Skip to main content

Fuzzy Transportation Model for Resource Allocation in a Dental Hospital

  • Chapter
  • First Online:
Decision Making in Healthcare Systems

Abstract

The transportation models are of paramount importance as a powerful tool for health institutions with resource allocation abilities. Movement of patients, medical supplies, employees, and other individuals across various locations are all covered in this field of study to enhance efficiency and reduce costs. However, there are limited number of papers discussing nursing staff and bed capacity as a resource allocation problem within the scope of transportation models. Hence, the purpose of the study is to examine the transportation model with a fuzzy mixed integer linear programming (FMILP) approach to allocate the nursing staff and bed capacity as resources with a case study of dental hospital. Findings illustrate that the highest patient demand is observed in the last three months of the year, and there is a need to increase the capacity in that time period. Besides, the sensitivity analysis highlights that while volume of domestic patients’ demand is relatively stable, the number of international patients varies greatly throughout the year and causes a change in total patient demand significantly. This chapter contributes to the literature by emphasizing the transportation models’ wide range of utilization ability for the healthcare resource allocation problems. Indeed, the practitioners can benefit from this paper in order to handle its resources to allocate exact dates and operating rooms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vankar, P.: Health care system: health outcomes ranking of select countries worldwide 2021. Statista (2022)

    Google Scholar 

  2. Zhou, C.-Y., Zhang, S.-Z., Sun, Y.: Research on the distribution and transportation of emergency materials under public health emergencies. In: International Conference on Smart Transportation and City Engineering, p. 12460 (2022)

    Google Scholar 

  3. Younkin, S.G., Fremont, H.C., Patz, J.A.: The health-oriented transportation model: estimating the health benefits of active transportation. J. Transp. Health 22 (2021)

    Google Scholar 

  4. Kumar, A., Amin, M.A.S., Tarakci, H., Prybutok, V.: Distribution and transportation model for COVID-19 vaccine. Int. J. Enterp. Netw. Manage. 14(1–2), 78–98 (2023)

    Google Scholar 

  5. Mengüç, K., Aydin, N., Ulu, M.: Optimisation of COVID-19 vaccination process using GIS, machine learning, and the multi-layered transportation model. Int. J. Prod. Res. (2023)

    Google Scholar 

  6. Yazdani, M., Mojtahedi, M., Loosemore, M., Sanderson, D.: A modelling framework to design an evacuation support system for healthcare infrastructures in response to major flood events. Prog. Disaster Sci. 13 (2022)

    Google Scholar 

  7. Bala, R., Lee, C., Pallant, B., Srinivasan, M., Lurie, D., Jacob, R., Bhagchandani, N., Ranney, M., He, S.: Algorithmic matching of personal protective equipment donations with healthcare facilities during the COVID-19 pandemic. Digital Med. 4(1) (2021)

    Google Scholar 

  8. Babaee Tirkolaee, E., Aydın, N.S.: A sustainable medical waste collection and transportation model for pandemics. Waste Manage. Res. 39(1_suppl), 34–44 (2021)

    Google Scholar 

  9. Liu, H., Yao, Z., Chang, F., Meyer, S.: An RFID-based medical waste transportation management system: assessment of a new model on a hospital in China. Fresenius Environ. Bull. 29(2), 773–784 (2020)

    Google Scholar 

  10. Nurprihatin, F., Elnathan, R., Rumawan, R.E., Regina, T.: A distribution strategy using a two-step optimisation to maximize blood services considering stochastic travel times. In: 1st International Conference of Construction, Infrastructure, and Materials, ICCIM 2019, vol. 650, no. 1. Scopus (2019)

    Google Scholar 

  11. Yasobant, S., Vora, K.S., Upadhyay, A.: Geographic information system applications in public health: advancing health research. In: Healthcare Policy and Reform: Concepts, Methodologies, Tools, and Applications, vol. 2, pp. 538–561 (2018)

    Google Scholar 

  12. Gupta, K.: Inventory and transportation cost minimization in the delivery logistics of swine flu vaccine. Yugoslav J. Oper. Res. 27(4), 481–497 (2017)

    Article  MathSciNet  Google Scholar 

  13. Michas, F.: Hospital bed density select countries 2020. Statista (2022)

    Google Scholar 

  14. Belien, J.: Exact and heuristic methodologies for scheduling in hospitals: problems, formulations and algorithms. 4OR 5(2), 157–160 (2007)

    Google Scholar 

  15. Migo-Sumagang, M.V., Tan, R.R., Tapia, J.F.D., Aviso, K.B.: Fuzzy mixed-integer linear and quadratic programming models for planning negative emissions technologies portfolios with synergistic interactions. Cleaner Eng. Technol. 9, 100507 (2022)

    Article  Google Scholar 

  16. Baker, K.B.: Workforce allocation in cyclical scheduling problems: a survey. J. Oper. Res. Soc. 27(1), 155–167 (1976)

    Article  Google Scholar 

  17. Knyazkov, K., Derevitsky, I., Mednikov, L., Yakovlev, A.: Evaluation of dynamic ambulance routing for the transportation of patients with acute coronary syndrome in Saint-Petersburg. Proc. Comput. Sci. 66, 419–428 (2015)

    Article  Google Scholar 

  18. Li, M., Vanberkel, P., Carter, A.: A review on ambulance offload delay literature. Health Care Manage. Sci. 22 (2019)

    Google Scholar 

  19. Perveen, S., Yigitcanlar, T., Kamruzzaman, M., Hayes, J.: Evaluating transport externalities of urban growth: a critical review of scenario-based planning methods. Int. J. Environ. Sci. Technol. 14(3), 663–678 (2017)

    Article  Google Scholar 

  20. Prasetyadi, A., Trianggoro, C., Rezaldi, M.Y., Nugroho, B.: The autonomous vehicle models to minimize the impact of pandemic. In: International Conference on Computer, Control, Informatics and Its Applications, pp. 122–125 (2021)

    Google Scholar 

  21. Sivakumar, G., Hari Ganesh, A.: Application of fuzzy multi objective linear programming in the efficient treatment of communicable diseases. Glob. J. Pure Appl. Math. 11(3), 1363–1377 (2015)

    Google Scholar 

  22. Bhattacharya, P.P., Bhattacharya, K., De, S.K.: A study on pollution sensitive sponge iron-based production transportation model under fuzzy environment. Decision Making Appl. Manage. Eng. 5(1), 225–245 (2022)

    Article  Google Scholar 

  23. Liu, C., He, Z., Lu, X.: Optimisation analysis of carbon emission reduction from crop straw collection and transportation under the sustainable development goals. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 38(10), 239–248 (2022)

    Google Scholar 

  24. Shekarrizfard, M., Valois, M.-F., Goldberg, M.S., Crouse, D., Ross, N., Parent, M.-E., Yasmin, S., Hatzopoulou, M.: Investigating the role of transportation models in epidemiologic studies of traffic related air pollution and health effects. Environ. Res. 140, 282–291 (2015)

    Article  Google Scholar 

  25. Arya, R., Singh, P., Kumari, S., Obaidat, M.S.: An approach for solving fully fuzzy multi-objective linear fractional optimisation problems. Soft. Comput. 24(12), 9105–9119 (2020)

    Article  Google Scholar 

  26. Kannan, D., de Sousa Jabbour, A.B.L., Jabbour, C.J.C.: Selecting green suppliers based on GSCM practices: Using Fuzzy TOPSIS applied to a Brazilian electronics company. Eur. J. Oper. Res. 233(2), 432–447 (2014)

    Article  MathSciNet  Google Scholar 

  27. Breuer, D.J., Kapadia, S., Lahrichi, N., Benneyan, J.C.: Joint robust optimisation of bed capacity, nurse staffing, and care access under uncertainty. Ann. Oper. Res. 312(2), 673–689 (2022)

    Article  Google Scholar 

  28. Olya, M.H., Badri, H., Teimoori, S., Yang, K.: An integrated deep learning and stochastic optimization approach for resource management in team-based healthcare systems. Expert Syst. Appl. (2022)

    Google Scholar 

  29. Pei, Z., Yuan, Y., Yu, T., Li, N.: Dynamic allocation of medical resources during the outbreak of epidemics. IEEE Trans. Autom. Sci. Eng. 19(2), 663–676 (2022)

    Article  Google Scholar 

  30. Ash, C., Diallo, C., Venkatadri, U., VanBerkel, P.: Distributionally robust optimization of a Canadian healthcare supply chain to enhance resilience during the COVID-19 pandemic. Comput. Ind. Eng. 168 (2022)

    Google Scholar 

  31. Goli, A., Ala, A., Mirjalili, S.: A robust possibilistic programming framework for designing an organ transplant supply chain under uncertainty. Ann. Oper. Res. (2022)

    Google Scholar 

  32. Wu, J.S.: Healthcare service efficiency: an empirical study on healthcare capacity in various counties and cities in Taiwan. Healthcare (Switzerland) 11(11) (2023)

    Google Scholar 

  33. Banker, R.D., Amirteimoori, A., Allahviranloo, T., Sinha, R.P.: Performance analysis and managerial ability in the general insurance market: a study of India and Iran. Inf. Technol. Manage. (2023). https://doi.org/10.1007/s10799-023-00405-y

    Article  Google Scholar 

  34. Cadenas, J.M., Verdegay, J.L.: Using fuzzy numbers in linear programming. IEEE Trans. Syst. Man Cybern. B Cybern. 27(6), 1016–1022 (1997). https://doi.org/10.1109/3477.650062

  35. Peidro, D., Mula, J., Poler, R., Verdegay J.: Fuzzy optimization for supply chain planning under supply, demand and process uncertainties. Fuzzy Sets Syst. 160, 2640–2657 (2009). https://doi.org/10.1016/j.fss.2009.02.021

  36. Rahmani, A., Lotfi, F.H., Rostamy-Malkhalifeh, M., Allahviranloo, T.: A new method for defuzzification and ranking of fuzzy numbers based on the statistical beta distribution. Adv. Fuzzy Syst. 2016, 1–8 (2016)

    Article  MathSciNet  Google Scholar 

  37. Cadenas, J.M.: Design and implementation of an interactive system to solve fuzzy optimisations problems. Ph.D. Dissertation, Universidad de Granada, Spain

    Google Scholar 

  38. Negoita, C.V., Ralescu, D.A.: Application of Fuzzy Sets to System Analysis. Interdisciplinary Systems Research, Birkhäuser Verlag, Stuttgart (1975)

    Book  Google Scholar 

  39. Cadenas, J.M., Verdegay, J.L.: Métodos Y Modelos De Programación Lineal Borrosa. In: Alonso-Ayuso, A., Cerdá, E., Escudero, L.F., Sala, R. (eds.) Optimización Bajo Incertidumbre, pp. 77–98. Tirant Lo Blanch, Madrid (2004)

    Google Scholar 

  40. Isikli, E., SerdarAsan, S., Karadayi-Usta, S.: Predicting the Medical Tourism Demand of Turkey, pp. 119–132 (2020)

    Google Scholar 

  41. Bureau of Labor Statistics.: Occupational employment and wages (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saliha Karadayi-Usta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gul, A.Y., Karadayi-Usta, S. (2024). Fuzzy Transportation Model for Resource Allocation in a Dental Hospital. In: Allahviranloo, T., Hosseinzadeh Lotfi, F., Moghaddas, Z., Vaez-Ghasemi, M. (eds) Decision Making in Healthcare Systems. Studies in Systems, Decision and Control, vol 513. Springer, Cham. https://doi.org/10.1007/978-3-031-46735-6_7

Download citation

Publish with us

Policies and ethics