Potentials of Nanotechnology for Biofuel Production

  • Chapter
  • First Online:
Sustainable Engineering

Abstract

Biofuels have been identified as a potential substitute for fossil fuels as the latter are depleting rapidly. Fossil fuels not only pose a serious threat to human health and the ecosystem due to the emission of greenhouse gases during combustion but also are limited in supply. However, the commercial synthesis of biofuels is time-consuming and expensive due to technological limitations. To address this issue, nanoparticles (NPs) offer a promising solution to enhance feedstock utilization in terms of energy efficiency, specificity, and time management at a lower cost. Several of these techniques have been recently applied, and numerous NPs, including metal, magnetic, and metal oxide particles, are currently being employed to enhance biofuel synthesis. NPs are functional additives for biofuels because of their exceptional characteristics including structure, stability, a larger surface area relative to volume, catalytic activity, and reusability. Nanomaterials have emerged as affordable and stable catalysts for immobilizing enzymes that improve biofuel synthesis. This chapter provides a summary of the application of emerging nanomaterials in biofuel synthesis, the contribution of nanotechnology to achieving the Sustainable Development Goals (SDGs), and the challenges and prospects of nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • ADENIYI, O. M., AZIMOV, U. & BURLUKA, A. 2018. Algae biofuel: current status and future applications. Renewable and sustainable energy reviews, 90, 316–335.

    Article  Google Scholar 

  • AHIAHONU, E. K., ANKU, W. W., ROOPNARAIN, A., GREEN, E., GOVENDER, P. P. & SEREPA-DLAMINI, M. H. 2021. Bioprospecting wild South African microalgae as a potential third-generation biofuel feedstock, biological carbon-capture agent and for nutraceutical applications. Biomass Conversion and Biorefinery, 1–16.

    Google Scholar 

  • AKIA, M., YAZDANI, F., MOTAEE, E., HAN, D. & ARANDIYAN, H. 2014. A review on conversion of biomass to biofuel by nanocatalysts. Biofuel Research Journal, 1, 16–25.

    Article  Google Scholar 

  • ANEKWE, I. M. S., ARMAH, E. K. & TETTEH, E. K. 2022. Bioenergy Production. Biomass. IntechOpen.

    Google Scholar 

  • ANEKWE, I. M. S., KHOTSENG, L. & ISA, Y. M. 2021. The Place of Biofuel in Sustainable Living; Prospects and Challenges. Reference Module in Earth Systems and Environmental Sciences. Elsevier.

    Google Scholar 

  • ARMAH, E. K., CHETTY, M., RATHILAL, S., ASANTE-SACKEY, D. & TETTEH, E. K. 2022. Chapter 11 - Lignin: value addition is key to profitable biomass biorefinery. In: SAHAY, S. (ed.) Handbook of Biofuels. Academic Press.

    Google Scholar 

  • ARYA, I., POONA, A., DIKSHIT, P. K., PANDIT, S., KUMAR, J., SINGH, H. N., JHA, N. K., RUDAYNI, H. A., CHAUDHARY, A. A. & KUMAR, S. 2021. Current trends and future prospects of nanotechnology in biofuel production. Catalysts, 11, 1308.

    Google Scholar 

  • AZADBAKHT, M., ARDEBILI, S. M. S. & RAHMANI, M. 2021. Potential for the production of biofuels from agricultural waste, livestock, and slaughterhouse waste in Golestan province, Iran. Biomass Conversion and Biorefinery, 1–11.

    Google Scholar 

  • BOSHAGH, F., ROSTAMI, K. & MOAZAMI, N. 2019. Biohydrogen production by immobilised Enterobacter aerogenes on functionalised multi-walled carbon nanotube. International Journal of Hydrogen Energy, 44, 14395–14405.

    Article  Google Scholar 

  • CAO, X., LI, L., SHITAO, Y., LIU, S., HAILONG, Y., QIONG, W. & RAGAUSKAS, A. J. 2019. Catalytic conversion of waste cooking oils for the production of liquid hydrocarbon biofuels using in-situ coating metal oxide on SBA-15 as heterogeneous catalyst. Journal of Analytical and Applied Pyrolysis, 138, 137–144.

    Google Scholar 

  • CHUNG, K.-H., LAM, S. S., PARK, Y.-K., KIM, S.-J. & JUNG, S.-C. 2022. Application of liquid-phase plasma for the production of hydrogen and carbon from the plasma-induced cracking of liquid hydrocarbons. Fuel, 328, 125297.

    Article  Google Scholar 

  • DE OLIVEIRA, C. Y. B., DA SILVA ALMEIDA, A. J. G., DE VIVEIROS, M., DE LIMA SANTOS, I. & DE MACEDO DANTAS, D. M. 2018. Prospecting the first culture collection of algae of the pernambuco semiarid, Brazil. Revista Brasileira de Engenharia de Pesca, 11, 27–34.

    Google Scholar 

  • DRESSELHAUS, M. S., DRESSELHAUS, G., EKLUND, P. & RAO, A. 2000. Carbon nanotubes. The physics of fullerene-based and fullerene-related materials. Springer.

    Google Scholar 

  • DURAIARASAN, S., RAZACK, S. A., MANICKAM, A., MUNUSAMY, A., SYED, M. B., ALI, M. Y., AHMED, G. M. & MOHIUDDIN, M. S. 2016. Direct conversion of lipids from marine microalga C. salina to biodiesel with immobilised enzymes using magnetic nanoparticle. Journal of environmental chemical engineering, 4, 1393–1398.

    Google Scholar 

  • EL GHANDOOR, H., ZIDAN, H., KHALIL, M. M. & ISMAIL, M. 2012. Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int. J. Electrochem. Sci, 7, 5734–5745.

    Article  Google Scholar 

  • FERREIRA, R. S. B., DOS PASSOS, R. M., SAMPAIO, K. A. & BATISTA, E. 2019. Heterogeneous catalysts for biodiesel production: a review. Food Public Health, 9, 125–137.

    Google Scholar 

  • FESTEL, G. W. 2008. Biofuels–economic aspects. Chemical Engineering & Technology: Industrial Chemistry-Plant Equipment-Process Engineering-Biotechnology, 31, 715–720.

    Article  Google Scholar 

  • GALANAKIS, C. 2019. Proteins: Sustainable source, processing and applications, Academic Press.

    Google Scholar 

  • GIANNAKOPOULOU, A., GKANTZOU, E., POLYDERA, A. & STAMATIS, H. 2020. Multienzymatic nanoassemblies: recent progress and applications. Trends in biotechnology, 38, 202–216.

    Article  Google Scholar 

  • GUIN, M., KUNDU, T. & SINGH, R. 2022. Applications of Nanotechnology in Biofuel Production. Bio-Clean Energy Technologies Volume 2. Springer.

    Google Scholar 

  • HASHMI, S., GOHAR, S., MAHMOOD, T., NAWAZ, U. & FAROOQI, H. 2016. Biodiesel production by using CaO-Al2O3 Nano catalyst. International Journal of Engineering Research & Science, 2, 43–49.

    Google Scholar 

  • HE, Q., YANG, H. & HU, C. 2018. Effects of temperature and its combination with high light intensity on lipid production of Monoraphidium dybowskii Y2 from semi-arid desert areas. Bioresource technology, 265, 407–414.

    Article  Google Scholar 

  • HEIKAL, G., Shakroum, M., Vranayova, Z. & Abdo, A. 2022. Impact of Nanoparticles on Biogas Production from Anaerobic Digestion of Sewage Sludge. Journal of Ecological Engineering, 23, 222–240.

    Article  Google Scholar 

  • IBRAHIM, A., LIN, A., ZHANG, F., ABOUZEID, K. & EL-SHALL, M. 2016. Palladium nanoparticles supported on hybrid MOF-PRGO for catalytic hydrodeoxygenation of vanillin as a model for biofuel upgrade reactions. ChemCatChem, 9, 469–480.

    Article  Google Scholar 

  • INSTITUTE, W. 2012. Biofuels for transport: global potential and implications for sustainable energy and agriculture, Earthscan.

    Book  Google Scholar 

  • JACOB, A., ASHOK, B., ALAGUMALAI, A., CHYUAN, O. H. & LE, P. T. K. 2021. Critical review on third generation micro algae biodiesel production and its feasibility as future bioenergy for IC engine applications. Energy Conversion and Management, 228, 113655.

    Article  Google Scholar 

  • JUNG, S., SHETTI, N. P., REDDY, K. R., NADAGOUDA, M. N., PARK, Y.-K., AMINABHAVI, T. M. & KWON, E. E. 2021. Synthesis of different biofuels from livestock waste materials and their potential as sustainable feedstocks–A review. Energy Conversion and Management, 236, 114038.

    Google Scholar 

  • KHAN, S. Z., ZAIDI, A. A., NASEER, M. N. & ALMOHAMADI, H. 2022. Nanomaterials for biogas augmentation towards renewable and sustainable energy production: A critical review. Frontiers in Bioengineering and Biotechnology, 1470.

    Google Scholar 

  • KUMAR, Y., YOGESHWAR, P., BAJPAI, S., JAISWAL, P., YADAV, S., PATHAK, D. P., SONKER, M. & TIWARY, S. K. 2021. Nanomaterials: stimulants for biofuels and renewables, yield and energy optimisation. Materials Advances, 2, 5318–5343.

    Google Scholar 

  • KURNIADI, A. P., AIMON, H. & AMAR, S. 2021. Determinants of Biofuels Production and Consumption, Green Economic Growth and Environmental Degradation in 6 Asia Pacific Countries: A Simultaneous Panel Model Approach. International Journal of Energy Economics and Policy, 11, 460–471.

    Article  Google Scholar 

  • KWON, C. H., KO, Y., SHIN, D., KWON, M., PARK, J., BAE, W. K., LEE, S. W. & CHO, J. 2018. High-power hybrid biofuel cells using layer-by-layer assembled glucose oxidase-coated metallic cotton fibers. Nature communications, 9, 1–11.

    Google Scholar 

  • LAMICHHANE, N., SHARIFABAD, M. E., HODGSON, B., MERCER, T. & SEN, T. 2022. Superparamagnetic iron oxide nanoparticles (SPIONs) as therapeutic and diagnostic agents. Nanoparticle Therapeutics. Elsevier.

    Google Scholar 

  • LIU, L., WANG, J., WANG, F. & YANG, X. 2021a. The impact of the planting of forest biomass energy plants under the embedded Internet of Things technology on the biodiversity of the local environmental ecology. Environmental Technology & Innovation, 24, 101894.

    Article  Google Scholar 

  • LIU, Y., LIU, J., HE, H., YANG, S., WANG, Y., HU, J., JIN, H., CUI, T., YANG, G. & SUN, Y. 2021b. A review of enhancement of biohydrogen productions by chemical addition using a supervised machine learning method. Energies, 14, 5916.

    Google Scholar 

  • LIU, Z., LV, F., ZHENG, H., ZHANG, C., WEI, F. & XING, X.-H. 2012. Enhanced hydrogen production in a UASB reactor by retaining microbial consortium onto carbon nanotubes (CNTs). international journal of hydrogen energy, 37, 10619–10626.

    Article  Google Scholar 

  • LU, A. H., SALABAS, E. E. L. & SCHÜTH, F. 2007. Magnetic nanoparticles: synthesis, protection, functionalisation, and application. Angewandte Chemie International Edition, 46, 1222–1244.

    Article  Google Scholar 

  • MANIKANDAN, S., SUBBAIYA, R., BIRUNTHA, M., KRISHNAN, R. Y., MUTHUSAMY, G. & KARMEGAM, N. 2022. Recent development patterns, utilisation and prospective of biofuel production: Emerging nanotechnological intervention for environmental sustainability–A review. Fuel, 314, 122757.

    Article  Google Scholar 

  • MOLLA, A., KIM, A. Y., WOO, J. C., CHO, H. S. & YOUK, J. H. 2022. Study on Preparation Methodology of Zero-Valent Iron Decorated on Graphene Oxide for Highly Efficient Sonocatalytic Dye Degradation. Journal of Environmental Chemical Engineering, 107214.

    Google Scholar 

  • NAKHLBAND, A., KHOLAFAZAD-KORDASHT, H., RAHIMI, M., MOKHTARZADEH, A. & SOLEYMANI, J. 2022. Applications of magnetic materials in the fabrication of microfluidic-based sensing systems: Recent advances. Microchemical Journal, 173, 107042.

    Article  Google Scholar 

  • Neto, S. A., Almeida, T., Palma, L., MINTEER, S. & DE ANDRADE, A. 2014. Hybrid nanocatalysts containing enzymes and metallic nanoparticles for ethanol/O2 biofuel cell. Journal of Power Sources, 259, 25–32.

    Article  Google Scholar 

  • NIVEN, R. K. 2005. Ethanol in gasoline: environmental impacts and sustainability review article. Renewable and sustainable energy reviews, 9, 535–555.

    Article  Google Scholar 

  • OGBUAGU, J. & AKUBUE, P. 2015. ACHIEVING SUSTAINABLE DEVELOPMENT GOALS THROUGH NANOTECHNOLOGY IN POLYMER AND TEXTILE. European Journal of Engineering and Technology Vol, 3.

    Google Scholar 

  • OLIVEIRA, C. Y. B., D'ALESSANDRO, E. B., ANTONIOSI FILHO, N. R., LOPES, R. G. & DERNER, R. B. 2021. Synergistic effect of growth conditions and organic carbon sources for improving biomass production and biodiesel quality by the microalga Choricystis minor var. minor. Science of the Total Environment, 759, 143476.

    Article  Google Scholar 

  • PALANIAPPAN, K. 2017. An overview of applications of nanotechnology in biofuel production. World Appl Sci J, 35, 1305–1311.

    Google Scholar 

  • POKRAJAC, L., ABBAS, A., CHRZANOWSKI, W., DIAS, G. M., EGGLETON, B. J., MAGUIRE, S., MAINE, E., MALLOY, T., NATHWANI, J., NAZAR, L., SIPS, A., SONE, J. I., VAN DEN BERG, A., WEISS, P. S. & MITRA, S. 2021. Nanotechnology for a Sustainable Future: Addressing Global Challenges with the International Network4Sustainable Nanotechnology. ACS Nano, 15, 18608–18623.

    Google Scholar 

  • POPP, J., LAKNER, Z., HARANGI-RÁKOS, M. & FÁRI, M. 2014. The effect of bioenergy expansion: Food, energy, and environment. Renewable and Sustainable Energy Reviews, 32, 559–578.

    Article  Google Scholar 

  • PURI, M., BARROW, C. J. & VERMA, M. L. 2013. Enzyme immobilisation on nanomaterials for biofuel production. Trends Biotechnol, 31, 215–216.

    Article  Google Scholar 

  • RAI, M. & DA SILVA, S. S. 2017. Nanotechnology for bioenergy and biofuel production, Springer.

    Book  Google Scholar 

  • SARAVANAN, A. P., MATHIMANI, T., DEVIRAM, G., RAJENDRAN, K. & PUGAZHENDHI, A. 2018. Biofuel policy in India: a review of policy barriers in sustainable marketing of biofuel. Journal of cleaner production, 193, 734–747.

    Article  Google Scholar 

  • SHARMA, M. & KUMAR, A. 2018. Promising biomass materials for biofuels in India’s context. Materials Letters, 220, 175–177.

    Article  Google Scholar 

  • SHARMA, P., BANO, A., SINGH, S. P., ATKINSON, J. D., LAM, S. S., IQBAL, H. M. & TONG, Y. W. 2022. Nanomaterials as highly efficient photocatalysts used for bioenergy and biohydrogen production from waste toward a sustainable environment. Fuel, 329, 125408.

    Google Scholar 

  • SINGH, O. V. & CHANDEL, A. K. 2018. Sustainable biotechnology-enzymatic resources of renewable energy, Springer.

    Book  Google Scholar 

  • TEO, S. H., ISLAM, A., CHAN, E. S., CHOONG, S. T., ALHARTHI, N. H., TAUFIQ-YAP, Y. H. & AWUAL, M. R. 2019. Efficient biodiesel production from Jatropha curcus using CaSO4/Fe2O3-SiO2 core-shell magnetic nanoparticles. Journal of cleaner production, 208, 816–826.

    Google Scholar 

  • TETTEH, E. K., AMO-DUODU, G. & RATHILAL, S. 2021. Synergistic effects of magnetic nanomaterials on post-digestate for biogas production. Molecules, 26, 6434.

    Article  Google Scholar 

  • Tetteh, E. K. & Rathilal, S. 2021. Application of biomagnetic nanoparticles for biostimulation of biogas production from wastewater treatment. Materials Today: Proceedings, 45, 5214–5220.

    Google Scholar 

  • VERMA, M. L., NAEBE, M., BARROW, C. J. & PURI, M. 2013. Enzyme immobilisation on amino-functionalised multi-walled carbon nanotubes: structural and biocatalytic characterisation. PloS one, 8, e73642.

    Article  Google Scholar 

  • VINCENT, K. A., LI, X., BLANFORD, C. F., Belsey, N. A., WEINER, J. H. & ARMSTRONG, F. A. 2007. Enzymatic catalysis on conducting graphite particles. Nature chemical biology, 3, 761–762.

    Article  Google Scholar 

  • YIGEZU, Z. D. & MUTHUKUMAR, K. 2014. Catalytic cracking of vegetable oil with metal oxides for biofuel production. Energy Conversion and Management, 84, 326–333.

    Article  Google Scholar 

Download references

Funding

This work is based on research funded partly by the National Research Foundation of South Africa (NRF) (BRIC190321424123).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anekwe, I.M.S., Tetteh, E.K., Akpasi, S.O., Isa, Y.M. (2024). Current Advances and Potentials of Nanotechnology for Biofuel Production. In: Dunmade, I.S., Daramola, M.O., Iwarere, S.A. (eds) Sustainable Engineering. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-47215-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47215-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47214-5

  • Online ISBN: 978-3-031-47215-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics