Abstract
In this paper, we introduce a completion framework to reconstruct the geometric shapes of various anatomies, including organs, vessels and muscles. Our work targets a scenario where one or multiple anatomies are missing in the imaging data due to surgical, pathological or traumatic factors, or simply because these anatomies are not covered by image acquisition. Automatic reconstruction of the missing anatomies benefits many applications, such as organ 3D bio-printing, whole-body segmentation, animation realism, paleoradiology and forensic imaging. We propose two paradigms based on a 3D denoising auto-encoder (DAE) to solve the anatomy reconstruction problem: (i) the DAE learns a many-to-one mapping between incomplete and complete instances; (ii) the DAE learns directly a one-to-one residual mapping between the incomplete instances and the target anatomies. We apply a loss aggregation scheme that enables the DAE to learn the many-to-one mapping more effectively and further enhances the learning of the residual mapping. On top of this, we extend the DAE to a multiclass completor by assigning a unique label to each anatomy involved. We evaluate our method using a CT dataset with whole-body segmentations. Results show that our method produces reasonable anatomy reconstructions given instances with different levels of incompleteness (i.e., one or multiple random anatomies are missing). Codes and pretrained models are publicly available at https://github.com/Jianningli/medshapenet-feedback/tree/main/anatomy-completor.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abadi, M., et al.: Tensorflow: large-scale machine learning on heterogeneous systems. https://www.tensorflow.org (2015)
Ali-Hamadi, D., et al.: Anatomy transfer. ACM Trans. Graph. (TOG) 32(6), 1ā8 (2013)
Chibane, J., Alldieck, T., Pons-Moll, G.: Implicit functions in feature space for 3D shape reconstruction and completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6970ā6981 (2020)
Egger, J., et al.: Medical deep learning-a systematic meta-review. Comput. Methods Programs Biomed. 221, 106874 (2022)
Goparaju, A., et al.: Benchmarking off-the-shelf statistical shape modeling tools in clinical applications. Med. Image Anal. 76, 102271 (2022)
He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770ā778 (2016)
Jaus, A., et al.: Towards unifying anatomy segmentation: automated generation of a full-body CT dataset via knowledge aggregation and anatomical guidelines. arXiv preprint arXiv:2307.13375 (2023)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kodym, O., Å panÄl, M., Herout, A.: Skull shape reconstruction using cascaded convolutional networks. Comput. Biol. Med. 123, 103886 (2020)
Kodym, O., Å panÄl, M., Herout, A.: Deep learning for cranioplasty in clinical practice: going from synthetic to real patient data. Comput. Biol. Med. 137, 104766 (2021)
Kroviakov, A., Li, J., Egger, J.: Sparse convolutional neural network forĀ skull reconstruction. In: Li, J., Egger, J. (eds.) AutoImplant 2021. LNCS, vol. 13123, pp. 80ā94. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92652-6_7
La Cava, S.M., OrrĆ¹, G., Goldmann, T., Drahansky, M., Marcialis, G.L.: 3D face reconstruction for forensic recognition-a survey. In: 2022 26th International Conference on Pattern Recognition (ICPR), pp. 930ā937. IEEE (2022)
Li, J., et al.: Towards clinical applicability and computational efficiency in automatic cranial implant design: an overview of the autoimplant 2021 cranial implant design challenge. Med. Image Anal. 102865 (2023)
Li, J., Pepe, A., Gsaxner, C., et al.: Medshapenet - a large-scale dataset of 3D medical shapes for computer vision. arXiv preprint arXiv:2308.16139 (2023)
Li, J., et al.: Autoimplant 2020-first MICCAI challenge on automatic cranial implant design. IEEE Trans. Med. Imaging 40(9), 2329ā2342 (2021)
Li, J., et al.: Automatic skull defect restoration and cranial implant generation for cranioplasty. Med. Image Anal. 73, 102171 (2021)
Matzkin, F., et al.: Self-supervised skull reconstruction in brain CT images with decompressive craniectomy. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 390ā399. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_38
Meng, D., Keller, M., Boyer, E., Black, M., Pujades, S.: Learning a statistical full spine model from partial observations. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Goksel, O., Rekik, I. (eds.) ShapeMI 2020. LNCS, vol. 12474, pp. 122ā133. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61056-2_10
Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 fourth international conference on 3D vision (3DV), pp. 565ā571. IEEE (2016)
Missal, S.: Forensic facial reconstruction of skeletonized and highly decomposed human remains. In: Forensic Genetic Approaches for Identification of Human Skeletal Remains, pp. 549ā569. Elsevier (2023)
Morais, A., Egger, J., Alves, V.: Automated computer-aided design of cranial implants using a deep volumetric convolutional denoising autoencoder. In: Rocha, Ć., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCISTā19 2019. AISC, vol. 932, pp. 151ā160. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16187-3_15
Parihar, A., Pandita, V., Kumar, A., Parihar, D.S., Puranik, N., Bajpai, T., Khan, R.: 3D printing: advancement in biogenerative engineering to combat shortage of organs and bioapplicable materials. Regenerative Engineering and Translational Medicine, pp. 1ā27 (2021)
Pimentel, P., et al.: Automated virtual reconstruction of large skull defects using statistical shape models and generative adversarial networks. In: Li, J., Egger, J. (eds.) AutoImplant 2020. LNCS, vol. 12439, pp. 16ā27. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64327-0_3
Sarmad, M., Lee, H.J., Kim, Y.M.: RL-GAN-Net: a reinforcement learning agent controlled GAN network for real-time point cloud shape completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Seibold, C., et al.: Accurate fine-grained segmentation of human anatomy in radiographs via volumetric pseudo-labeling. arXiv preprint arXiv:2306.03934 (2023)
Seibold, C.M., ReiĆ, S., Kleesiek, J., Stiefelhagen, R.: Reference-guided pseudo-label generation for medical semantic segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 2171ā2179 (2022)
Shi, Y., Xu, X., Xi, J., Hu, X., Hu, D., Xu, K.: Learning to detect 3D symmetry from single-view RGB-D images with weak supervision. IEEE Trans. Pattern Analy. Mach. Intell. (2022)
Toscano, J.D., Zuniga-Navarrete, C., Siu, W.D.J., Segura, L.J., Sun, H.: Teeth mold point cloud completion via data augmentation and hybrid RL-GAN. J. Comput. Inf. Sci. Eng. 23(4), 041008 (2023)
Wasserthal, J., Meyer, M., Breit, H.C., Cyriac, J., Yang, S., Segeroth, M.: Totalsegmentator: robust segmentation of 104 anatomical structures in CT images. arXiv preprint arXiv:2208.05868 (2022)
Wilkinson, C.: Facial reconstruction-anatomical art or artistic anatomy? J. Anat. 216(2), 235ā250 (2010)
Wodzinski, M., Daniol, M., Socha, M., Hemmerling, D., Stanuch, M., Skalski, A.: Deep learning-based framework for automatic cranial defect reconstruction and implant modeling. Comput. Methods Programs Biomed. 226, 107173 (2022)
Yan, X., Lin, L., Mitra, N.J., Lischinski, D., Cohen-Or, D., Huang, H.: Shapeformer: transformer-based shape completion via sparse representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6239ā6249 (2022)
Zhang, Y., Pei, Y., Guo, Y., Chen, S., Xu, T., Zha, H.: Cleft volume estimation and maxilla completion using cascaded deep neural networks. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds.) MLMI 2020. LNCS, vol. 12436, pp. 332ā341. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59861-7_34
Acknowledgement
The work is supported by the Plattform fĆ¼r KI-Translation Essen (KITE) from the REACT-EU initiative (EFRE-0801977, https://kite.ikim.nrw/) and āNUM 2.0ā (FKZ: 01KX2121) FWF enFaced 2.0 (KLI 1044). The anatomical shape dataset used in this paper can be accessed through MedShapeNet at https://medshapenet.ikim.nrw/.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, J., Pepe, A., Luijten, G., Schwarz-Gsaxner, C., Kleesiek, J., Egger, J. (2023). Anatomy Completor: A Multi-class Completion Framework forĀ 3D Anatomy Reconstruction. In: Wachinger, C., Paniagua, B., Elhabian, S., Li, J., Egger, J. (eds) Shape in Medical Imaging. ShapeMI 2023. Lecture Notes in Computer Science, vol 14350. Springer, Cham. https://doi.org/10.1007/978-3-031-46914-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-46914-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-46913-8
Online ISBN: 978-3-031-46914-5
eBook Packages: Computer ScienceComputer Science (R0)