Skip to main content

Anatomy Completor: A Multi-class Completion Framework forĀ 3D Anatomy Reconstruction

  • Conference paper
  • First Online:
Shape in Medical Imaging (ShapeMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14350))

Included in the following conference series:

Abstract

In this paper, we introduce a completion framework to reconstruct the geometric shapes of various anatomies, including organs, vessels and muscles. Our work targets a scenario where one or multiple anatomies are missing in the imaging data due to surgical, pathological or traumatic factors, or simply because these anatomies are not covered by image acquisition. Automatic reconstruction of the missing anatomies benefits many applications, such as organ 3D bio-printing, whole-body segmentation, animation realism, paleoradiology and forensic imaging. We propose two paradigms based on a 3D denoising auto-encoder (DAE) to solve the anatomy reconstruction problem: (i) the DAE learns a many-to-one mapping between incomplete and complete instances; (ii) the DAE learns directly a one-to-one residual mapping between the incomplete instances and the target anatomies. We apply a loss aggregation scheme that enables the DAE to learn the many-to-one mapping more effectively and further enhances the learning of the residual mapping. On top of this, we extend the DAE to a multiclass completor by assigning a unique label to each anatomy involved. We evaluate our method using a CT dataset with whole-body segmentations. Results show that our method produces reasonable anatomy reconstructions given instances with different levels of incompleteness (i.e., one or multiple random anatomies are missing). Codes and pretrained models are publicly available at https://github.com/Jianningli/medshapenet-feedback/tree/main/anatomy-completor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, M., et al.: Tensorflow: large-scale machine learning on heterogeneous systems. https://www.tensorflow.org (2015)

  2. Ali-Hamadi, D., et al.: Anatomy transfer. ACM Trans. Graph. (TOG) 32(6), 1ā€“8 (2013)

    ArticleĀ  Google ScholarĀ 

  3. Chibane, J., Alldieck, T., Pons-Moll, G.: Implicit functions in feature space for 3D shape reconstruction and completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6970ā€“6981 (2020)

    Google ScholarĀ 

  4. Egger, J., et al.: Medical deep learning-a systematic meta-review. Comput. Methods Programs Biomed. 221, 106874 (2022)

    ArticleĀ  Google ScholarĀ 

  5. Goparaju, A., et al.: Benchmarking off-the-shelf statistical shape modeling tools in clinical applications. Med. Image Anal. 76, 102271 (2022)

    ArticleĀ  Google ScholarĀ 

  6. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)

    Google ScholarĀ 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770ā€“778 (2016)

    Google ScholarĀ 

  8. Jaus, A., et al.: Towards unifying anatomy segmentation: automated generation of a full-body CT dataset via knowledge aggregation and anatomical guidelines. arXiv preprint arXiv:2307.13375 (2023)

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  10. Kodym, O., Španěl, M., Herout, A.: Skull shape reconstruction using cascaded convolutional networks. Comput. Biol. Med. 123, 103886 (2020)

    ArticleĀ  Google ScholarĀ 

  11. Kodym, O., Španěl, M., Herout, A.: Deep learning for cranioplasty in clinical practice: going from synthetic to real patient data. Comput. Biol. Med. 137, 104766 (2021)

    ArticleĀ  Google ScholarĀ 

  12. Kroviakov, A., Li, J., Egger, J.: Sparse convolutional neural network forĀ skull reconstruction. In: Li, J., Egger, J. (eds.) AutoImplant 2021. LNCS, vol. 13123, pp. 80ā€“94. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92652-6_7

    ChapterĀ  Google ScholarĀ 

  13. La Cava, S.M., OrrĆ¹, G., Goldmann, T., Drahansky, M., Marcialis, G.L.: 3D face reconstruction for forensic recognition-a survey. In: 2022 26th International Conference on Pattern Recognition (ICPR), pp. 930ā€“937. IEEE (2022)

    Google ScholarĀ 

  14. Li, J., et al.: Towards clinical applicability and computational efficiency in automatic cranial implant design: an overview of the autoimplant 2021 cranial implant design challenge. Med. Image Anal. 102865 (2023)

    Google ScholarĀ 

  15. Li, J., Pepe, A., Gsaxner, C., et al.: Medshapenet - a large-scale dataset of 3D medical shapes for computer vision. arXiv preprint arXiv:2308.16139 (2023)

  16. Li, J., et al.: Autoimplant 2020-first MICCAI challenge on automatic cranial implant design. IEEE Trans. Med. Imaging 40(9), 2329ā€“2342 (2021)

    ArticleĀ  Google ScholarĀ 

  17. Li, J., et al.: Automatic skull defect restoration and cranial implant generation for cranioplasty. Med. Image Anal. 73, 102171 (2021)

    ArticleĀ  Google ScholarĀ 

  18. Matzkin, F., et al.: Self-supervised skull reconstruction in brain CT images with decompressive craniectomy. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 390ā€“399. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_38

    ChapterĀ  Google ScholarĀ 

  19. Meng, D., Keller, M., Boyer, E., Black, M., Pujades, S.: Learning a statistical full spine model from partial observations. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Goksel, O., Rekik, I. (eds.) ShapeMI 2020. LNCS, vol. 12474, pp. 122ā€“133. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61056-2_10

    ChapterĀ  Google ScholarĀ 

  20. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 fourth international conference on 3D vision (3DV), pp. 565ā€“571. IEEE (2016)

    Google ScholarĀ 

  21. Missal, S.: Forensic facial reconstruction of skeletonized and highly decomposed human remains. In: Forensic Genetic Approaches for Identification of Human Skeletal Remains, pp. 549ā€“569. Elsevier (2023)

    Google ScholarĀ 

  22. Morais, A., Egger, J., Alves, V.: Automated computer-aided design of cranial implants using a deep volumetric convolutional denoising autoencoder. In: Rocha, Ɓ., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCISTā€™19 2019. AISC, vol. 932, pp. 151ā€“160. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16187-3_15

    ChapterĀ  Google ScholarĀ 

  23. Parihar, A., Pandita, V., Kumar, A., Parihar, D.S., Puranik, N., Bajpai, T., Khan, R.: 3D printing: advancement in biogenerative engineering to combat shortage of organs and bioapplicable materials. Regenerative Engineering and Translational Medicine, pp. 1ā€“27 (2021)

    Google ScholarĀ 

  24. Pimentel, P., et al.: Automated virtual reconstruction of large skull defects using statistical shape models and generative adversarial networks. In: Li, J., Egger, J. (eds.) AutoImplant 2020. LNCS, vol. 12439, pp. 16ā€“27. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64327-0_3

    ChapterĀ  Google ScholarĀ 

  25. Sarmad, M., Lee, H.J., Kim, Y.M.: RL-GAN-Net: a reinforcement learning agent controlled GAN network for real-time point cloud shape completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google ScholarĀ 

  26. Seibold, C., et al.: Accurate fine-grained segmentation of human anatomy in radiographs via volumetric pseudo-labeling. arXiv preprint arXiv:2306.03934 (2023)

  27. Seibold, C.M., ReiƟ, S., Kleesiek, J., Stiefelhagen, R.: Reference-guided pseudo-label generation for medical semantic segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 2171ā€“2179 (2022)

    Google ScholarĀ 

  28. Shi, Y., Xu, X., Xi, J., Hu, X., Hu, D., Xu, K.: Learning to detect 3D symmetry from single-view RGB-D images with weak supervision. IEEE Trans. Pattern Analy. Mach. Intell. (2022)

    Google ScholarĀ 

  29. Toscano, J.D., Zuniga-Navarrete, C., Siu, W.D.J., Segura, L.J., Sun, H.: Teeth mold point cloud completion via data augmentation and hybrid RL-GAN. J. Comput. Inf. Sci. Eng. 23(4), 041008 (2023)

    ArticleĀ  Google ScholarĀ 

  30. Wasserthal, J., Meyer, M., Breit, H.C., Cyriac, J., Yang, S., Segeroth, M.: Totalsegmentator: robust segmentation of 104 anatomical structures in CT images. arXiv preprint arXiv:2208.05868 (2022)

  31. Wilkinson, C.: Facial reconstruction-anatomical art or artistic anatomy? J. Anat. 216(2), 235ā€“250 (2010)

    ArticleĀ  Google ScholarĀ 

  32. Wodzinski, M., Daniol, M., Socha, M., Hemmerling, D., Stanuch, M., Skalski, A.: Deep learning-based framework for automatic cranial defect reconstruction and implant modeling. Comput. Methods Programs Biomed. 226, 107173 (2022)

    ArticleĀ  Google ScholarĀ 

  33. Yan, X., Lin, L., Mitra, N.J., Lischinski, D., Cohen-Or, D., Huang, H.: Shapeformer: transformer-based shape completion via sparse representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6239ā€“6249 (2022)

    Google ScholarĀ 

  34. Zhang, Y., Pei, Y., Guo, Y., Chen, S., Xu, T., Zha, H.: Cleft volume estimation and maxilla completion using cascaded deep neural networks. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds.) MLMI 2020. LNCS, vol. 12436, pp. 332ā€“341. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59861-7_34

    ChapterĀ  Google ScholarĀ 

Download references

Acknowledgement

The work is supported by the Plattform fĆ¼r KI-Translation Essen (KITE) from the REACT-EU initiative (EFRE-0801977, https://kite.ikim.nrw/) and ā€œNUM 2.0ā€ (FKZ: 01KX2121) FWF enFaced 2.0 (KLI 1044). The anatomical shape dataset used in this paper can be accessed through MedShapeNet at https://medshapenet.ikim.nrw/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianning Li .

Editor information

Editors and Affiliations

Appendices

Appendix A. Reconstructing Small Anatomies

(see Fig.Ā 6)

Fig. 6.
figure 6

Reconstruction results of individual, small anatomies by \(DAE_{agg+res}\) trained with an increased loss aggregation scope (M). From the top: heart (2.4%), spine (4.3%), kidney (1.7%) and spleen (1.2%). The percentages in the brackets are the approximate volume ratio of the anatomy to the corresponding whole-body segmentations. The preliminary results demonstrate that increasing M (in Eq.Ā 3, 4 in the main manuscript) increases also the sensitivity of the reconstructive model, which helps the model identify and reconstruct very small anatomies. Two test instances are presented for each anatomy class.

Appendix B. Anatomy Completion from Skeletons (rib cage + spine)

(see Fig.Ā 7)

Fig. 7.
figure 7

The first row shows the input skeleton (ribs and spine), and the second to third row show the reconstruction results in axial and coronal views, respectively. The results are obtained by training \(DAE_{res}\) on 40 such ā€˜skeleton-fullā€™ pairs for 200 epochs. The preliminary results demonstrate the feasibility of reconstructing the full anatomy based only on the skeleton.

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Pepe, A., Luijten, G., Schwarz-Gsaxner, C., Kleesiek, J., Egger, J. (2023). Anatomy Completor: A Multi-class Completion Framework forĀ 3D Anatomy Reconstruction. In: Wachinger, C., Paniagua, B., Elhabian, S., Li, J., Egger, J. (eds) Shape in Medical Imaging. ShapeMI 2023. Lecture Notes in Computer Science, vol 14350. Springer, Cham. https://doi.org/10.1007/978-3-031-46914-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46914-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46913-8

  • Online ISBN: 978-3-031-46914-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics