Skip to main content

Additive Manufacturing: Impact, Prospects, and Challenges in Sustainable Engineering

  • Chapter
  • First Online:
Sustainable Engineering

Part of the book series: Green Energy and Technology ((GREEN))

  • 214 Accesses

Abstract

The advent of modern manufacturing technology and the increased consumer demand for custom goods and services are causing a paradigm shift from traditional manufacturing to additive manufacturing (AM) processes. Because additive manufacturing is a relatively new technology, its consequence on sustainable engineering is still a very gray area. This chapter draws on modern-day research and data to provide insights into additive manufacturing and its role in fostering sustainable engineering. It introduces additive manufacturing, its technologies, and its respective benefits, which include the reduction in weight, material, waste, and carbon footprint, coupled with the ease of redesigning, remanufacturing, and the use of renewable and biodegradable green materials. The applications of additive manufacturing in various fields are also discussed, aiming at highlighting how the product design, systems, and operations of additive manufacturing processes promote sustainable engineering practices and impact economic, social, and environmental aspects. This chapter also gives an insight into the future prospects of additive manufacturing processes toward improving sustainable engineering. Lastly, the challenges of additive manufacturing technology toward sustainability have been enumerated with a specific recommendation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • G. Foster, “Circular economy strategies for adaptive reuse of cultural heritage buildings to reduce environmental impacts,” Resour. Conserv. Recycl., vol. 152, 2020.

    Google Scholar 

  • J. Mensah, “Sustainable development: Meaning, history, principles, pillars, and implications for human action: Literature review,” Cognet Soc. Sci., vol. 5, no. 1, pp. 1–21, 2019, doi: ensah, Cogent Social Sciences (2019), 5: 1653531. https://doi.org/10.1080/23311886.2019.1653531.

  • T. Terlouw, C. Bauer, L. Rosa, and M. Mazzotti, “Life cycle assessment of carbon removal technologies: a critical review,” Energy Environ. Sci., vol. 14, pp. 1701–1721, 2021, [Online]. Available: https://phys.org/news/2021-11-life-carbon-capture.html

  • H. Wu, H. Mehrabi, P. Karagiannidis, and N. Naveed, “Additive manufacturing of recycled plastics: Strategies towards a more sustainable future,” J. Clean. Prod., vol. 335, pp. 1–17, 2022, doi: https://doi.org/10.1016/j.jclepro.2021.130236.

    Article  Google Scholar 

  • A. Lokhande, C. Venkateswaran, M. Ramachandran, C. Vidhya, and R. Kurinjimalar, “EST Journal on Emerging trends in Modelling and Manufacturing,” EST J. Emerg. trends Model. Manuf., vol. 7, no. 2, pp. 63–69, 2021.

    Google Scholar 

  • M. Z. Hauschild, S. Kara, and I. Røpke, “CIRP Annals - Manufacturing Technology Absolute sustainability : Challenges to life cycle engineering,” CIRP Ann. - Manuf. Technol., vol. 69, pp. 533–553, 2020, doi: https://doi.org/10.1016/j.cirp.2020.05.004.

    Article  Google Scholar 

  • M. Stojčí, E. K. Zavadskas, D. Pamučar, Ž. Stevi, and A. Mardani, “Application of MCDM Methods in Sustainability Engineering : A Literature Review 2008 – 2018,” Symmetry (Basel)., vol. 11, no. 350, pp. 1–24, 2018, doi: https://doi.org/10.3390/sym11030350.

    Article  Google Scholar 

  • M. Javaid, A. Haleem, R. P. Singh, R. Suman, and S. Rab, “Role of additive manufacturing applications towards environmental sustainability,” Adv. Ind. Eng. Polym. Res., vol. 4, no. 4, pp. 312–322, 2021, doi: https://doi.org/10.1016/j.aiepr.2021.07.005.

    Article  Google Scholar 

  • N. Araujo, V. Pacheco, and L. Costa, “Smart Additive Manufacturing The Path to the Digital Value Chain,” Technologies, vol. 9, no. 88, pp. 1–13, 2021.

    Google Scholar 

  • M. H. Raza and R. Y. Zhong, “A sustainable roadmap for additive manufacturing using geopolymers in construction industry,” Resour. Conserv. Recycl., vol. 186, pp. 1–18, 2022, doi: https://doi.org/10.1016/j.resconrec.2022.106592.

    Article  Google Scholar 

  • R. Godina, I. Ribeiro, F. Matos, B. T. Ferreira, H. Carvalho, and P. Peças, “Impact assessment of additive manufacturing on sustainable business models in industry 4.0 context,” Sustainability, vol. 12, no. 17, pp. 1–21, 2020, doi: https://doi.org/10.3390/su12177066.

    Article  Google Scholar 

  • A. Z. A. Kadir, Y. Yusof, and M. S. Wahab, “Additive Manufacturing Cost estimation models-a classification review,” Int. J. Adv. Manuf. Technol., vol. 107, pp. 4033–4053, 2020, [Online]. Available: https://www.nano-di.com/blog/2019-additive-manufacturing-cost-drivers-4-key-considerations

  • J. Priyadarshini, R. Kr Singh, R. Mishra, and M. Mustafa Kamal, “Adoption of additive manufacturing for sustainable operations in the era of circular economy: Self-assessment framework with case illustration,” Comput. Ind. Eng., vol. 171, pp. 1–14, 2022, doi: https://doi.org/10.1016/j.cie.2022.108514.

    Article  Google Scholar 

  • P. C. Priaone, G. Campateli, A. R. Catalano, and F. Baffa, “AM life cycle.pdf,” CIP J. Manuf. Sci. Technol., vol. 35, pp. 943–958, 2021.

    Google Scholar 

  • M. Nirish and R. Rajendra, “Suitability of metal additive manufacturing processes for part topology optimisation – A comparative study,” Mater. Today Proc., vol. 27, pp. 1601–1607, 2020, doi: https://doi.org/10.1016/j.matpr.2020.03.275.

    Article  Google Scholar 

  • H. Attar, M. J. Bermingham, S. Ehtemam-Haghighi, A. Sehghan-manshadi, D. Kent, and M.S.Dargusch, “Evaluation of the mechanical and wear properties of titanium produced by three different additive manufacturing methods for biomedical application,” Mater. Sci. Eng. A, vol. 760, pp. 339–345, 2019.

    Article  Google Scholar 

  • M. Srivastava, S. Rathee, V. Patel, A. Kumar, Praveennath, and G. Koppa, “A review of various materials for additive manufacturing: Recent trends and processing issues,” J. Mater. Res. Technol., vol. 21, pp. 2612–2641, 2022.

    Article  Google Scholar 

  • O. A. Mohamed, S. H. Masood, and J. L. Bhowmik, “Optimisation of fused deposition modeling process parameters: a review of current research and future prospects,” Addit. Manuf., vol. 3, pp. 42–53, 2015, doi: https://doi.org/10.1007/s40436-014-0097-7.

    Article  Google Scholar 

  • N. T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, and R. Hague, “3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting,” Prog. Mater. Sci., vol. 106, pp. 1–50, 2019, doi: https://doi.org/10.1016/j.pmatsci.2019.100578.

    Article  Google Scholar 

  • Kaushik V, N. Kumar B, S. Kumar S, and V. M, “Magnesium role in additive manufacturing of biomedical implants – Challenges and opportunities,” Addit. Manuf., vol. 55, no. November 2021, p. 102802, 2022, doi: 10.1016/j.addma.2022.102802.

    Google Scholar 

  • R. Singh, K. K. Saxena, and P. Singhal, “Role of additive manufacturing in dental applications using ceramics: A review,” Mater. Today Proc., vol. 56, pp. 2359–2364, 2022, doi: https://doi.org/10.1016/j.matpr.2021.12.157.

    Article  Google Scholar 

  • M. Pagac et al., “A review of vat photopolymerisation technology: Materials, applications, challenges, and future trends of 3d printing,” Polymers (Basel)., vol. 13, pp. 1–20, 2021, doi: https://doi.org/10.3390/polym13040598.

    Article  Google Scholar 

  • U. Shaukat, E. Rossegger, and S. Schlögl, “A Review of Multi-Material 3D Printing of Functional Materials via Vat Photopolymerization,” Polymers (Basel)., vol. 14, no. 12, 2022, doi: https://doi.org/10.3390/polym14122449.

  • O. Gülcan, K. Günaydın, and A. Tamer, “The state of the art of material jetting—a critical review,” Polymers (Basel)., vol. 13, pp. 1–19, 2021, doi: https://doi.org/10.3390/polym13162829.

    Article  Google Scholar 

  • F. J. Al-Gawhari and A. A. Mohammed Ali, “Types of 3D Printers Applied in Industrial Pharmacy and Drug Delivery,” Tech. Biochem., vol. 3, no. 2, pp. 1–14, 2022, doi: https://doi.org/10.47577/biochemmed.v3i2.6064.

    Article  Google Scholar 

  • A. Mostafaei et al., “Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges,” Prog. Mater. Sci., vol. 119, pp. 1–138, 2021, doi: https://doi.org/10.1016/j.pmatsci.2020.100707.

    Article  Google Scholar 

  • W. S. W. Harun et al., “A review of powdered additive manufacturing techniques for Ti-6al-4v biomedical applications,” Powder Technol. 331, vol. 331, pp. 74–97, 2018.

    Google Scholar 

  • M. Gebler, A. J. M. Schoot Uiterkamp, and C. Visser, “A global sustainability perspective on 3D printing technologies,” Energy Policy, vol. 74, pp. 158–167, 2014, doi: https://doi.org/10.1016/j.enpol.2014.08.033.

    Article  Google Scholar 

  • F. Buonamici et al., “A practical methodology for computer-aided design of custom 3D printable casts for wrist fractures,” Vis. Comput., vol. 36, no. 2, pp. 375–390, 2020, doi: https://doi.org/10.1007/s00371-018-01624-z.

    Article  Google Scholar 

  • M. Dircksen and C. Feldmann, “Holistic evaluation of the impacts of additive manufacturing on sustainability, distribution costs, and time in global supply chains,” Transp. Res. Procedia, vol. 48, no. 2019, pp. 2140–2165, 2020, doi: https://doi.org/10.1016/j.trpro.2020.08.272.

    Article  Google Scholar 

  • M. Khorasani, A. H. Ghasemi, B. Rolfe, and I. Gibson, “Additive manufacturing a powerful tool for the aerospace industry,” Rapid Prototyp. J., vol. 28, no. 1, pp. 87–100, 2022, doi: https://doi.org/10.1108/RPJ-01-2021-0009.

    Article  Google Scholar 

  • J. K. Watson and K. M. B. Taminger, “A decision-support model for selecting additive manufacturing versus subtractive manufacturing based on energy consumption,” J. Clean. Prod., vol. 176, pp. 1316–1322, 2018, doi: https://doi.org/10.1016/j.jclepro.2015.12.009.

    Article  Google Scholar 

  • T. Peng, K. Kellens, R. Tang, C. Chen, and G. Chen, “Sustainability of additive manufacturing: An overview on its energy demand and environmental impact,” Addit. Manuf., vol. 21, pp. 694–704, 2018, doi: https://doi.org/10.1016/j.addma.2018.04.022.

    Article  Google Scholar 

  • A. Omairi and Z. H. Ismail, “Towards Machine Learning for Error Compensation in Additive Manufacturing,” Appl. Sci., vol. 11, pp. 1–27, 2021.

    Article  Google Scholar 

  • H. A. Colorado, G. E. I. Velasquez, and S. N. Monteiro, “Sustainability of additive manufacturing: the circular economy of materials and environmental perspectives,” J. Mater. Res. Technol., vol. 9, no. 4, pp. 8221–8234, 2020.

    Article  Google Scholar 

  • S. A. Rasaki, C. Liu, C. Lao, H. Zhang, and Z. Chen, “The innovative contribution of additive manufacturing towards revolutionising fuel cell fabrication for clean energy generation: A comprehensive review,” Renew. Sustain. Energy Rev., vol. 148, pp. 1–25, 2021, doi: https://doi.org/10.1016/j.rser.2021.111369.

    Article  Google Scholar 

  • S. Ford and M. Despeisse, “Additive manufacturing and sustainability: an exploratory study of the advantages and challenges,” J. Clean. Prod., vol. 137, pp. 1573–1587, 2016, doi: https://doi.org/10.1016/j.jclepro.2016.04.150.

    Article  Google Scholar 

  • M. Afshar, A. P. Anaraki, H. Montazerian, and J. Kadkhodapour, “Additive manufacturing and mechanical characterisation of graded porosity scaffolds designed based on triply periodic minimal surface architectures,” J. Mech. Behav. Biomed. Mater., vol. 62, pp. 481–494, 2016, doi: https://doi.org/10.1016/j.jmbbm.2016.05.027.

    Article  Google Scholar 

  • K. Chua, I. Khan, R. Malhotra, and D. Zhu, “Additive manufacturing and 3D printing of metallic biomaterials,” Eng. Regen., vol. 2, no. November 2021, pp. 288–299, 2021, doi: 10.1016/j.engreg.2021.11.002.

    Google Scholar 

  • M. K. Jha, S. Gupta, V. Chaudhary, and P. Gupta, “Material selection for biomedical application in additive manufacturing using TOPSIS approach,” Mater. Today Proc., vol. 62, pp. 1452–1457, 2022, doi: https://doi.org/10.1016/j.matpr.2022.01.423.

    Article  Google Scholar 

  • C. Li, D. Pisignano, Y. Zhao, and J. Xue, “Advances in Medical Applications of Additive Manufacturing,” Engineering, vol. 6, no. 11, pp. 1222–1231, 2020, doi: https://doi.org/10.1016/j.eng.2020.02.018.

    Article  Google Scholar 

  • M. S. Alqahtani, A. Al-Tamimi, H. Almeida, G. Cooper, and P. Bartolo, “A review on the use of additive manufacturing to produce lower limb orthoses,” Prog. Addit. Manuf., vol. 5, pp. 85–94, 2020, doi: https://doi.org/10.1007/s40964-019-00104-7.

    Article  Google Scholar 

  • C. Jiao et al., “Additive manufacturing of Bio-inspired ceramic bone Scaffolds: Structural Design, mechanical properties and biocompatibility,” Mater. Des., vol. 217, p. 110610, 2022, doi: https://doi.org/10.1016/j.matdes.2022.110610.

  • I. Gibson, D. Rosen, B. Stucker, and M. Khorasani, Additive Manufacturing Technologies, Third. Springer, 2021.

    Google Scholar 

  • Y. Lakhdar, C. Tuck, J. Binner, A. Terry, and R. Goodridge, “Additive manufacturing of advanced ceramic materials,” Prog. Mater. Sci., vol. 116, pp. 1–50, 2021, doi: https://doi.org/10.1016/j.pmatsci.2020.100736.

    Article  Google Scholar 

  • B. Blakey-milner et al., “Metal additive manufacturing in aerospace : A review,” Mater. Des., vol. 209, pp. 1–33, 2021, doi: https://doi.org/10.1016/j.matdes.2021.110008.

    Article  Google Scholar 

  • M. Jiménez, L. Romero, I. A. Dom, and M. Dom, “Additive Manufacturing Technologies : An Overview about 3D Printing Methods and Future Prospects,” Complexity, vol. 2019, pp. 1–30, 2019.

    Article  Google Scholar 

  • A. Belhadi, S. S. Kamble, M. Venkatesh, C. J. Chiappetta Jabbour, and I. Benkhati, “Building supply chain resilience and efficiency through additive manufacturing: An ambidextrous perspective on the dynamic capability view,” Int. J. Prod. Econ., vol. 249, pp. 1–20, 2022, doi: https://doi.org/10.1016/j.ijpe.2022.108516.

    Article  Google Scholar 

  • B. D. Hettiarachchi, M. Brandenburg, and S. Seuring, “Connecting additive manufacturing to circular economy implementation strategies: Links, contingencies and causal loops,” Int. J. Prod. Econ., vol. 246, p. 108414, 2022, doi: https://doi.org/10.1016/j.ijpe.2022.108414.

  • M. Sauerwein, E. Doubrovski, R. Balkenende, and C. Bakker, “Exploring the potential of additive manufacturing for product design in a circular economy,” J. Clean. Prod., vol. 226, pp. 1138–1149, 2019, doi: https://doi.org/10.1016/j.jclepro.2019.04.108.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia Samuel Abima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abima, C.S., Madushele, N. (2024). Additive Manufacturing: Impact, Prospects, and Challenges in Sustainable Engineering. In: Dunmade, I.S., Daramola, M.O., Iwarere, S.A. (eds) Sustainable Engineering. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-47215-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47215-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47214-5

  • Online ISBN: 978-3-031-47215-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics