Skip to main content

How the Microbiome Affects the Risk for Colon Cancer

  • Chapter
  • First Online:
Clinical Understanding of the Human Gut Microbiome
  • 163 Accesses

Abstract

The microbiome has been implicated in numerous cancers, most notably cancers along the gastrointestinal (GI) tract and, more recently, non-GI cancers such as lung and breast. The colon is home to the richest and densest community of microbes in the human body, and, perhaps not surprisingly, reports some of the strongest links with cancer risk other than Helicobacter pylori and gastric cancer. The gut microbiome has the vast potential to modulate human biology via its diverse array of metabolic functions including aiding in food digestion, maintenance of epithelial and immune homeostasis, drug metabolism, and toxin production. In this chapter, the key microbes and microbially driven mechanisms that are thought to contribute to colorectal cancer (CRC) are discussed, including driver bacteria, microbially mediated effects of a Western diet, and the microbiome as an intermediary between inflammatory bowel disease and CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We sincerely apologize to colleagues whose work we were unable to include due to space constraints.

References

We sincerely apologize to colleagues whose work we were unable to include due to space constraints.

  1. Laqueur GL, McDaniel EG, Matsumoto H. Tumor induction in germfree rats with methylazoxymethanol (MAM) and synthetic MAM acetate. J Natl Cancer Inst. 1967;39:355–71.

    CAS  PubMed  Google Scholar 

  2. Reddy BS, Weisburger JH, Narisawa T, et al. Colon carcinogenesis in germ-free rats with 1,2-dimethylhydrazine and N-methyl-n'-nitro-N-nitrosoguanidine. Cancer Res. 1974;34:2368–72.

    CAS  PubMed  Google Scholar 

  3. Wong SH, Zhao L, Zhang X, et al. Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology. 2017;153:1621–1633.e6.

    Article  PubMed  Google Scholar 

  4. Rosshart SP, Vassallo BG, Angeletti D, et al. Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell. 2017;171:1015–1028.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rosshart SP, Herz J, Vassallo BG, et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science. 2019;365:eaaw4361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yan Y, Drew DA, Markowitz A, et al. Structure of the mucosal and stool microbiome in lynch syndrome. Cell Host Microbe. 2020;27:585–600.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dejea CM, Fathi P, Craig JM, et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science. 2018;359:592–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wong SH, Yu J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol. 2019;16:690–704.

    Article  CAS  PubMed  Google Scholar 

  9. Bhatt AP, Redinbo MR, Bultman SJ. The role of the microbiome in cancer development and therapy. CA Cancer J Clin. 2017;67:326–44.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Loke YL, Chew MT, Ngeow YF, et al. Colon carcinogenesis: the interplay between diet and gut microbiota. Front Cell Infect Microbiol. 2020;10:603086.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Castellarin M, Warren RL, Freeman JD, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22:299–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Feng Q, Liang S, Jia H, et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun. 2015;6:6528.

    Article  CAS  PubMed  Google Scholar 

  13. Drewes JL, White JR, Dejea CM, et al. High-resolution bacterial 16S rRNA gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia. NPJ Biofilms Microbiomes. 2017;3:34.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lopez LR, Bleich RM, Arthur JC. Microbiota effects on carcinogenesis: initiation, promotion and progression. Annu Rev Med. 2020;72:243–61.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tjalsma H, Boleij A, Marchesi JR, et al. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol. 2012;10:575–82.

    Article  CAS  PubMed  Google Scholar 

  16. Sears CL, Garrett WS. Microbes, microbiota, and colon cancer. Cell Host Microbe. 2014;15:317–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Momen-Heravi F, Babic A, Tworoger SS, et al. Periodontal disease, tooth loss and colorectal cancer risk: results from the Nurses' health study. Int J Cancer. 2017;140:646–52.

    Article  CAS  PubMed  Google Scholar 

  18. Kostic AD, Chun E, Robertson L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14:207–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ohkusa T, Okayasu I, Ogihara T, et al. Induction of experimental ulcerative colitis by fusobacterium varium isolated from colonic mucosa of patients with ulcerative colitis. Gut. 2003;52:79–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ohkusa T, Yoshida T, Sato N, et al. Commensal bacteria can enter colonic epithelial cells and induce proinflammatory cytokine secretion: a possible pathogenic mechanism of ulcerative colitis. J Med Microbiol. 2009;58:535–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu H, Hong XL, Sun TT, et al. Fusobacterium nucleatum exacerbates colitis by damaging epithelial barriers and inducing aberrant inflammation. J Dig Dis. 2020;21:385–98.

    Article  CAS  PubMed  Google Scholar 

  22. Flanagan L, Schmid J, Ebert M, et al. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur J Clin Microbiol Infect Dis. 2014;33:1381–90.

    Article  CAS  PubMed  Google Scholar 

  23. Yamaoka Y, Suehiro Y, Hashimoto S, et al. Fusobacterium nucleatum as a prognostic marker of colorectal cancer in a Japanese population. J Gastroenterol. 2018;53:517–24.

    Article  CAS  PubMed  Google Scholar 

  24. Mima K, Sukawa Y, Nishihara R, et al. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol. 2015;1:653–61.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mima K, Cao Y, Chan AT, et al. Fusobacterium nucleatum in colorectal carcinoma tissue according to tumor location. Clin Transl Gastroenterol. 2016;7:e200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu T, Guo F, Yu Y, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell. 2017;170:548–563.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bullman S, Pedamallu CS, Sicinska E, et al. Analysis of fusobacterium persistence and antibiotic response in colorectal cancer. Science. 2017;358:1443–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu M, Yamada M, Li M, et al. FadA from fusobacterium nucleatum utilizes both secreted and nonsecreted forms for functional oligomerization for attachment and invasion of host cells. J Biol Chem. 2007;282:25000–9.

    Article  CAS  PubMed  Google Scholar 

  29. Rubinstein MR, Baik JE, Lagana SM, et al. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/beta-catenin modulator Annexin A1. EMBO Rep. 2019;20:e47638.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dadashi M, Hajikhani B, Faghihloo E, et al. Proliferative effect of FadA recombinant protein from fusobacterium nucleatum on SW480 colorectal cancer cell line. Infect Disord Drug Targets. 2020;21:623–8.

    Article  Google Scholar 

  31. Zhang S, Li C, Liu J, et al. Fusobacterium nucleatum promotes epithelial-mesenchymal transiton through regulation of the lncRNA MIR4435-2HG/miR-296-5p/Akt2/SNAI1 signaling pathway. FEBS J. 2020;287:4032–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guo P, Tian Z, Kong X, et al. FadA promotes DNA damage and progression of fusobacterium nucleatum-induced colorectal cancer through up-regulation of chk2. J Exp Clin Cancer Res. 2020;39:202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abed J, Emgard JE, Zamir G, et al. Fap2 mediates fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed gal-GalNAc. Cell Host Microbe. 2016;20:215–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gur C, Ibrahim Y, Isaacson B, et al. Binding of the Fap2 protein of fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 2015;42:344–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gur C, Maalouf N, Shhadeh A, et al. Fusobacterium nucleatum supresses anti-tumor immunity by activating CEACAM1. Onco Targets Ther. 2019;8:e1581531.

    Google Scholar 

  36. Tomkovich S, Yang Y, Winglee K, et al. Locoregional effects of microbiota in a preclinical model of colon carcinogenesis. Cancer Res. 2017;77:2620–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A. 2010;107:12204–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453:620–5.

    Article  CAS  PubMed  Google Scholar 

  39. Boleij A, Hechenbleikner EM, Goodwin AC, et al. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis. 2015;60:208–15.

    Article  CAS  PubMed  Google Scholar 

  40. Wu S, Lim KC, Huang J, et al. Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc Natl Acad Sci U S A. 1998;95:14979–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu S, Morin PJ, Maouyo D, et al. Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology. 2003;124:392–400.

    Article  CAS  PubMed  Google Scholar 

  42. Goodwin AC, Destefano Shields CE, Wu S, et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci U S A. 2011;108:15354–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Martinez-Medina M, Denizot J, Dreux N, et al. Western diet induces dysbiosis with increased E coli in CEABAC10 mice, alters host barrier function favouring AIEC colonisation. Gut. 2014;63:116–24.

    Article  PubMed  Google Scholar 

  44. Agus A, Denizot J, Thevenot J, et al. Western diet induces a shift in microbiota composition enhancing susceptibility to adherent-Invasive E. Coli infection and intestinal inflammation. Sci Rep. 2016;6:19032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bonnet M, Buc E, Sauvanet P, et al. Colonization of the human gut by E. Coli and colorectal cancer risk. Clin Cancer Res. 2014;20:859–67.

    Article  PubMed  Google Scholar 

  46. Arthur JC, Perez-Chanona E, Muhlbauer M, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012;338:120–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Arthur JC, Gharaibeh RZ, Muhlbauer M, et al. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat Commun. 2014;5:4724.

    Article  CAS  PubMed  Google Scholar 

  48. Cougnoux A, Delmas J, Gibold L, et al. Small-molecule inhibitors prevent the genotoxic and protumoural effects induced by colibactin-producing bacteria. Gut. 2016;65:278–85.

    Article  CAS  PubMed  Google Scholar 

  49. Dziubanska-Kusibab PJ, Berger H, Battistini F, et al. Colibactin DNA-damage signature indicates mutational impact in colorectal cancer. Nat Med. 2020;26:1063–9.

    Article  CAS  PubMed  Google Scholar 

  50. Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, et al. Mutational signature in colorectal cancer caused by genotoxic pks(+) E. Coli. Nature. 2020;580:269–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lopez LR, Bleich RM, Arthur JC. Microbiota effects on carcinogenesis: initiation, promotion, and progression. Annu Rev Med. 2021;72:243–61.

    Article  CAS  PubMed  Google Scholar 

  52. Nougayrede JP, Homburg S, Taieb F, et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science. 2006;313:848–51.

    Article  CAS  PubMed  Google Scholar 

  53. Cuevas-Ramos G, Petit CR, Marcq I, et al. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci U S A. 2010;107:11537–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dalmasso G, Cougnoux A, Delmas J, et al. The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes. 2014;5:675–80.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Veziant J, Gagniere J, Jouberton E, et al. Association of colorectal cancer with pathogenic Escherichia coli: focus on mechanisms using optical imaging. World J Clin Oncol. 2016;7:293–301.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lucas C, Salesse L, Hoang MHT, et al. Autophagy of intestinal epithelial cells inhibits colorectal carcinogenesis induced by Colibactin-producing Escherichia coli in Apc(min/+) mice. Gastroenterology. 2020;158:1373–88.

    Article  CAS  PubMed  Google Scholar 

  57. Sheng YH, Giri R, Davies J, et al. A nucleotide analog prevents colitis-associated cancer via Beta-catenin independently of inflammation and autophagy. Cell Mol Gastroenterol Hepatol. 2021;11:33–53.

    Article  CAS  PubMed  Google Scholar 

  58. Graillot V, Dormoy I, Dupuy J, et al. Genotoxicity of Cytolethal distending toxin (CDT) on isogenic human colorectal cell lines: potential promoting effects for colorectal carcinogenesis. Front Cell Infect Microbiol. 2016;6:34.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wang X, Huycke MM. Extracellular superoxide production by Enterococcus faecalis promotes chromosomal instability in mammalian cells. Gastroenterology. 2007;132:551–61.

    Article  CAS  PubMed  Google Scholar 

  60. Wang X, Yang Y, Moore DR, et al. 4-hydroxy-2-nonenal mediates genotoxicity and bystander effects caused by Enterococcus faecalis-infected macrophages. Gastroenterology. 2012;142:543–551.e7.

    Article  CAS  PubMed  Google Scholar 

  61. Swidsinski A, Loening-Baucke V, Lochs H, et al. Spatial organization of bacterial flora in normal and inflamed intestine: a fluorescence in situ hybridization study in mice. World J Gastroenterol. 2005;11:1131–40.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Dejea CM, Wick EC, Hechenbleikner EM, et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc Natl Acad Sci U S A. 2014;111:18321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Johnson CH, Dejea CM, Edler D, et al. Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab. 2015;21:891–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tomkovich S, Dejea CM, Winglee K, et al. Human colon mucosal biofilms from healthy or colon cancer hosts are carcinogenic. J Clin Invest. 2019;129:1699–712.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Flemming HC, Wingender J, Szewzyk U, et al. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14:563–75.

    Article  CAS  PubMed  Google Scholar 

  66. Mehta RS, Nishihara R, Cao Y, et al. Association of Dietary Patterns with Risk of colorectal cancer subtypes classified by Fusobacterium nucleatum in tumor tissue. JAMA Oncol. 2017;3:921–7.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Orlich MJ, Singh PN, Sabate J, et al. Vegetarian dietary patterns and the risk of colorectal cancers. JAMA Intern Med. 2015;175:767–76.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ciorba MA, Riehl TE, Rao MS, et al. Lactobacillus probiotic protects intestinal epithelium from radiation injury in a TLR-2/cyclo-oxygenase-2-dependent manner. Gut. 2012;61:829–38.

    Article  CAS  PubMed  Google Scholar 

  69. David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.

    Article  CAS  PubMed  Google Scholar 

  70. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4.

    Article  CAS  PubMed  Google Scholar 

  71. Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science (New York, N Y). 2011;334:105–8.

    Article  CAS  PubMed  Google Scholar 

  72. Muegge BD, Kuczynski J, Knights D, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332:970–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sonnenburg ED, Smits SA, Tikhonov M, et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature. 2016;529:212–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Thaiss CA, Itav S, Rothschild D, et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature. 2016;540:544–51.

    Article  CAS  PubMed  Google Scholar 

  75. Begley M, Gahan CG, Hill C. The interaction between bacteria and bile. FEMS Microbiol Rev. 2005;29:625–51.

    Article  CAS  PubMed  Google Scholar 

  76. Islam KB, Fukiya S, Hagio M, et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology. 2011;141:1773–81.

    Article  CAS  PubMed  Google Scholar 

  77. Lechner S, Muller-Ladner U, Schlottmann K, et al. Bile acids mimic oxidative stress induced upregulation of thioredoxin reductase in colon cancer cell lines. Carcinogenesis. 2002;23:1281–8.

    Article  CAS  PubMed  Google Scholar 

  78. Dvorak K, Payne CM, Chavarria M, et al. Bile acids in combination with low pH induce oxidative stress and oxidative DNA damage: relevance to the pathogenesis of Barrett's oesophagus. Gut. 2007;56:763–71.

    Article  CAS  PubMed  Google Scholar 

  79. Bernstein H, Payne CM, Bernstein C, et al. Activation of the promoters of genes associated with DNA damage, oxidative stress, ER stress and protein malfolding by the bile salt, deoxycholate. Toxicol Lett. 1999;108:37–46.

    Article  CAS  PubMed  Google Scholar 

  80. Washo-Stultz D, Hoglen N, Bernstein H, et al. Role of nitric oxide and peroxynitrite in bile salt-induced apoptosis: relevance to colon carcinogenesis. Nutr Cancer. 1999;35:180–8.

    Article  CAS  PubMed  Google Scholar 

  81. Booth LA, Gilmore IT, Bilton RF. Secondary bile acid induced DNA damage in HT29 cells: are free radicals involved? Free Radic Res. 1997;26:135–44.

    Article  CAS  PubMed  Google Scholar 

  82. Rath S, Rud T, Karch A, et al. Pathogenic functions of host microbiota. Microbiome. 2018;6:174.

    Article  PubMed  PubMed Central  Google Scholar 

  83. O'Keefe SJ, Li JV, Lahti L, et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat Commun. 2015;6:6342.

    Article  CAS  PubMed  Google Scholar 

  84. Reddy BS, Simi B, Patel N, et al. Effect of amount and types of dietary fat on intestinal bacterial 7 alpha-dehydroxylase and phosphatidylinositol-specific phospholipase C and colonic mucosal diacylglycerol kinase and PKC activities during stages of colon tumor promotion. Cancer Res. 1996;56:2314–20.

    CAS  PubMed  Google Scholar 

  85. Bayerdorffer E, Mannes GA, Ochsenkuhn T, et al. Variation of serum bile acids in patients with colorectal adenomas during a one-year follow-up. Digestion. 1994;55:121–9.

    Article  CAS  PubMed  Google Scholar 

  86. Bayerdorffer E, Mannes GA, Ochsenkuhn T, et al. Unconjugated secondary bile acids in the serum of patients with colorectal adenomas. Gut. 1995;36:268–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Reddy BS, Wynder EL. Metabolic epidemiology of colon cancer. Fecal bile acids and neutral sterols in colon cancer patients and patients with adenomatous polyps. Cancer. 1977;39:2533–9.

    Article  CAS  PubMed  Google Scholar 

  88. O'Keefe SJ, Kidd M, Espitalier-Noel G, et al. Rarity of colon cancer in Africans is associated with low animal product consumption, not fiber. Am J Gastroenterol. 1999;94:1373–80.

    Article  CAS  PubMed  Google Scholar 

  89. Prentice RL, Thomson CA, Caan B, et al. Low-fat dietary pattern and cancer incidence in the Women's Health Initiative dietary modification randomized controlled trial. J Natl Cancer Inst. 2007;99:1534–43.

    Article  PubMed  Google Scholar 

  90. Prentice RL, Aragaki AK, Howard BV, et al. Low-fat dietary pattern among postmenopausal women influences long-term cancer, cardiovascular disease, and diabetes outcomes. J Nutr. 2019;149:1565–74.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Flynn C, Montrose DC, Swank DL, et al. Deoxycholic acid promotes the growth of colonic aberrant crypt foci. Mol Carcinog. 2007;46:60–70.

    Article  CAS  PubMed  Google Scholar 

  92. Bernstein C, Holubec H, Bhattacharyya AK, et al. Carcinogenicity of deoxycholate, a secondary bile acid. Arch Toxicol. 2011;85:863–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Liu L, Dong W, Wang S, et al. Deoxycholic acid disrupts the intestinal mucosal barrier and promotes intestinal tumorigenesis. Food Funct. 2018;9:5588–97.

    Article  CAS  PubMed  Google Scholar 

  94. Raufman JP, Dawson PA, Rao A, et al. Slc10a2-null mice uncover colon cancer-promoting actions of endogenous fecal bile acids. Carcinogenesis. 2015;36:1193–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dermadi D, Valo S, Ollila S, et al. Western diet deregulates bile acid homeostasis, cell proliferation, and tumorigenesis in colon. Cancer Res. 2017;77:3352–63.

    Article  CAS  PubMed  Google Scholar 

  96. Li R, Grimm SA, Mav D, et al. Transcriptome and DNA methylome analysis in a mouse model of diet-induced obesity predicts increased risk of colorectal cancer. Cell Rep. 2018;22:624–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Qin Y, Roberts JD, Grimm SA, et al. An obesity-associated gut microbiome reprograms the intestinal epigenome and leads to altered colonic gene expression. Genome Biol. 2018;19:7.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Patterson E, O’doherty RM, Murphy EF, et al. Impact of dietary fatty acids on metabolic activity and host intestinal microbiota composition in C57BL/6J mice. Br J Nutr. 2014;111:1905–17.

    Article  CAS  PubMed  Google Scholar 

  99. Piazzi G, D'Argenio G, Prossomariti A, et al. Eicosapentaenoic acid free fatty acid prevents and suppresses colonic neoplasia in colitis-associated colorectal cancer acting on notch signaling and gut microbiota. Int J Cancer. 2014;135:2004–13.

    Article  CAS  PubMed  Google Scholar 

  100. Watson H, Mitra S, Croden FC, et al. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. Gut. 2018;67:1974–83.

    Article  CAS  PubMed  Google Scholar 

  101. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Red meat and processed meat. Lyon, FR: International Agency for Research on Cancer; 2018.

    Google Scholar 

  102. Lewin MH, Bailey N, Bandaletova T, et al. Red meat enhances the colonic formation of the DNA adduct O6-carboxymethyl guanine: implications for colorectal cancer risk. Cancer Res. 2006;66:1859–65.

    Article  CAS  PubMed  Google Scholar 

  103. Cross AJ, Pollock JR, Bingham SA. Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat. Cancer Res. 2003;63:2358–60.

    CAS  PubMed  Google Scholar 

  104. Bingham SA, Pignatelli B, Pollock JR, et al. Does increased endogenous formation of N-nitroso compounds in the human colon explain the association between red meat and colon cancer? Carcinogenesis. 1996;17:515–23.

    Article  CAS  PubMed  Google Scholar 

  105. Ijssennagger N, Rijnierse A, de Wit NJ, et al. Dietary heme induces acute oxidative stress, but delayed cytotoxicity and compensatory hyperproliferation in mouse colon. Carcinogenesis. 2013;34:1628–35.

    Article  CAS  PubMed  Google Scholar 

  106. Ijssennagger N, Belzer C, Hooiveld GJ, et al. Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. Proc Natl Acad Sci U S A. 2015;112:10038–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Abu-Ghazaleh N, Chua WJ, Gopalan V. Intestinal microbiota and its association with colon cancer and red/processed meat consumption. J Gastroenterol Hepatol. 2021;36:75–88.

    Article  CAS  PubMed  Google Scholar 

  108. Davila AM, Blachier F, Gotteland M, et al. Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol Res. 2013;68:95–107.

    Article  CAS  PubMed  Google Scholar 

  109. Humblot C, Murkovic M, Rigottier-Gois L, et al. Beta-glucuronidase in human intestinal microbiota is necessary for the colonic genotoxicity of the food-borne carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline in rats. Carcinogenesis. 2007;28:2419–25.

    Article  CAS  PubMed  Google Scholar 

  110. Zhang J, Lacroix C, Wortmann E, et al. Gut microbial beta-glucuronidase and glycerol/diol dehydratase activity contribute to dietary heterocyclic amine biotransformation. BMC Microbiol. 2019;19:99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Parada Venegas D, De la Fuente MK, Landskron G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:277.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Bultman SJ. Molecular pathways: gene-environment interactions regulating dietary fiber induction of proliferation and apoptosis via butyrate for cancer prevention. Clin Cancer Res. 2014;20:799–803.

    Article  CAS  PubMed  Google Scholar 

  113. Bultman SJ. Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer. Mol Nutr Food Res 2017;61.

    Google Scholar 

  114. Willemsen LE, Koetsier MA, van Deventer SJ, et al. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts. Gut. 2003;52:1442–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 2017;19:29–41.

    Article  CAS  PubMed  Google Scholar 

  116. Singh N, Gurav A, Sivaprakasam S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014;40:128–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Roediger WE. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut. 1980;21:793–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kelly CJ, Zheng L, Campbell EL, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 2015;17:662–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Donohoe DR, Collins LB, Wali A, et al. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell. 2012;48:612–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ploger S, Stumpff F, Penner GB, et al. Microbial butyrate and its role for barrier function in the gastrointestinal tract. Ann N Y Acad Sci. 2012;1258:52–9.

    Article  PubMed  Google Scholar 

  121. Desai MS, Seekatz AM, Koropatkin NM, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167:1339–1353.e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bishehsari F, Engen PA, Preite NZ, et al. Dietary fiber treatment corrects the composition of gut microbiota, promotes SCFA production, and suppresses colon carcinogenesis. Genes (Basel). 2018;9:9.

    Article  Google Scholar 

  123. Donohoe DR, Holley D, Collins LB, et al. A gnotobiotic mouse model demonstrates that dietary fiber protects against colorectal tumorigenesis in a microbiota- and butyrate-dependent manner. Cancer Discov. 2014;4:1387–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mehta RS, Song M, Nishihara R, et al. Dietary patterns and risk of colorectal cancer: analysis by tumor location and molecular subtypes. Gastroenterology. 2017;152:1944–1953e1.

    Article  CAS  PubMed  Google Scholar 

  125. Kunzmann AT, Coleman HG, Huang WY, et al. Dietary fiber intake and risk of colorectal cancer and incident and recurrent adenoma in the prostate, lung, colorectal, and ovarian cancer screening trial. Am J Clin Nutr. 2015;102:881–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fuchs CS, Giovannucci EL, Colditz GA, et al. Dietary fiber and the risk of colorectal cancer and adenoma in women. N Engl J Med. 1999;340:169–76.

    Article  CAS  PubMed  Google Scholar 

  127. Ananthakrishnan AN, Khalili H, Konijeti GG, et al. A prospective study of long-term intake of dietary fiber and risk of Crohn's disease and ulcerative colitis. Gastroenterology. 2013;145:970–7.

    Article  CAS  PubMed  Google Scholar 

  128. Chen HM, Yu YN, Wang JL, et al. Decreased dietary fiber intake and structural alteration of gut microbiota in patients with advanced colorectal adenoma. Am J Clin Nutr. 2013;97:1044–52.

    Article  CAS  PubMed  Google Scholar 

  129. DeCosse JJ, Miller HH, Lesser ML. Effect of wheat fiber and vitamins C and E on rectal polyps in patients with familial adenomatous polyposis. J Natl Cancer Inst. 1989;81:1290–7.

    Article  CAS  PubMed  Google Scholar 

  130. MacLennan R, Macrae F, Bain C, et al. Randomized trial of intake of fat, fiber, and beta carotene to prevent colorectal adenomas. J Natl Cancer Inst. 1995;87:1760–6.

    Article  CAS  PubMed  Google Scholar 

  131. Vernia F, Longo S, Stefanelli G, et al. Dietary factors modulating colorectal carcinogenesis. Nutrients. 2021;13:143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Michels KB, Willett WC, Vaidya R, et al. Yogurt consumption and colorectal cancer incidence and mortality in the nurses' health study and the health professionals follow-up study. Am J Clin Nutr. 2020;112:1566–75.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Rifkin SB, Giardiello FM, Zhu X, et al. Yogurt consumption and colorectal polyps. Br J Nutr. 2020;124:1–12.

    Article  Google Scholar 

  134. Bouvard V, Loomis D, Guyton KZ, et al. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015;16:1599–600.

    Article  PubMed  Google Scholar 

  135. Andreux PA, Blanco-Bose W, Ryu D, et al. The mitophagy activator urolithin a is safe and induces a molecular signature of improved mitochondrial and cellular health in humans. Nat Metab. 2019;1:595–603.

    Article  CAS  PubMed  Google Scholar 

  136. Collaborators GBDIBD. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017. Lancet Gastroenterol Hepatol. 2020;5:17–30.

    Article  Google Scholar 

  137. Jess T, Rungoe C, Peyrin-Biroulet L. Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Clin Gastroenterol Hepatol. 2012;10:639–45.

    Article  PubMed  Google Scholar 

  138. Fumery M, Dulai PS, Gupta S, et al. Incidence, risk factors, and outcomes of colorectal cancer in patients with ulcerative colitis with low-grade dysplasia: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2017;15:665–674.e5.

    Article  PubMed  Google Scholar 

  139. Ullman TA, Itzkowitz SH. Intestinal inflammation and cancer. Gastroenterology. 2011;140:1807–16.

    Article  CAS  PubMed  Google Scholar 

  140. Waldner MJ, Neurath MF. Mechanisms of immune signaling in colitis-associated cancer. Cell Mol Gastroenterol Hepatol. 2015;1:6–16.

    Article  PubMed  Google Scholar 

  141. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  142. Schultsz C, Van Den Berg FM, Ten Kate FW, et al. The intestinal mucus layer from patients with inflammatory bowel disease harbors high numbers of bacteria compared with controls. Gastroenterology. 1999;117:1089–97.

    Article  CAS  PubMed  Google Scholar 

  143. Fyderek K, Strus M, Kowalska-Duplaga K, et al. Mucosal bacterial microflora and mucus layer thickness in adolescents with inflammatory bowel disease. World J Gastroenterol. 2009;15:5287–94.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Bhatia R, Gautam SK, Cannon A, et al. Cancer-associated mucins: role in immune modulation and metastasis. Cancer Metastasis Rev. 2019;38:223–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Van der Sluis M, De Koning BA, De Bruijn AC, et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology. 2006;131:117–29.

    Article  PubMed  Google Scholar 

  146. Velcich A, Yang W, Heyer J, et al. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science. 2002;295:1726–9.

    Article  CAS  PubMed  Google Scholar 

  147. Keubler LM, Buettner M, Hager C, et al. A multihit model: colitis lessons from the Interleukin-10-deficient mouse. Inflamm Bowel Dis. 2015;21:1967–75.

    Article  PubMed  Google Scholar 

  148. Kuhn R, Lohler J, Rennick D, et al. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75:263–74.

    Article  CAS  PubMed  Google Scholar 

  149. Schwerbrock NM, Makkink MK, van der Sluis M, et al. Interleukin 10-deficient mice exhibit defective colonic Muc2 synthesis before and after induction of colitis by commensal bacteria. Inflamm Bowel Dis. 2004;10:811–23.

    Article  PubMed  Google Scholar 

  150. Liso M, De Santis S, Verna G, et al. A specific mutation in Muc2 determines early Dysbiosis in colitis-prone Winnie mice. Inflamm Bowel Dis. 2020;26:546–56.

    Article  PubMed  Google Scholar 

  151. Das S, Rachagani S, Sheinin Y, et al. Mice deficient in Muc4 are resistant to experimental colitis and colitis-associated colorectal cancer. Oncogene. 2016;35:2645–54.

    Article  CAS  PubMed  Google Scholar 

  152. De Arcangelis A, Hamade H, Alpy F, et al. Hemidesmosome integrity protects the colon against colitis and colorectal cancer. Gut. 2017;66:1748–60.

    Article  PubMed  Google Scholar 

  153. Low END, Mokhtar NM, Wong Z, et al. Colonic mucosal transcriptomic changes in patients with long-duration ulcerative colitis revealed colitis-associated cancer pathways. J Crohns Colitis. 2019;13:755–63.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Okumura R, Kurakawa T, Nakano T, et al. Lypd8 promotes the segregation of flagellated microbiota and colonic epithelia. Nature. 2016;532:117–21.

    Article  CAS  PubMed  Google Scholar 

  155. Xu J, Qian J, Zhang W, et al. LYPD8 regulates the proliferation and migration of colorectal cancer cells through inhibiting the secretion of IL6 and TNFalpha. Oncol Rep. 2019;41:2389–95.

    CAS  PubMed  Google Scholar 

  156. Singh V, Yeoh BS, Chassaing B, et al. Microbiota-inducible innate immune, siderophore binding protein Lipocalin 2 is critical for intestinal homeostasis. Cell Mol Gastroenterol Hepatol. 2016;2:482–498.e6.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Lloyd-Price J, Arze C, Ananthakrishnan AN, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569:655–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Moschen AR, Gerner RR, Wang J, et al. Lipocalin 2 protects from inflammation and tumorigenesis associated with gut microbiota alterations. Cell Host Microbe. 2016;19:455–69.

    Article  CAS  PubMed  Google Scholar 

  159. Vinson KE, George DC, Fender AW, et al. The notch pathway in colorectal cancer. Int J Cancer. 2016;138:1835–42.

    Article  CAS  PubMed  Google Scholar 

  160. Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer. 2015;15:540–55.

    Article  CAS  PubMed  Google Scholar 

  161. Wang Y, Huang D, Chen KY, et al. Fucosylation deficiency in mice leads to colitis and adenocarcinoma. Gastroenterology. 2017;152:193–205.e10.

    Article  CAS  PubMed  Google Scholar 

  162. Misiorek JO, Lahdeniemi IAK, Nystrom JH, et al. Keratin 8-deletion induced colitis predisposes to murine colorectal cancer enforced by the inflammasome and IL-22 pathway. Carcinogenesis. 2016;37:777–86.

    Article  CAS  PubMed  Google Scholar 

  163. Liu C, Liu ED, Meng YX, et al. Keratin 8 reduces colonic permeability and maintains gut microbiota homeostasis, protecting against colitis and colitis-associated tumorigenesis. Oncotarget. 2017;8:96774–90.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Peuker K, Muff S, Wang J, et al. Epithelial calcineurin controls microbiota-dependent intestinal tumor development. Nat Med. 2016;22:506–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Gehart H, Clevers H. Tales from the crypt: new insights into intestinal stem cells. Nat Rev Gastroenterol Hepatol. 2019;16:19–34.

    Article  PubMed  Google Scholar 

  166. Fukata M, Chen A, Vamadevan AS, et al. Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology. 2007;133:1869–81.

    Article  CAS  PubMed  Google Scholar 

  167. Chen L, Wilson JE, Koenigsknecht MJ, et al. NLRP12 attenuates colon inflammation by maintaining colonic microbial diversity and promoting protective commensal bacterial growth. Nat Immunol. 2017;18:541–51.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Zaki MH, Vogel P, Malireddi RK, et al. The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell. 2011;20:649–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Rakoff-Nahoum S, Medzhitov R. Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science. 2007;317:124–7.

    Article  CAS  PubMed  Google Scholar 

  170. Li Y, Kundu P, Seow SW, et al. Gut microbiota accelerate tumor growth via c-Jun and STAT3 phosphorylation in APCMin/+ mice. Carcinogenesis. 2012;33:1231–8.

    Article  CAS  PubMed  Google Scholar 

  171. Grivennikov SI, Wang K, Mucida D, et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature. 2012;491:254–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Santaolalla R, Sussman DA, Ruiz JR, et al. TLR4 activates the beta-catenin pathway to cause intestinal neoplasia. PLoS One. 2013;8:e63298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kesselring R, Glaesner J, Hiergeist A, et al. Irak-M expression in tumor cells supports colorectal cancer progression through reduction of antimicrobial defense and stabilization of STAT3. Cancer Cell. 2016;29:684–96.

    Article  CAS  PubMed  Google Scholar 

  174. Coleman OI, Lobner EM, Bierwirth S, et al. Activated ATF6 induces intestinal Dysbiosis and innate immune response to promote colorectal tumorigenesis. Gastroenterology. 2018;155:1539–1552.e12.

    Article  CAS  PubMed  Google Scholar 

  175. Tian M, Wang X, Sun J, et al. IRF3 prevents colorectal tumorigenesis via inhibiting the nuclear translocation of beta-catenin. Nat Commun. 2020;11:5762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Andoh A, Zhang Z, Inatomi O, et al. Interleukin-22, a member of the IL-10 subfamily, induces inflammatory responses in colonic subepithelial myofibroblasts. Gastroenterology. 2005;129:969–84.

    Article  CAS  PubMed  Google Scholar 

  177. Gronke K, Hernandez PP, Zimmermann J, et al. Interleukin-22 protects intestinal stem cells against genotoxic stress. Nature. 2019;566:249–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Jiang R, Wang H, Deng L, et al. IL-22 is related to development of human colon cancer by activation of STAT3. BMC Cancer. 2013;13:59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wu T, Wang Z, Liu Y, et al. Interleukin 22 protects colorectal cancer cells from chemotherapy by activating the STAT3 pathway and inducing autocrine expression of interleukin 8. Clin Immunol. 2014;154:116–26.

    Article  CAS  PubMed  Google Scholar 

  180. Cash HL, Whitham CV, Behrendt CL, et al. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science. 2006;313:1126–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Mukherjee S, Zheng H, Derebe MG, et al. Antibacterial membrane attack by a pore-forming intestinal C-type lectin. Nature. 2014;505:103–7.

    Article  PubMed  Google Scholar 

  182. Kempski J, Giannou AD, Riecken K, et al. IL22BP mediates the antitumor effects of Lymphotoxin against colorectal tumors in mice and humans. Gastroenterology. 2020;159:1417–1430.e3.

    Article  CAS  PubMed  Google Scholar 

  183. Bouskra D, Brezillon C, Berard M, et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature. 2008;456:507–10.

    Article  CAS  PubMed  Google Scholar 

  184. Ervin SM, Ramanan SV, Bhatt AP. Relationship between the gut microbiome and systemic chemotherapy. Dig Dis Sci. 2020;65:874–84.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Koppel N, Maini Rekdal V, Balskus EP. Chemical transformation of xenobiotics by the human gut microbiota. Science. 2017;356:eaag2770.

    Article  PubMed  Google Scholar 

  186. Haiser HJ, Turnbaugh PJ. Developing a metagenomic view of xenobiotic metabolism. Pharmacol Res. 2013;69:21–31.

    Article  CAS  PubMed  Google Scholar 

  187. Spanogiannopoulos P, Bess EN, Carmody RN, et al. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat Rev Microbiol. 2016;14:273–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Wilson ID, Nicholson JK. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl Res. 2017;179:204–22.

    Article  CAS  PubMed  Google Scholar 

  189. Alexander JL, Wilson ID, Teare J, et al. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol. 2017;14:356–65.

    Article  CAS  PubMed  Google Scholar 

  190. Zitvogel L, Ma Y, Raoult D, et al. The microbiome in cancer immunotherapy: diagnostic tools and therapeutic strategies. Science. 2018;359:1366–70.

    Article  CAS  PubMed  Google Scholar 

  191. Fidelle M, Yonekura S, Picard M, et al. Resolving the paradox of colon cancer through the integration of genetics, immunology, and the microbiota. Front Immunol. 2020;11:600886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Petroni G, Buque A, Zitvogel L, et al. Immunomodulation by targeted anticancer agents. Cancer Cell. 2020;39:310–45.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Figures were created with BioRender.com. JLD is supported by R00CA230192. APB is supported by the Crohn’s and Colitis Foundation, the Global Probiotics Council, and the University Cancer Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aadra P. Bhatt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Drewes, J.L., Bhatt, A.P. (2023). How the Microbiome Affects the Risk for Colon Cancer. In: Pimentel, M., Mathur, R., Barlow, G.M. (eds) Clinical Understanding of the Human Gut Microbiome. Springer, Cham. https://doi.org/10.1007/978-3-031-46712-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46712-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46711-0

  • Online ISBN: 978-3-031-46712-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics