Skip to main content

From Process Mining Insights to Process Improvement: All Talk and No Action?

  • Conference paper
  • First Online:
Cooperative Information Systems (CoopIS 2023)

Abstract

Organizations from various domains use process mining to better understand, analyze, and improve their business processes. While the overall value of process mining has been shown in several contexts, little is known about the specific actions that are taken to move from process mining insights to process improvement. In this work, we address this research gap by conducting a systematic literature review. Specifically, we investigate which types of actions have been taken in existing studies and to which insights these actions are linked. Our findings show that there exists a large variety of actions. Many of these actions do not only relate to changes to the investigated process but also to the associated information systems, the process documentation, the communication between staff members, and personnel training. Understanding the diversity of the actions triggered by process mining insights is important to instigate future research on the different aspects of translating process mining insights into process improvement. The insights-to-action realm presented in this work can inform and inspire new process mining initiatives and prepare for the effort required after acquiring process mining insights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19345-3

    Book  MATH  Google Scholar 

  2. van der Aalst, W.: Process Mining: Data Science in Action. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

    Book  Google Scholar 

  3. van der Aalst, W., et al.: Business process mining: an industrial application. Information Systems, pp. 713–732 (2007)

    Google Scholar 

  4. Agostinelli, S., Covino, F., D’Agnese, G., Crea, C.D., Leotta, F., Marrella, A.: Supporting governance in healthcare through process mining: a case study. IEEE Access 8, 186012–186025 (2020)

    Article  Google Scholar 

  5. Aksu, Ü., Reijers, H.A.: How business process benchmarks enable organizations to improve performance. In: International Enterprise Distributed Object Computing Conference (EDOC). IEEE (2020)

    Google Scholar 

  6. Alvarez, C., et al.: Discovering role interaction models in the emergency room using process mining. J. Biomedi. Inform. 78, 60–77 (2018)

    Article  Google Scholar 

  7. Bahaweres, R.B., Amna, H., Nurnaningsih, D.: Improving purchase to pay process efficiency with RPA using fuzzy miner algorithm in process mining. In: International Conference on Decision Aid Sciences and Applications. IEEE (2022)

    Google Scholar 

  8. van Beest, N., Maruster, L.: A process mining approach to redesign business processes - a case study in gas industry. In: International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). IEEE (2007)

    Google Scholar 

  9. Bozkaya, M., Gabriels, J., van der Werf, J.M.: Process diagnostics: a method based on process mining. In: International Conference on Information, Process, and Knowledge Management (eKNOW), pp. 22–27 (2009)

    Google Scholar 

  10. Bozorgi, Z.D., Teinemaa, I., Dumas, M., Rosa, M.L., Polyvyanyy, A.: Process mining meets causal machine learning: discovering causal rules from event logs. In: International Conference on Process Mining (ICPM). IEEE (2020)

    Google Scholar 

  11. Cela, O., Front, A., Rieu, D.: CEFOP: a method for the continual evolution of organisational processes. In: International Conference on Research Challenges in Information Science (RCIS). IEEE (2017)

    Google Scholar 

  12. Cho, M., Song, M., Comuzzi, M., Yoo, S.: Evaluating the effect of best practices for business process redesign: an evidence-based approach based on process mining techniques. Decision Support Systems, pp. 92–103 (2017)

    Google Scholar 

  13. Dees, M., de Leoni, M., van der Aalst, W., Reijers, H.: What if process predictions are not followed by good recommendations? In: BPM Industry Forum, pp. 61–72 (2019)

    Google Scholar 

  14. Delias, P., Nguyen, G.T.: Prototyping a business process improvement plan. An evidence-based approach. Inf. Syst. 101, 101812 (2021)

    Google Scholar 

  15. van Eck, M.L., Lu, X., Leemans, S.J.J., van der Aalst, W.M.P.: PM\(^2\): a process mining project methodology. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 297–313. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19069-3_19

    Chapter  Google Scholar 

  16. Eggers, J., Hein, A., Böhm, M., Krcmar, H.: No longer out of sight, no longer out of mind? How organizations engage with process mining-induced transparency to achieve increased process awareness. Business & Information Systems Engineering, pp. 491–510 (2021)

    Google Scholar 

  17. Emamjome, F., Andrews, R., ter Hofstede, A.H.M.: A case study lens on process mining in practice. In: Panetto, H., Debruyne, C., Hepp, M., Lewis, D., Ardagna, C.A., Meersman, R. (eds.) OTM 2019. LNCS, vol. 11877, pp. 127–145. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33246-4_8

    Chapter  Google Scholar 

  18. Esiefarienrhe, B.M., Omolewa, I.D.: Application of process mining to medical billing using L\(*\) life cycle model. In: International Conference on Electrical, Computer and Energy Technologies (ICECET). IEEE (2021)

    Google Scholar 

  19. Fleig, C., Augenstein, D., Mädche, A.: Process mining for business process standardization in ERP implementation projects - an SAP S/4 HANA case study from manufacturing. In: International Conference on Business Process Management (BPM). Karlsruhe (2018)

    Google Scholar 

  20. Gerke, K., Petruch, K., Tamm, G.: Optimization of service delivery through continual process improvement: a case study. In: INFORMATIK Business Process and Service Science, pp. 94–107. Gesellschaft für Informatik e.V. (2010)

    Google Scholar 

  21. Geyer-Klingeberg, J., Nakladal, J., Baldauf, F., Veit, F.: Process mining and robotic process automation: a perfect match. In: International Conference on Business Process Management (BPM) (2018)

    Google Scholar 

  22. Goel, K., Leemans, S.J.J., Wynn, M.T., ter Hofstede, A.H.M., Barnes, J.: Improving PhD student journeys: insights from an Australian higher education institution. In: BPM Industry Forum, pp. 27–38. CEUR-WS.org (2021)

    Google Scholar 

  23. Gupta, M., Serebrenik, A., Jalote, P.: Improving software maintenance using process mining and predictive analytics. In: International Conference on Software Maintenance and Evolution (ICSME). IEEE (2017)

    Google Scholar 

  24. Huang, C., Cai, H., Li, Y., Du, J., Bu, F., Jiang, L.: A process mining based service composition approach for mobile information systems. Mob. Info. Syst. 2017, 1–13 (2017)

    Google Scholar 

  25. van Hulzen, G., Martin, N., Depaire, B., Souverijns, G.: Supporting capacity management decisions in healthcare using data-driven process simulation. J. Biomed. Inform. 129, 104060 (2022)

    Google Scholar 

  26. Ingvaldsen, J.E., Gulla, J.A.: Industrial application of semantic process mining. Enterp. Inf. Syst. 6, 139–163 (2012)

    Article  Google Scholar 

  27. Jans, M., Alles, M., Vasarhelyi, M.: The case for process mining in auditing: sources of value added and areas of application. Int. J. Account. Inf. Syst. 14, 1–20 (2013)

    Article  Google Scholar 

  28. Jans, M., Hosseinpour, M.: How active learning and process mining can act as continuous auditing catalyst. Int. J. Account. Inf. Syst. 32, 44–58 (2019)

    Article  Google Scholar 

  29. Jans, M., van der Werf, J.M., Lybaert, N., Vanhoof, K.: A business process mining application for internal transaction fraud mitigation. Expert Syst. Appl. 38, 13351–13359 (2011)

    Article  Google Scholar 

  30. Jokonowo, B., Claes, J., Sarno, R., Rochimah, S.: Process mining in supply chains: a systematic literature review. Int. J. Electr. Comput. Eng. 8(6), 4626–4636 (2018)

    Google Scholar 

  31. Kedem-Yemini, S., Mamon, N.S., Mashiah, G.: An analysis of cargo release services with process mining: a case study in a logistics company. In: International Conference on Industrial Engineering and Operations Management (IEOM) (2018)

    Google Scholar 

  32. Kipping, G., et al.: How to leverage process mining in organizations - towards process mining capabilities. In: Di Ciccio, C., Dijkman, R., del Río Ortega, A., Rinderle-Ma, S. (eds.) BPM 2022. LNCS, vol. 13420, pp. 40–46. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16103-2_5

    Chapter  Google Scholar 

  33. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in software engineering. Technical report, EBSE (2007)

    Google Scholar 

  34. Kudo, M., Nogayama, T., Ishida, A., Abe, M.: Business process analysis and real-world application scenarios. In: International Conference on Signal-Image Technology and Internet-Based Systems (SITIS). IEEE (2013)

    Google Scholar 

  35. Lashkevich, K., Milani, F., Danylyshyn, N.: Analysis templates for identifying improvement opportunities with process mining. In: European Conference on Information Systems (ECIS) (2023)

    Google Scholar 

  36. Lee, C., Choy, K., Ho, G., Lam, C.: A slippery genetic algorithm-based process mining system for achieving better quality assurance in the garment industry. Expert Syst. Appl. 46, 236–248 (2016)

    Article  Google Scholar 

  37. Lee, C., Ho, G., Choy, K., Pang, G.: A RFID-based recursive process mining system for quality assurance in the garment industry. Int. J. Prod. Res. 52, 4216–4238 (2013)

    Article  Google Scholar 

  38. Leemans, M., van der Aalst, W.M.P., van den Brand, M.G.J., Schiffelers, R.R.H., Lensink, L.: Software process analysis methodology – a methodology based on lessons learned in embracing legacy software. In: International Conference on Software Maintenance and Evolution (ICSME). IEEE (2018)

    Google Scholar 

  39. Leemans, S.J., Poppe, E., Wynn, M.T.: Directly follows-based process mining: exploration and a case study. In: International Conference on Process Mining (ICPM). IEEE (2019)

    Google Scholar 

  40. Mahendrawathi, E., Zayin, S.O., Pamungkas, F.J.: ERP post implementation review with process mining: a case of procurement process. Procedia Comput. Sci. 124, 216–223 (2017)

    Article  Google Scholar 

  41. Mamudu, A., Bandara, W., Wynn, M., Leemans, S.: A process mining success factors model. In: Di Ciccio, C., Dijkman, R., del Río Ortega, A., Rinderle-Ma, S. (eds.) BPM 2022. LNCS, vol. 13420, pp. 143–160. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16103-2_12

    Chapter  Google Scholar 

  42. Martin, N., et al.: Opportunities and challenges for process mining in organisations - results of a Delphi study. Bus. Inf. Syst. Eng. 63, 511 (2022)

    Article  Google Scholar 

  43. Măruşter, L., van Beest, N.R.T.P.: Redesigning business processes: a methodology based on simulation and process mining techniques. Knowl. Inf. Syst. 21, 267–297 (2009)

    Article  Google Scholar 

  44. Meincheim, A., dos Santos Garcia, C., Nievola, J.C., Scalabrin, E.E.: Combining process mining with trace clustering: manufacturing shop floor process - an applied case. In: International Conference on Tools with Artificial Intelligence. IEEE (2017)

    Google Scholar 

  45. Munoz-Gama, J., et al.: Process mining for healthcare: characteristics and challenges. J. Biomed. Inform. 127, 103994 (2022)

    Article  Google Scholar 

  46. Partington, A., Wynn, M., Suriadi, S., Ouyang, C., Karnon, J.: Process mining for clinical processes. Trans. Manag. Inf. Syst. 5, 1–18 (2015)

    Article  Google Scholar 

  47. Peters, E.M., Dedene, G., Poelmans, J.: Understanding service quality and customer churn by process discovery for a multi-national banking contact center. In: International Conference on Data Mining Workshops. IEEE (2013)

    Google Scholar 

  48. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in software engineering. In: International Conference on Evaluation & Assessment in Software Engineering (2008)

    Google Scholar 

  49. Polyvyanyy, A., Pika, A., Wynn, M.T., ter Hofstede, A.H.: A systematic approach for discovering causal dependencies between observations and incidents in the health and safety domain. Saf. Sci. 118, 345–354 (2019)

    Article  Google Scholar 

  50. Ramires, F., Sampaio, P.: Process mining and lean six sigma: a novel approach to analyze the supply chain quality of a hospital. Int. J. Lean Six Sigma 13, 594–621 (2021)

    Article  Google Scholar 

  51. Rismanchian, F., Kassani, S.H., Shavarani, S.M., Lee, Y.H.: A data-driven approach to support the understanding and improvement of patients’ journeys: a case study using electronic health records of an emergency department. Value Health 26, 18–27 (2023)

    Article  Google Scholar 

  52. Rubin, V.A., Mitsyuk, A.A., Lomazova, I.A., van der Aalst, W.M.P.: Process mining can be applied to software too! In: International Symposium on Empirical Software Engineering and Measurement (ESEM). ACM (2014)

    Google Scholar 

  53. Saldana, J.: The Coding Manual for Qualitative Researchers. SAGE (2015)

    Google Scholar 

  54. Samalikova, J., Kusters, R., Trienekens, J., Weijters, T., Siemons, P.: Toward objective software process information: experiences from a case study. Softw. Qual. J. 19, 101–120 (2010)

    Article  Google Scholar 

  55. dos Santos Garcia, C., et al.: Process mining techniques and applications - a systematic mapping study. Expert Syst. Appl. 133, 260–295 (2019)

    Article  Google Scholar 

  56. Smit, K., and J.M.: Process mining in the rail industry: a qualitative analysis of success factors and remaining challenges. In: Humanizing Technology for a Sustainable Society (HTSS). University of Maribor Press (2019)

    Google Scholar 

  57. Stein Dani, V., et al.: Towards understanding the role of the human in event log extraction. In: Marrella, A., Weber, B. (eds.) BPM 2021. LNBIP, vol. 436, pp. 86–98. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-94343-1_7

    Chapter  Google Scholar 

  58. Tawakkal, I., Kurniati, A.P., Wisudiawan, G.A.A.: Implementing heuristic miner for information system audit based on DSS01 COBIT5. In: International Conference on Computer, Control, Informatics and its Applications. IEEE (2016)

    Google Scholar 

  59. Toth, K., Machalik, K., Fogarassy, G., Vathy-Fogarassy, A.: Applicability of process mining in the exploration of healthcare sequences. In: NC. IEEE (2017)

    Google Scholar 

  60. Trinkenreich, B., Santos, G., Confort, V., Santoro, F.: Toward using business process intelligence to support incident management metrics selection and service improvement. In: International Conferences on Software Engineering and Knowledge Engineering (SEKE). KSI (2015)

    Google Scholar 

  61. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 60–75. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17722-4_5

    Chapter  Google Scholar 

  62. Wang, Y., Caron, F., Vanthienen, J., Huang, L., Guo, Y.: Acquiring logistics process intelligence: methodology and an application for a Chinese bulk port. Expert Syst. Appl. 41, 195–209 (2014)

    Article  Google Scholar 

  63. Weerdt, J.D., Schupp, A., Vanderloock, A., Baesens, B.: Process mining for the multi-faceted analysis of business processes - a case study in a financial services organization. Comput. Ind. 64, 57–67 (2013)

    Article  Google Scholar 

  64. Zerbino, P., Aloini, D., Dulmin, R., Mininno, V.: Towards analytics-enabled efficiency improvements in maritime transportation: a case study in a mediterranean port. Sustainability 11, 4473 (2019)

    Article  Google Scholar 

  65. Zerbino, P., Stefanini, A., Aloini, D.: Process science in action: a literature review on process mining in business management. Technol. Forecast. Soc. Change 172, 121021 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

Part of this research was funded by NWO (Netherlands Organisation for Scientific Research) project number 16672.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinicius Stein Dani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stein Dani, V., Leopold, H., van der Werf, J.M.E.M., Beerepoot, I., Reijers, H.A. (2024). From Process Mining Insights to Process Improvement: All Talk and No Action?. In: Sellami, M., Vidal, ME., van Dongen, B., Gaaloul, W., Panetto, H. (eds) Cooperative Information Systems. CoopIS 2023. Lecture Notes in Computer Science, vol 14353. Springer, Cham. https://doi.org/10.1007/978-3-031-46846-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46846-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46845-2

  • Online ISBN: 978-3-031-46846-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics