Abstract
The future of biogeochemistry and its relationship with environmental change is largely based on how the discipline and associated sciences react to global events and the disciplinary and methodological developments that occur as a result. It may be hypothesized that future developments in such studies will be dominated by models, some analytical, others predictive and retrospective, considering the increasingly integrated nature of the relevant topics of biogeochemical analyses, technological developments, and the increasingly complex and trending nature of environmental change. Current evidence indicates that biogeochemistry has a key, even indispensable, role in the future of the environmental sciences, including biogeography, oceanography, Earth Systems Science, and even geomatics-based applications, but the strength of the role will depend on the structural organization of the discipline, in terms of its links with other related disciplines, its flexibility in reaction to academic, research, and human–environmental changes, and the deeper understanding of the factors (natural and socioeconomic) that contribute to environmental change. Research methodologies are advancing with technology, especially computer-generated developments such as geomatics, and the understanding of such applications may dominate the future as high-tech methods overtaking the older, less sophisticated research methods of the late twentieth century. This assessment contributes to a critical look at the future of biogeochemical applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Change history
28 February 2024
A correction has been published.
References
Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660–684. https://doi.org/10.1016/j.foreco.2009.09.001
Arndt, N. T., Fontboté, L., Hedenquist, J. W., Kesler, S. E., Thompson, J. F. H., & Wood, D. G. (2017). Future global mineral resources. Geochemical Perspectives, 6(1), 1–171. https://doi.org/10.7185/geochempersp.6.1
Arnillas, C., Smith, S., Ni, F., & Martin, A. (2019). Biogeography in conservation: Tools to explore the past and future of species in a changing world. Lessons in Conservation, 9, 55–94.
Baron, J. S. (2006). Hindcasting nitrogen deposition to determine an ecological critical load. Ecological Applications, 16, 433–439. https://doi.org/10.1890/1051-0761(2006)016[0433:HNDTDA]2.0.CO;2
Becker, E. A., Forney, K. A., Redfern, J. V., Barlow, J., Jacox, M. G., Roberts, J. J., & Palacios, D. M. (2019). Predicting cetacean abundance and distribution in a changing climate. Diversity and Distributions, 25(4), 626–643. https://doi.org/10.1111/ddi.12867
Benedetti, F., Ayata, S.-D., Irisson, J.-O., Adloff, F., & Guilhaumon, F. (2019). Climate change may have minor impact on zooplankton functional diversity in the Mediterranean Sea. Diversity and Distributions, 25(4), 568–581. https://doi.org/10.1111/ddi.12857
Bianchi, T. S. (2020). The evolution of biogeochemistry, revisited. Biogeochemistry, 13, 199–239. https://doi.org/10.1007/s10533-020-00708-0
Bianchi, T. S., Anand, M., Bauch, C. T., Canfield, D. E., De Meester, L., Fennel, K., Groffman, P. M., Pace, M. L., Saito, M., & Simpson, M. J. (2021). Ideas and perspectives: Biogeochemistry – Some key foci for the future. Biogeosciences, 18, 3005–3013. https://doi.org/10.5194/bg-18-3005-2021
Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., Bustamante, M., Cinderby, S., Davidson, E., Dentener, F., Emmett, B., Erisman, J. W., Fenn, M., Gilliam, F., Nordin, A., Pardo, L., & De Vries, W. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecological Applications, 20(1), 30–59. https://doi.org/10.1890/08-1140.1
Braz, A. G., Lorini, M. L., & Vale, M. M. (2019). Climate change is likely to affect the distribution but not parapatry of the Brazilian marmoset monkeys (Callithrix spp.). Diversity and Distributions, 25(4), 536–550. https://doi.org/10.1111/ddi.12872
Brown, G. E., Jr., & Calas, G. (2012). Mineral-aqueous solution interfaces and their impact on the environment. Geochemical Perspectives, 1(4–5), 483–484. https://doi.org/10.7185/geochempersp.1.4
Caddy-Retalic, S., Hoffmann, B. D., Guerin, G. R., Andersen, A. N., Wardle, G. M., McInerney, F. A., & Lowe, A. J. (2019). Plant and ant assemblages predicted to decouple under climate change. Diversity and Distributions, 25(4), 551–567. https://doi.org/10.1111/ddi.12858
Campbell, M. (2017). Biological conservation in the 20th century: A conservation biology of large wildlife. Nova Science Publishers.
Campbell, M. (2018). Geomatics and conservation biology. Nova Science Publishers.
Campbell, M. (2022). The great eagles their evolution, ecology and conservation. Taylor and Francis (CRC Press).
Carpenter, S. R. (2008). Phosphorus control is critical to mitigating eutrophication. Proceedings of the National Academy of Sciences of the United States of America, 105(32), 11039–11040. https://doi.org/10.1073/pnas.0806112105
Casties, I., Clemmesen, C., & Briski, E. (2019). Environmental tolerance of three gammarid species with and without invasion record under current and future global warming scenarios. Diversity and Distributions, 25(4), 603–612. https://doi.org/10.1111/ddi.12856
Chameides, W.L., Kasibhatla, P.S., Yienger, J. & Levy, H. 1994. Growth of continental-scale metro-agro-plexes, regional ozone pollution, and world food production. Science (.) 264(5155): 74–77. Doi:https://doi.org/10.1126/science.264.5155.74.
Chu, X., & Yu, Z. (2017). Formation mechanisms of neutral Fe layers in the thermosphere at Antarctica studied with a thermosphere-ionosphere Fe/Fe+ (TIFe) model. Journal of Geophysical Research: Space Physics, 122(6), 6812–6848. https://doi.org/10.1002/2016JA023773
De Mazière, M., Thompson, A. M., Kurylo, M. J., Wild, J. D., Bernhard, G., Blumenstock, T., Braathen, G. O., Hannigan, J. W., Lambert, J.-C., Leblanc, T., McGee, T. J., Nedoluha, G., Petropavlovskikh, I., Seckmeyer, G., Simon, P. C., Steinbrecht, W., & Strahan, S. E. (2018). The network for the detection of atmospheric composition change (NDACC): History, status, and perspectives. Atmospheric Chemistry and Physics, 18(7), 4935–4964. https://doi.org/10.5194/acp-18-4935-2018
Di Febbraro, M., Menchetti, M., Russo, D., Ancillotto, L., Aloise, G., Roscioni, F., et al. (2019). Integrating climate and land-use change scenarios in modelling the future spread of invasive squirrels in Italy. Diversity and Distributions, 25(4), 644–659. https://doi.org/10.1111/ddi.12890
Doney, S. C., Ruckelshaus, M., Emmett Duffy, J., Barry, J. P., Chan, F., English, C. A., et al. (2012). Climate change impacts on marine ecosystems. Annual Review of Marine Science, 4(1), 11–37. https://doi.org/10.1146/annurev-marine-041911-111611
Doney, S. C., Bopp, L., & Long, M. C. (2014). Historical and future trends in ocean climate and biogeochemistry. Oceanography, 27(1), 108–119. http://www.jstor.org/stable/24862126. https://doi.org/10.5670/oceanog.2014.14
Farley, S., Dawson, A., Goring, S. J., & Williams, J. W. (2018). Situating ecology as a big-data science: Current advances, challenges, and solutions. BioScience, 68(8), 563–576. https://doi.org/10.1093/biosci/biy068
Fay, A. R., Lovenduski, N. S., McKinley, G. A., Munro, D. R., Sweeney, C., Gray, A. R., Landschützer, P., Stephens, B. B., Takahashi, T., & Williams, N. (2018). Utilizing the Drake Passage time-series to understand variability and change in subpolar Southern Ocean pCO2. Biogeosciences, 15, 3841–3855. https://doi.org/10.5194/bg-15-3841-2018
Franklin, J. (2010a). Mapping species distributions: Spatial inference and prediction. Cambridge University Press.
Franklin, J. (2010b). Moving beyond static species distribution models in support of conservation biogeography: Moving beyond static species distribution models. Diversity and Distributions, 16(3), 321–330. https://doi.org/10.1111/j.1472-4642.2010.00641.x
Franklin, J. (2016). Diversity and distributions is (still) a journal of conservation biogeography. Diversity and Distributions, 22(1), 1–2. https://doi.org/10.1111/ddi.12402
Fransner, F., Counillon, F., Bethke, I., Tjiputra, J., Samuelsen, A., Nummelin, A., & Olsen, A. (2020). Ocean biogeochemical predictions—Initialization and limits of predictability. Frontiers in Marine Science., 7, 386. https://doi.org/10.3389/fmars.2020.00386
Galloway, J. N., Schlesinger, W. H., Clark, C. M., Grimm, N. B., Jackson, R. B., Law, B. E., Thornton, P. E., Townsend, A. R., & Martin, R. (2014). Ch. 15: Biogeochemical cycles. In J. M. Melillo, T. Richmond, & G. W. Yohe (Eds.), Climate change impacts in the United States: The third National Climate Assessment (pp. 350–368). U.S. Global Change Research Program. http://nca2014.globalchange.gov/report/sectors/biogeochemical-cycles
Gehlen, M., Barciela, R., Bertino, L., Brasseur, P., Butenschön, M., Chai, F., Crise, A., Drillet, Y., Ford, D., Lavoie, D., Lehodey, P., Perruche, C., Samuelsen, A., & Simon, E. (2015). Building the capacity for forecasting marine biogeochemistry and ecosystems: Recent advances and future developments. Journal of Operational Oceanography, 8(sup1), s168–s187. https://doi.org/10.1080/1755876X.2015.1022350
Geodynamics Program. (2023). Biogeochemical Cycles: The Past, Present and Future Habitability of the Earth. Retrieved from https://geodynamicsprogram.whoi.edu/2020-program/
Hoffmann, S. (2022). Challenges and opportunities of area-based conservation in reaching biodiversity and sustainability goals. Biodiversity and Conservation, 31, 325–352. https://doi.org/10.1007/s10531-021-02340-2
Howarth, R., Chan, F., Conley, D. J., Garnier, J., Doney, S. C., Marino, R., & Billen, G. (2011). Coupled biogeochemical cycles: Eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Frontiers in Ecology and the Environment, 9(1), 18–26. https://doi.org/10.1890/100008
Jacob, D. J., & Winner, D. A. (2009). Effect of climate change on air quality. Atmospheric Environment, 43(1), 51–63. https://doi.org/10.1016/j.atmosenv.2008.09.051
Jeppesen, E., Meerhoff, M., Holmgren, K., González-Bergonzoni, I., Teixeira de Mello, F., Declerck, S., De Meester, L., Søndergaard, M., Lauridsen, T., Bjerring, R., Conde-Porcuna, J., Mazzeo, N., Iglesias, C., Reizenstein, M., Malmquist, H., Liu, Z., Balayla, D., & Lazzaro, X. (2010). Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia, 646, 73–90. https://doi.org/10.1007/s10750-010-0171-5
Langford, A. O., Alvarez, R., Brioude, J., Evan, S., Iraci, L. T., Kirgis, G., Kuang, S., Leblanc, T., Newchurch, M. J., Pierce, R. B., Senff, C., & Yates, E. L. (2018). Coordinated profiling of stratospheric intrusions and transported pollution by the tropospheric ozone Lidar network (TOLNet) and NASA alpha jet experiment (AJAX): Observations and comparison to HYSPLIT, RAQMS, and FLEXPART. Atmospheric Environment, 174, 1–14. https://doi.org/10.1016/j.atmosenv.2017.11.031
Li, J., & Yang, X. (2015). Monitoring and Modeling of global changes: A geomatics perspective. Springer. https://doi.org/10.1007/978-94-017-9813-6
Likens, G. E. (2004). Biogeochemistry: Some opportunities and challenges for the future. Water, Air, & Soil Pollution: Focus, 4, 5–24. https://doi.org/10.1023/B:WAFO.0000028341.75842.08
Lovenduski, N., McKinley, G. A., Fay, A. R., Lindsay, K., & Long, M. C. (2016). Partitioning uncertainty in ocean carbon uptake projections. Global Biogeochemical Cycles, 30(9), 1276–1287. https://doi.org/10.1002/2016GB005426
MacDonald, G. M., Bennett, K. D., Jackson, S. T., Parducci, L., Smith, F. A., Smol, J. P., & Willis, K. J. (2008). Impacts of climate change on species, populations and communities: Palaeobiogeographical insights and frontiers. Progress in Physical Geography: Earth and Environment, 32(2), 139–172. https://doi.org/10.1177/0309133308094081
Maxwell, S. L., Butt, N., Maron, M., McAlpine, C. A., Chapman, S., Ullmann, A., et al. (2019). Conservation implications of ecological responses to extreme weather and climate events. Diversity and Distributions, 25(4), 613–625. https://doi.org/10.1111/ddi.12878
McGill, B., Araújo, M., Franklin, J., Linder, H. P., & Dawson, M. N. (2018). Writing the future of biogeography. Frontiers of Biogeography, 10(3–4), 1–8. https://doi.org/10.21425/F5FBG41964
McKinley, G. A., Fay, A. R., Lovenduski, N. S., & Pilcher, D. J. (2017). Natural variability and anthropogenic trends in the ocean carbon sink. Annual Review of Marine Science, 9, 125–150. https://doi.org/10.1146/annurev-marine-010816-060529
Moritz, T., Krishnan, S., Roberts, D., Ingwersen, P., Agosti, D., Penev, L., Cockerill, M., & Chavan, V. (2011). Towards mainstreaming of biodiversity data publishing: Recommendations of the GBIF data publishing framework task group. BMC Bioinformatics, 12(Suppl 15), S1.
Nolan, C., Overpeck, J. T., Allen, J. R. M., Anderson, P. M., Betancourt, J. L., Binney, H. A., Brewer, S., Bush, M. B., Chase, B. M., Cheddadi, R., Djamali, M., Dodson, J., Edwards, M. E., Gosling, W. D., Haberle, S., Hotchkiss, S. C., Huntley, B., Ivory, S. J., Kershaw, A. P., Kim, S. H., et al. (2018). Past and future global transformation of terrestrial ecosystems under climate change. Science (New York), 361(6405), 920–923. https://doi.org/10.1126/science.aan5360
Ordonez, A., Williams, J. W., & Svenning, J.-C. (2016). Mapping climatic mechanisms likely to favour the emergence of novel communities. Nature Climate Change, 6(12), 1104–1109. https://doi.org/10.1038/nclimate3127
Pappalardo, G., Amodeo, A., Apituley, A., Comeron, A., Freudenthaler, V., Linné, H., Ansmann, A., Bösenberg, J., D'Amico, G., Mattis, I., Mona, L., Wandinger, U., Amiridis, V., Alados-Arboledas, L., Nicolae, D., & Wiegner, M. (2014). EARLINET: Towards an advanced sustainable European aerosol lidar network. Atmospheric Measurement Techniques, 7(8), 2389–2409. https://doi.org/10.5194/amt-7-2389-2014
Pardo, L. H., Fenn, M. E., Goodale, C. L., Geiser, L. H., Driscoll, C. T., Allen, E. B., Baron, J. S., Bobbink, R., Bowman, W. D., Clark, C. M., Emmett, B., Gilliam, F. S., Greaver, T. L., Hall, S. J., Lilleskov, E. A., Liu, L., Lynch, J. A., Nadelhoffer, K. J., Perakis, S. S., Robin-Abbott, M. J., Stoddard, J. L., Weathers, K. C., & Dennis, R. L. (2011). Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. Ecological Applications, 21(8), 3049–3082. https://doi.org/10.1890/10-2341.1
Parenti, L. R., & Ebach, M. C. (2009). The future of biogeography. Comparative biogeography: Discovering and classifying biogeographical patterns of a dynamic earth. https://doi.org/10.1525/california/9780520259454.003.0010
Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37(1), 637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
Peel, J. L., Haeuber, R., Garcia, V., Russell, A. G., & Neas, L. (2012). Impact of nitrogen and climate change interactions on ambient air pollution and human health. Biogeochemistry, 114, 121–134. https://doi.org/10.1007/s10533-012-9782-4
Peters, G. P., Le Quere, C., Andrew, R., Canadell, J. G., Friedlingstein, P., Ilyina, T., Jackson, R. B., Joos, F., Korsbakken, J. I., McKinley, G. A., Sitch, S., & Tans, P. (2017). Towards real-time verification of CO2 emissions. Nature Climate Change, 7, 848–852. https://doi.org/10.1038/s41558-017-0013-9
Porter, E. M., Bowman, W. D., Clark, C. M., Compton, J. E., Pardo, L. H., & Soong, J. L. (2013). Interactive effects of anthropogenic nitrogen enrichment and climate change on terrestrial and aquatic biodiversity. Biogeochemistry, 114, 93–120. https://doi.org/10.1007/s10533-012-9803-3
Rabalais, N. N., Turner, R. E., DĂaz, R. J., & Justić, D. (2009). Global change and eutrophication of coastal waters. ICES Journal of Marine Science, 66(7), 1528–1537. https://doi.org/10.1093/icesjms/fsp047
Richardson, D. M., & Whittaker, R. J. (2010). Conservation biogeography – foundations, concepts and challenges: Conservation biogeography: Foundations, concepts and challenges. Diversity and Distributions, 16(3), 313–320. https://doi.org/10.1111/j.1472-4642.2010.00660.x
Ridge, S. M., & McKinley, G. A. (2020). Advective controls on the North Atlantic anthropogenic carbon sink. Global Biogeochemical Cycles, 34, e2019GB006457. https://doi.org/10.1029/2019GB006457
Serra-Diaz, J. M., & Franklin, J. (2019). What’s hot in conservation biogeography in a changing climate? Going beyond species range dynamics. Diversity and Distributions, 25(4), 492–498. https://doi.org/10.1111/ddi.12917
Silva, L. C. R. (2022). Expanding the scope of biogeochemical research to accelerate atmospheric carbon capture. Biogeochemistry, 161, 19–40. https://doi.org/10.1007/s10533-022-00957-1
Smith, V. H., & Schindler, D. W. (2009). Eutrophication science: Where do we go from here? Trends in Ecology & Evolution, 24(4), 201–207. https://doi.org/10.1016/j.tree.2008.11.009
Smith, D. B., Demetriade, A., de Carita, P., & Wang, X. (2018). The history, progress, and future of global-scale geochemical mapping. Geochimica Brasiliensis, 32(2), 115–135. https://doi.org/10.21715/GB2358-2812.2018322115
Sugimoto, N., Nishizawa, T., Shimizu, A., Matsui, I., & Jin, Y. (2014). Characterization of aerosols in East Asia with the Asian dust and aerosol LiDAR observation network (AD-net). In Lidar remote sensing for environmental monitoring XIV (Vol. 9262, pp. 74–82). SPIE. https://doi.org/10.1117/12.2069892
Townsend, A. R., & Porder, S. (2012). Agricultural legacies, food production and its environmental consequences. Proceedings of the National Academy of Sciences, 109, 5917–5918. https://doi.org/10.1073/pnas.1203766109
Urban, M. C., Bocedi, G., Hendry, A. P., Mihoub, J.-B., Peer, G., Singer, A., et al. (2016). Improving the forecast for biodiversity under climate change. Science, 353(6304), aad8466. https://doi.org/10.1126/science.aad8466
Van Rens, J. (2020). The future of Lidar is critical to the future of our world. https://www.gim-international.com/content/article/the-future-of-lidar-is-critical-to-the-future-of-our-world
Velazco, S. J. E., Villalobos, F., Galvão, F., & De Marco Júnior, P. (2019). A dark scenario for Cerrado plant species: Effects of future climate, land use and protected areas ineffectiveness. Diversity and Distributions, 25(4), 660–673. https://doi.org/10.1111/ddi.12886
Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., et al. (2002). Ecological responses to recent climate change. Nature, 416(6879), 389–395. https://doi.org/10.1038/416389a
Wang, Z., & Menenti, M. (2021). Challenges and opportunities in Lidar remote sensing. Frontiers in Remote Sensing, 2, 641723. https://doi.org/10.3389/frsen.2021.641723
Welton, E. J., Campbell, J. R., Spinhirne, J. D., & Scott, V. S., III. (2001). Global monitoring of clouds and aerosols using a network of micropulse lidar systems. In Lidar remote sensing for industry and environment monitoring (Vol. 4153, pp. 151–158). SPIE. https://doi.org/10.1117/12.417040
Williams, J. W., & Jackson, S. T. (2007). Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecology and the Environment, 5(9), 475–482. https://doi.org/10.1890/070037
Wilson, K. L., Skinner, M. A., & Lotze, H. K. (2019). Projected 21st-century distribution of canopy-forming seaweeds in the Northwest Atlantic with climate change. Diversity and Distributions, 25(4), 582–602. https://doi.org/10.1111/ddi.12897
Wulfmeyer, V., Hardesty, R. M., Turner, D. D., Behrendt, A., Cadeddu, M. P., Di Girolamo, P., Schlüssel, P., Van Baelen, J., & Zus, F. (2015). A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles. Reviews of Geophysics, 53(3), 819–895. https://doi.org/10.1002/2014RG000476
Yang, C., & Huang, Q. (2013). Spatial cloud computing: A practical approach. Taylor and Francis (CRC Press).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Campbell, M.O. (2023). The Future Developments in Biogeochemistry. In: Biogeochemistry and the Environment. Springer, Cham. https://doi.org/10.1007/978-3-031-47017-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-47017-2_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47016-5
Online ISBN: 978-3-031-47017-2
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)