Skip to main content

Changes in the Gut Microbiome as Seen in Diabetes and Obesity

  • Chapter
  • First Online:
Clinical Understanding of the Human Gut Microbiome

Abstract

Diabetes rates have risen to the point where 1 in 10 adults worldwide have diabetes, and obesity rates have more than tripled since 1975. These conditions are interrelated and multifactorial, and are also associated with multiple health complications. Evidence suggests that gut microbiota play critical roles in the maintenance of human health and that perturbations in the balance of microbial populations can precipitate shifts toward inflammatory states and metabolic dysfunction. While it is known that these perturbations can be caused by dietary changes, antibiotics, pollutants and other environmental factors, the precise mechanisms underlying the dynamic interplay between different gut microbial populations and their impacts on host metabolism are still being explored. Here, we focus on our current understanding of the multiple ways in which alterations in gut microbial populations contribute to the development of both diabetes and obesity, and highlight recent developments in key areas of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization. Fact sheet—diabetes. Geneva: World Health Organization; 2020.

    Google Scholar 

  2. International Diabetes Federation. IDF diabetes atlas. 10th ed. Brussels: International Diabetes Federation; 2021.

    Google Scholar 

  3. National Diabetes Statistics Report, 2022—estimates of diabetes and its burden in the United States. Centers for Disease Control and Prevention, US Department of Health and Human Services, Atlanta, GA; 2022.

    Google Scholar 

  4. American Diabetes Association. 2. classification and diagnosis of diabetes: standards of medical care in diabetes—2021. Diabetes Care. 2020;44:S15–33. https://doi.org/10.2337/dc21-S002.

    Article  Google Scholar 

  5. Atkinson MA, Skyler JS. In: Skyler JS, editor. Atlas of diabetes. 4th ed. Springer; 2012. p. 65–94.

    Chapter  Google Scholar 

  6. Kao K, Sabin M. Type 2 diabetes mellitus in children and adolescents. Aust Fam Physician. 2016;45:401–6.

    PubMed  Google Scholar 

  7. Sirdah MM, Reading NS. Genetic predisposition in type 2 diabetes: a promising approach toward a personalized management of diabetes. Clin Genet. 2020;98(6):525. https://doi.org/10.1111/cge.13772.

    Article  CAS  PubMed  Google Scholar 

  8. Vijan S. In the clinic. Type 2 diabetes. Ann Intern Med. 2015;162:ITC1–16. https://doi.org/10.7326/aitc201503030.

    Article  PubMed  Google Scholar 

  9. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37:S81. https://doi.org/10.2337/dc14-S081.

    Article  Google Scholar 

  10. Iglay K, et al. Prevalence and co-prevalence of comorbidities among patients with type 2 diabetes mellitus. Curr Med Res Opin. 2016;32:1243–52. https://doi.org/10.1185/03007995.2016.1168291.

    Article  PubMed  Google Scholar 

  11. Henning RJ. Type-2 diabetes mellitus and cardiovascular disease. Futur Cardiol. 2018;14:491–509. https://doi.org/10.2217/fca-2018-0045.

    Article  CAS  Google Scholar 

  12. Singh RB, Mengi SA, Xu YJ, Arneja AS, Dhalla NS. Pathogenesis of atherosclerosis: a multifactorial process. Exp Clin Cardiol. 2002;7:40–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest. 2000;106:473–81. https://doi.org/10.1172/JCI10842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Insulin resistance & prediabetes, 2018. National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes/prediabetes-insulin-resistance.

  15. Caricilli AM, Saad MJ. The role of gut microbiota on insulin resistance. Nutrients. 2013;5:829–51. https://doi.org/10.3390/nu5030829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. World Health Organization. Fact sheet—obesity and overweight. Geneva: World Health Organization; 2020.

    Google Scholar 

  17. American Heart Association. American Heart Association annual report 2018–19. American Heart Association; 2019.

    Google Scholar 

  18. Hsu WC, Araneta MR, Kanaya AM, Chiang JL, Fujimoto W. BMI cut points to identify at-risk Asian Americans for type 2 diabetes screening. Diabetes Care. 2015;38:150–8. https://doi.org/10.2337/dc14-2391.

    Article  PubMed  Google Scholar 

  19. World Obesity Atlas 2023. World Obesity Federation, 2023.

    Google Scholar 

  20. Overweight and obesity. Centers for Disease Control and Prevention, Atlanta, GA; 2022.

    Google Scholar 

  21. The heavy burden of obesity. OECD; 2019.

    Google Scholar 

  22. Trogdon JG, Finkelstein EA, Hylands T, Dellea PS, Kamal-Bahl SJ. Indirect costs of obesity: a review of the current literature. Obes Rev. 2008;9:489–500. https://doi.org/10.1111/j.1467-789X.2008.00472.x.

    Article  CAS  PubMed  Google Scholar 

  23. Cawley J, et al. Direct medical costs of obesity in the United States and the most populous states. J Manag Care Spec Pharm. 2021;27:354–66. https://doi.org/10.18553/jmcp.2021.20410.

    Article  PubMed  Google Scholar 

  24. Adult Obesity Facts. Centers for Disease Control and Prevention, Atlanta, GA, 2020.

    Google Scholar 

  25. Bener A, et al. Obesity index that better predict metabolic syndrome: body mass index, waist circumference, waist hip ratio, or waist height ratio. J Obes. 2013;2013:269038. https://doi.org/10.1155/2013/269038.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ahmad N, Adam SI, Nawi AM, Hassan MR, Ghazi HF. Abdominal obesity indicators: waist circumference or waist-to-hip ratio in Malaysian adults population. Int J Prev Med. 2016;7:82. https://doi.org/10.4103/2008-7802.183654.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Obesity and Cancer. National Cancer Institute (NCI); 2017. https://www.cancer.gov/about-cancer/causesprevention/risk/obesity/obesity-fact-sheet.

  28. Randi G, Franceschi S, La Vecchia C. Gallbladder cancer worldwide: geographical distribution and risk factors. Int J Cancer. 2006;118:1591–602. https://doi.org/10.1002/ijc.21683.

    Article  CAS  PubMed  Google Scholar 

  29. Ptak A, Kolaczkowska E, Gregoraszczuk EL. Leptin stimulation of cell cycle and inhibition of apoptosis gene and protein expression in OVCAR-3 ovarian cancer cells. Endocrine. 2013;43:394–403. https://doi.org/10.1007/s12020-012-9788-7.

    Article  CAS  PubMed  Google Scholar 

  30. Gallagher EJ, LeRoith D. Obesity and diabetes: the increased risk of cancer and cancer-related mortality. Physiol Rev. 2015;95:727–48. https://doi.org/10.1152/physrev.00030.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14:e1002533. https://doi.org/10.1371/journal.pbio.1002533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gilbert JA, et al. Current understanding of the human microbiome. Nat Med. 2018;24:392–400. https://doi.org/10.1038/nm.4517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Qin J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220–30. https://doi.org/10.1038/nature11550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gaci N, Borrel G, Tottey W, O’Toole PW, Brugere JF. Archaea and the human gut: new beginning of an old story. World J Gastroenterol. 2014;20:16062–78. https://doi.org/10.3748/wjg.v20.i43.16062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shkoporov AN, et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe. 2019;26:527–541.e525. https://doi.org/10.1016/j.chom.2019.09.009.

    Article  CAS  PubMed  Google Scholar 

  37. Eckburg PB, et al. Diversity of the human intestinal microbial flora. Science. 2005;308:1635–8. https://doi.org/10.1126/science.1110591.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rinninella E, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7:14. https://doi.org/10.3390/microorganisms7010014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Arumugam M, et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174–80. https://doi.org/10.1038/nature09944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Singer-Englar T, Barlow G, Mathur R. Obesity, diabetes, and the gut microbiome: an updated review. Expert Rev Gastroenterol Hepatol. 2018;13:3. https://doi.org/10.1080/17474124.2019.1543023.

    Article  CAS  PubMed  Google Scholar 

  41. Han H, et al. Gut microbiota and type 1 diabetes. Int J Mol Sci. 2018;19:995. https://doi.org/10.3390/ijms19040995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ley RE, et al. Evolution of mammals and their gut microbes. Science. 2008;320:1647–51. https://doi.org/10.1126/science.1155725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tilg H, Moschen AR. Microbiota and diabetes: an evolving relationship. Gut. 2014;63:1513–21. https://doi.org/10.1136/gutjnl-2014-306928.

    Article  CAS  PubMed  Google Scholar 

  44. Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med. 2016;8:51. https://doi.org/10.1186/s13073-016-0307-y.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Barlow GM, Mathur R. Type 2 diabetes and the microbiome. J Endocr Soc. 2022;7:bvac184. https://doi.org/10.1210/jendso/bvac184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Belizario JE, Faintuch J, Garay-Malpartida M. Gut microbiome dysbiosis and immunometabolism: new frontiers for treatment of metabolic diseases. Mediat Inflamm. 2018;2018:2037838. https://doi.org/10.1155/2018/2037838.

    Article  CAS  Google Scholar 

  47. Sharma S, Tripathi P. Gut microbiome and type 2 diabetes: where we are and where to go? J Nutr Biochem. 2019;63:101–8. https://doi.org/10.1016/j.jnutbio.2018.10.003.

    Article  CAS  PubMed  Google Scholar 

  48. Hur KY, Lee MS. Gut microbiota and metabolic disorders. Diabetes Metab J. 2015;39:198–203. https://doi.org/10.4093/dmj.2015.39.3.198.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bao L, Zhang Y, Zhang G, Jiang D, Yan D. Abnormal proliferation of gut mycobiota contributes to the aggravation of type 2 diabetes. Commun Biol. 2023;6:226. https://doi.org/10.1038/s42003-023-04591-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Larsen N, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5:e9085. https://doi.org/10.1371/journal.pone.0009085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Karlsson FH, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498:99–103. https://doi.org/10.1038/nature12198.

    Article  CAS  PubMed  Google Scholar 

  52. De Vadder F, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell. 2014;156:84–96. https://doi.org/10.1016/j.cell.2013.12.016.

    Article  CAS  PubMed  Google Scholar 

  53. Bach Knudsen KE, et al. Impact of diet-modulated butyrate production on intestinal barrier function and inflammation. Nutrients. 2018;10:1499. https://doi.org/10.3390/nu10101499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wright E Jr, Scism-Bacon JL, Glass LC. Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. Int J Clin Pract. 2006;60:308–14. https://doi.org/10.1111/j.1368-5031.2006.00825.x.

    Article  CAS  PubMed  Google Scholar 

  55. Qin J, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60. https://doi.org/10.1038/nature11450.

    Article  CAS  PubMed  Google Scholar 

  56. Sato J, et al. Gut dysbiosis and detection of “live gut bacteria” in blood of Japanese patients with type 2 diabetes. Diabetes Care. 2014;37:2343–50. https://doi.org/10.2337/dc13-2817.

    Article  CAS  PubMed  Google Scholar 

  57. Naderpoor N, et al. Faecal microbiota are related to insulin sensitivity and secretion in overweight or obese adults. J Clin Med. 2019;8:452. https://doi.org/10.3390/jcm8040452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu T, Horowitz M, Rayner CK. New insights into the anti-diabetic actions of metformin: from the liver to the gut. Expert Rev Gastroenterol Hepatol. 2017;11:157–66. https://doi.org/10.1080/17474124.2017.1273769.

    Article  CAS  PubMed  Google Scholar 

  59. Derrien M, et al. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the Mucin-degrader akkermansia muciniphila. Front Microbiol. 2011;2:166. https://doi.org/10.3389/fmicb.2011.00166.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Everard A, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110:9066–71. https://doi.org/10.1073/pnas.1219451110.

    Article  PubMed  PubMed Central  Google Scholar 

  61. de la Cuesta-Zuluaga J, et al. Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid–producing microbiota in the gut. Diabetes Care. 2017;40:54–62. https://doi.org/10.2337/dc16-1324.

    Article  CAS  PubMed  Google Scholar 

  62. Shin NR, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014;63:727–35. https://doi.org/10.1136/gutjnl-2012-303839.

    Article  CAS  PubMed  Google Scholar 

  63. Thingholm LB, et al. Obese individuals with and without type 2 diabetes show different gut microbial functional capacity and composition. Cell Host Microbe. 2019;26:252–264.e210. https://doi.org/10.1016/j.chom.2019.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Leite GGS, et al. Optimizing microbiome sequencing for small intestinal aspirates: validation of novel techniques through the REIMAGINE study. BMC Microbiol. 2019;19:239. https://doi.org/10.1186/s12866-019-1617-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–3.

    Article  CAS  PubMed  Google Scholar 

  66. Ley RE, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102:11070–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Le Chatelier E, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–6. https://doi.org/10.1038/nature12506.

    Article  CAS  PubMed  Google Scholar 

  68. Kasai C, et al. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterol. 2015;15:100. https://doi.org/10.1186/s12876-015-0330-2.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Fernandes J, Su W, Rahat-Rozenbloom S, Wolever TM, Comelli EM. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes. 2014;4:e121. https://doi.org/10.1038/nutd.2014.23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Peters BA, et al. A taxonomic signature of obesity in a large study of American adults. Sci Rep. 2018;8:9749. https://doi.org/10.1038/s41598-018-28126-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 2016;6:23129. https://doi.org/10.1038/srep23129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Benitez-Paez A, et al. Depletion of Blautia species in the microbiota of obese children relates to intestinal inflammation and metabolic phenotype worsening. mSystems. 2020;5:e00857. https://doi.org/10.1128/mSystems.00857-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Turnbaugh PJ, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4. https://doi.org/10.1038/nature07540.

    Article  CAS  PubMed  Google Scholar 

  74. Hook SE, Wright AD, McBride BW. Methanogens: methane producers of the rumen and mitigation strategies. Archaea. 2010;2010:945785. https://doi.org/10.1155/2010/945785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim G, et al. Methanobrevibacter smithii is the predominant methanogen in patients with constipation-predominant IBS and methane on breath. Dig Dis Sci. 2012;57:3213–8. https://doi.org/10.1007/s10620-012-2197-1.

    Article  CAS  PubMed  Google Scholar 

  76. Sahakian AB, Jee SR, Pimentel M. Methane and the gastrointestinal tract. Dig Dis Sci. 2010;55:2135–43.

    Article  PubMed  Google Scholar 

  77. Turnbaugh PJ, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.

    Google Scholar 

  78. Samuel BS, Gordon JI. A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc Natl Acad Sci U S A. 2006;103:10011–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Basseri RJ, et al. Intestinal methane production in obese individuals is associated with a higher body mass index. Gastroenterol Hepatol (N Y). 2012;8:22–8.

    PubMed  Google Scholar 

  80. Mathur R, et al. Methane and hydrogen positivity on breath test is associated with greater body mass index and body fat. J Clin Endocrinol Metab. 2013;98:E698–702. https://doi.org/10.1210/jc.2012-3144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mathur R, et al. Methane-producing human subjects have higher serum glucose levels during oral glucose challenge than non-methane producers: a pilot study of the effects of enteric methanogens on glycemic regulation. Res J Endocrinol Metabol. 2014;2:2. https://doi.org/10.7243/2053-3640-2-2.

    Article  Google Scholar 

  82. Cesario V, et al. Methane intestinal production and poor metabolic control in type I diabetes complicated by autonomic neuropathy. Minerva Endocrinol. 2014;39:201–7.

    CAS  PubMed  Google Scholar 

  83. Mathur R, et al. Metabolic effects of eradicating breath methane using antibiotics in prediabetic subjects with obesity. Obesity (Silver Spring). 2016;24:576–82. https://doi.org/10.1002/oby.21385.

    Article  CAS  PubMed  Google Scholar 

  84. Mathur R, et al. Intestinal methane production is associated with decreased weight loss following bariatric surgery. Obes Res Clin Pract. 2016;10(6):728. https://doi.org/10.1016/j.orcp.2016.06.006.

    Article  PubMed  Google Scholar 

  85. Laverdure R, Mezouari A, Carson MA, Basiliko N, Gagnon J. A role for methanogens and methane in the regulation of GLP-1. Endocrinol Diabetes Metab. 2018;1:e00006. https://doi.org/10.1002/edm2.6.

    Article  CAS  PubMed  Google Scholar 

  86. Armougom F, Henry M, Vialettes B, Raccah D, Raoult D. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLoS One. 2009;4:e7125. https://doi.org/10.1371/journal.pone.0007125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Borgo F, et al. Microbiota in anorexia nervosa: the triangle between bacterial species, metabolites and psychological tests. PLoS One. 2017;12:e0179739. https://doi.org/10.1371/journal.pone.0179739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kearney J. Food consumption trends and drivers. Philos Trans R Soc Lond Ser B Biol Sci. 2010;365:2793–807. https://doi.org/10.1098/rstb.2010.0149.

    Article  Google Scholar 

  89. World Health Organization. Fact sheet—healthy diet. Geneva: World Health Organization; 2020.

    Google Scholar 

  90. Statovci D, Aguilera M, MacSharry J, Melgar S. The impact of western diet and nutrients on the microbiota and immune response at mucosal interfaces. Front Immunol. 2017;8:838. https://doi.org/10.3389/fimmu.2017.00838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Popkin BM, Adair LS, Ng SW. Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev. 2012;70:3–21. https://doi.org/10.1111/j.1753-4887.2011.00456.x.

    Article  PubMed  Google Scholar 

  92. Ludwig DS, et al. High glycemic index foods, overeating, and obesity. Pediatrics. 1999;103:E26. https://doi.org/10.1542/peds.103.3.e26.

    Article  CAS  PubMed  Google Scholar 

  93. Martinez Steele E, et al. Ultra-processed foods and added sugars in the US diet: evidence from a nationally representative cross-sectional study. BMJ Open. 2016;6:e009892. https://doi.org/10.1136/bmjopen-2015-009892.

    Article  PubMed  PubMed Central  Google Scholar 

  94. De Filippo C, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107:14691–6. https://doi.org/10.1073/pnas.1005963107.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Yatsunenko T, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–7. https://doi.org/10.1038/nature11053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Brooks L, et al. Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansion to increase satiety. Mol Metab. 2017;6:48–60. https://doi.org/10.1016/j.molmet.2016.10.011.

    Article  CAS  PubMed  Google Scholar 

  97. Abutair AS, Naser IA, Hamed AT. Soluble fibers from psyllium improve glycemic response and body weight among diabetes type 2 patients (randomized control trial). Nutr J. 2016;15:86. https://doi.org/10.1186/s12937-016-0207-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pino JL, Mujica V, Arredondo M. Effect of dietary supplementation with oat β-glucan for 3 months in subjects with type 2 diabetes: a randomized, double-blind, controlled clinical trial. J Funct Foods. 2021;77:104311. https://doi.org/10.1016/j.jff.2020.104311.

    Article  CAS  Google Scholar 

  99. Frias JP, et al. A microbiome-targeting fibre-enriched nutritional formula is well tolerated and improves quality of life and haemoglobin A1c in type 2 diabetes: a double-blind, randomized, placebo-controlled trial. Diabetes Obes Metab. 2023;25:1203–12. https://doi.org/10.1111/dom.14967.

    Article  CAS  PubMed  Google Scholar 

  100. David LA, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63. https://doi.org/10.1038/nature12820.

    Article  CAS  PubMed  Google Scholar 

  101. Sonnenburg JL, et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science. 2005;307:1955–9. https://doi.org/10.1126/science.1109051.

    Article  CAS  PubMed  Google Scholar 

  102. Sonnenburg ED, et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature. 2016;529:212–5. https://doi.org/10.1038/nature16504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Malik VS, Hu FB. Sweeteners and risk of obesity and type 2 diabetes: the role of sugar-sweetened beverages. Curr Diab Rep. 2012; https://doi.org/10.1007/s11892-012-0259-6.

  104. Popkin BM. Patterns of beverage use across the lifecycle. Physiol Behav. 2010;100:4–9. https://doi.org/10.1016/j.physbeh.2009.12.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Malik VS, et al. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes Care. 2010;33:2477–83. https://doi.org/10.2337/dc10-1079.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Schulze MB, et al. Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. JAMA. 2004;292:927–34. https://doi.org/10.1001/jama.292.8.927.

    Article  CAS  PubMed  Google Scholar 

  107. Kim JJ, Sears DD. TLR4 and insulin resistance. Gastroenterol Res Pract. 2010;2010:212563. https://doi.org/10.1155/2010/212563.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Substances added to food. U.S. Food and Drug Administration; 2018. https://www.usc.es/caa/EdulcWeb/EAFUS.pdf.

  109. Simmons AL, Schlezinger JJ, Corkey BE. What are we putting in our food that is making us fat? Food additives, contaminants, and other putative contributors to obesity. Curr Obes Rep. 2014;3:273–85. https://doi.org/10.1007/s13679-014-0094-y.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Brown RJ, Walter M, Rother KI. Ingestion of diet soda before a glucose load augments glucagon-like peptide-1 secretion. Diabetes Care. 2009;32:2184–6. https://doi.org/10.2337/dc09-1185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yang Q. Gain weight by “going diet?” Artificial sweeteners and the neurobiology of sugar cravings: neuroscience 2010. Yale J Biol Med. 2010;83:101–8.

    PubMed  PubMed Central  Google Scholar 

  112. Barrios-Correa AA, et al. Chronic intake of commercial sweeteners induces changes in feeding behavior and signaling pathways related to the control of appetite in BALB/c mice. Biomed Res Int. 2018;2018:3628121. https://doi.org/10.1155/2018/3628121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lohner S, Toews I, Meerpohl JJ. Health outcomes of non-nutritive sweeteners: analysis of the research landscape. Nutr J. 2017;16:55. https://doi.org/10.1186/s12937-017-0278-x.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ruiz-Ojeda FJ, Plaza-Diaz J, Saez-Lara MJ, Gil A. Effects of sweeteners on the gut microbiota: a review of experimental studies and clinical trials. Adv Nutr. 2019;10:S31–48. https://doi.org/10.1093/advances/nmy037.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Ferland A, Brassard P, Poirier P. Is aspartame really safer in reducing the risk of hypoglycemia during exercise in patients with type 2 diabetes? Diabetes Care. 2007;30:e59. https://doi.org/10.2337/dc06-1888.

    Article  PubMed  Google Scholar 

  116. Gul SS, et al. Inhibition of the gut enzyme intestinal alkaline phosphatase may explain how aspartame promotes glucose intolerance and obesity in mice. Appl Physiol Nutr Metab. 2017;42:77–83. https://doi.org/10.1139/apnm-2016-0346.

    Article  CAS  PubMed  Google Scholar 

  117. Nettleton JE, et al. Maternal low-dose aspartame and stevia consumption with an obesogenic diet alters metabolism, gut microbiota and mesolimbic reward system in rat dams and their offspring. Gut. 2020;69(10):1807. https://doi.org/10.1136/gutjnl-2018-317505.

    Article  CAS  PubMed  Google Scholar 

  118. Palmnas MS, et al. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PLoS One. 2014;9:e109841. https://doi.org/10.1371/journal.pone.0109841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Anton SD, et al. Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels. Appetite. 2010;55:37–43. https://doi.org/10.1016/j.appet.2010.03.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tey SL, Salleh NB, Henry J, Forde CG. Effects of aspartame-, monk fruit-, stevia- and sucrose-sweetened beverages on postprandial glucose, insulin and energy intake. Int J Obes. 2017;41:450–7. https://doi.org/10.1038/ijo.2016.225.

    Article  CAS  Google Scholar 

  121. Kuk JL, Brown RE. Aspartame intake is associated with greater glucose intolerance in individuals with obesity. Appl Physiol Nutr Metab. 2016;41:795–8. https://doi.org/10.1139/apnm-2015-0675.

    Article  CAS  PubMed  Google Scholar 

  122. Suez J, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514:181–6. https://doi.org/10.1038/nature13793.

    Article  CAS  PubMed  Google Scholar 

  123. Labrecque MT, Malone D, Caldwell KE, Allan AM. Impact of ethanol and saccharin on fecal microbiome in pregnant and non-pregnant mice. J Pregnancy Child Health. 2015;2:1000193. https://doi.org/10.4172/2376-127X.1000193.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Bian X, et al. Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions. Food Chem Toxicol. 2017;107:530–9. https://doi.org/10.1016/j.fct.2017.04.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Suez J, et al. Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell. 2022;185:3307–3328.e3319. https://doi.org/10.1016/j.cell.2022.07.016.

    Article  CAS  PubMed  Google Scholar 

  126. Hosseini A, Barlow GM, Leite G, et al. Consuming Artificial Sweeteners May Alter the Structure and Function of Duodenal Microbial Communities. iScience 2023:108530. https://doi.org/10.1016/j.isci.2023.108530.

  127. Viennois E, Gewirtz AT, Chassaing B. Chronic inflammatory diseases: are we ready for microbiota-based dietary intervention? Cell Mol Gastroenterol Hepatol. 2019;8:61–71. https://doi.org/10.1016/j.jcmgh.2019.02.008.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Chassaing B, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015;519:92–6. https://doi.org/10.1038/nature14232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chassaing B, Van de Wiele T, De Bodt J, Marzorati M, Gewirtz AT. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut. 2017;66:1414–27. https://doi.org/10.1136/gutjnl-2016-313099.

    Article  CAS  PubMed  Google Scholar 

  130. Cullender TC, et al. Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut. Cell Host Microbe. 2013;14:571–81. https://doi.org/10.1016/j.chom.2013.10.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Moser C, et al. Antibiotic therapy as personalized medicine—general considerations and complicating factors. APMIS. 2019;127:361–71. https://doi.org/10.1111/apm.12951.

    Article  PubMed  Google Scholar 

  132. Outpatient antibiotic prescriptions—United States, 2018. Ctr Dis Control Prev; 2020. https://www.cdc.gov/antibioticuse/data/report-2018.html.

  133. Trasande L, et al. Infant antibiotic exposures and early-life body mass. Int J Obes. 2013;37:16–23. https://doi.org/10.1038/ijo.2012.132.

    Article  CAS  Google Scholar 

  134. Turta O, Rautava S. Antibiotics, obesity and the link to microbes—what are we doing to our children? BMC Med. 2016;14:57. https://doi.org/10.1186/s12916-016-0605-7.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Fenneman AC, Weidner M, Chen LA, Nieuwdorp M, Blaser MJ. Antibiotics in the pathogenesis of diabetes and inflammatory diseases of the gastrointestinal tract. Nat Rev Gastroenterol Hepatol. 2023;20:81–100. https://doi.org/10.1038/s41575-022-00685-9.

    Article  PubMed  Google Scholar 

  136. Koenig JE, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4578–85. https://doi.org/10.1073/pnas.1000081107.

    Article  PubMed  Google Scholar 

  137. Bailey LC, et al. Association of antibiotics in infancy with early childhood obesity. JAMA Pediatr. 2014;168:1063–9. https://doi.org/10.1001/jamapediatrics.2014.1539.

    Article  PubMed  Google Scholar 

  138. Saari A, Virta LJ, Sankilampi U, Dunkel L, Saxen H. Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life. Pediatrics. 2015;135:617–26. https://doi.org/10.1542/peds.2014-3407.

    Article  PubMed  Google Scholar 

  139. Scott FI, et al. Administration of antibiotics to children before age 2 years increases risk for childhood obesity. Gastroenterology. 2016;151:120–129.e125. https://doi.org/10.1053/j.gastro.2016.03.006.

    Article  CAS  PubMed  Google Scholar 

  140. Chelimo C, Camargo CA Jr, Morton SMB, Grant CC. Association of repeated antibiotic exposure up to age 4 years with body mass at age 4.5 years. JAMA Netw Open. 2020;3:e1917577. https://doi.org/10.1001/jamanetworkopen.2019.17577.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Aversa Z, et al. Association of infant antibiotic exposure with childhood health outcomes. Mayo Clin Proc. 2020;96(1):66–77. https://doi.org/10.1016/j.mayocp.2020.07.019.

    Article  PubMed  Google Scholar 

  142. Zhang M, et al. Association of prenatal antibiotics with measures of infant adiposity and the gut microbiome. Ann Clin Microbiol Antimicrob. 2019;18:18. https://doi.org/10.1186/s12941-019-0318-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Jess T, et al. Antibiotic use during pregnancy and childhood overweight: a population-based nationwide cohort study. Sci Rep. 2019;9:11528. https://doi.org/10.1038/s41598-019-48065-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Isaevska E, et al. Maternal antibiotic use and vaginal infections in the third trimester of pregnancy and the risk of obesity in preschool children. Pediatr Obes. 2020;15:e12632. https://doi.org/10.1111/ijpo.12632.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Furlong M, Deming-Halverson S, Sandler DP. Chronic antibiotic use during adulthood and weight change in the sister study. PLoS One. 2019;14:e0216959. https://doi.org/10.1371/journal.pone.0216959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Thuny F, et al. Vancomycin treatment of infective endocarditis is linked with recently acquired obesity. PLoS One. 2010;5:e9074. https://doi.org/10.1371/journal.pone.0009074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Reijnders D, et al. Effects of gut microbiota manipulation by antibiotics on host metabolism in obese humans: a randomized double-blind placebo-controlled trial. Cell Metab. 2016;24:63–74. https://doi.org/10.1016/j.cmet.2016.06.016.

    Article  CAS  PubMed  Google Scholar 

  148. Chen H, Goldberg MS. The effects of outdoor air pollution on chronic illnesses. Mcgill J Med. 2009;12:58–64.

    PubMed  PubMed Central  Google Scholar 

  149. Cohen AJ, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017;389:1907–18. https://doi.org/10.1016/S0140-6736(17)30505-6.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Dendup T, Feng X, Clingan S, Astell-Burt T. Environmental risk factors for developing type 2 diabetes mellitus: a systematic review. Int J Environ Res Public Health. 2018;15:78. https://doi.org/10.3390/ijerph15010078.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Rajagopalan S, Brook RD. Air pollution and type 2 diabetes: mechanistic insights. Diabetes. 2012;61:3037–45. https://doi.org/10.2337/db12-0190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Jin Y, Wu S, Zeng Z, Fu Z. Effects of environmental pollutants on gut microbiota. Environ Pollut. 2017;222:1–9. https://doi.org/10.1016/j.envpol.2016.11.045.

    Article  CAS  PubMed  Google Scholar 

  153. Fouladi F, et al. Air pollution exposure is associated with the gut microbiome as revealed by shotgun metagenomic sequencing. Environ Int. 2020;138:105604. https://doi.org/10.1016/j.envint.2020.105604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lee DH, Porta M, Jacobs DR Jr, Vandenberg LN. Chlorinated persistent organic pollutants, obesity, and type 2 diabetes. Endocr Rev. 2014;35:557–601. https://doi.org/10.1210/er.2013-1084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Jin UH, et al. Microbiome-derived tryptophan metabolites and their aryl hydrocarbon receptor-dependent agonist and antagonist activities. Mol Pharmacol. 2014;85:777–88. https://doi.org/10.1124/mol.113.091165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Howell G 3rd, Mangum L. Exposure to bioaccumulative organochlorine compounds alters adipogenesis, fatty acid uptake, and adipokine production in NIH3T3-L1 cells. Toxicol In Vitro. 2011;25:394–402. https://doi.org/10.1016/j.tiv.2010.10.015.

    Article  CAS  PubMed  Google Scholar 

  157. Zhang L, et al. Persistent organic pollutants modify gut microbiota-host metabolic homeostasis in mice through aryl hydrocarbon receptor activation. Environ Health Perspect. 2015;123:679–88. https://doi.org/10.1289/ehp.1409055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lefever DE, et al. TCDD modulation of gut microbiome correlated with liver and immune toxicity in streptozotocin (STZ)-induced hyperglycemic mice. Toxicol Appl Pharmacol. 2016;304:48–58. https://doi.org/10.1016/j.taap.2016.05.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Peat CM, Kleiman SC, Bulik CM, Carroll IM. The intestinal microbiome in bariatric surgery patients. Eur Eat Disord Rev. 2015;23:496–503. https://doi.org/10.1002/erv.2400.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Gloy VL, et al. Bariatric surgery versus non-surgical treatment for obesity: a systematic review and meta-analysis of randomised controlled trials. BMJ. 2013;347:f5934. https://doi.org/10.1136/bmj.f5934.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Kang JH, Le QA. Effectiveness of bariatric surgical procedures: a systematic review and network meta-analysis of randomized controlled trials. Medicine (Baltimore). 2017;96:e8632. https://doi.org/10.1097/MD.0000000000008632.

    Article  PubMed  Google Scholar 

  162. Crommen S, Mattes A, Simon MC. Microbial adaptation due to gastric bypass surgery: the nutritional impact. Nutrients. 2020;12:1199. https://doi.org/10.3390/nu12041199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Paganelli FL, et al. Roux-Y gastric bypass and sleeve gastrectomy directly change gut microbiota composition independent of surgery type. Sci Rep. 2019;9:10979. https://doi.org/10.1038/s41598-019-47332-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Palmisano S, et al. Changes in gut microbiota composition after bariatric surgery: a new balance to decode. J Gastrointest Surg. 2019;24(8):1736–46. https://doi.org/10.1007/s11605-019-04321-x.

    Article  PubMed  Google Scholar 

  165. Zhang H, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A. 2009;106:2365–70. https://doi.org/10.1073/pnas.0812600106.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Furet JP, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;59:3049–57. https://doi.org/10.2337/db10-0253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kong L-C, et al. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr. 2013;98:16–24. https://doi.org/10.3945/ajcn.113.058743.

    Article  CAS  PubMed  Google Scholar 

  168. Graessler J, et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics J. 2013;13:514–22. https://doi.org/10.1038/tpj.2012.43.

    Article  CAS  PubMed  Google Scholar 

  169. Davies N, O’Sullivan JM, Plank LD, Murphy R. Gut microbial predictors of type 2 diabetes remission following bariatric surgery. Obes Surg. 2020;30(9):3536. https://doi.org/10.1007/s11695-020-04684-0.

    Article  PubMed  Google Scholar 

  170. Murphy R, et al. Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission. Obes Surg. 2017;27:917–25. https://doi.org/10.1007/s11695-016-2399-2.

    Article  PubMed  Google Scholar 

  171. Cortez RV, et al. Shifts in intestinal microbiota after duodenal exclusion favor glycemic control and weight loss: a randomized controlled trial. Surg Obes Relat Dis. 2018;14:1748–54. https://doi.org/10.1016/j.soard.2018.07.021.

    Article  PubMed  Google Scholar 

  172. Wang C, et al. The genus Sutterella is a potential contributor to glucose metabolism improvement after Roux-en-Y gastric bypass surgery in T2D. Diabetes Res Clin Pract. 2020;162:108116. https://doi.org/10.1016/j.diabres.2020.108116.

    Article  CAS  PubMed  Google Scholar 

  173. Dao MC, et al. Akkermansia muciniphila abundance is lower in severe obesity, but its increased level after bariatric surgery is not associated with metabolic health improvement. Am J Physiol Endocrinol Metab. 2019;317:E446–59. https://doi.org/10.1152/ajpendo.00140.2019.

    Article  CAS  PubMed  Google Scholar 

  174. Farup PG, Valeur J. Changes in faecal short-chain fatty acids after weight-loss interventions in subjects with morbid obesity. Nutrients. 2020;12:802. https://doi.org/10.3390/nu12030802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Glaysher MA, et al. A randomised controlled trial of a duodenal-jejunal bypass sleeve device (EndoBarrier) compared with standard medical therapy for the management of obese subjects with type 2 diabetes mellitus. BMJ Open. 2017;7:e018598. https://doi.org/10.1136/bmjopen-2017-018598.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Ruban A, Ashrafian H, Teare JP. The EndoBarrier: duodenal-jejunal bypass liner for diabetes and weight loss. Gastroenterol Res Pract. 2018;2018:7823182. https://doi.org/10.1155/2018/7823182.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Kim T, Holleman CL, Ptacek T, Morrow CD, Habegger KM. Duodenal endoluminal barrier sleeve alters gut microbiota of ZDF rats. Int J Obes. 2017;41:381–9. https://doi.org/10.1038/ijo.2016.224.

    Article  CAS  Google Scholar 

  178. Paszkiewicz RL, et al. EndoBarrier® implantation results in fecalization of the small bowel microbiome and systemic inflammation in a canine model. Curr Res Clin Diab Obes. 2020;1:102.

    Google Scholar 

  179. de Jonge C, et al. Metabolic improvement in obese patients after duodenal-jejunal exclusion is associated with intestinal microbiota composition changes. Int J Obes. 2019;43:2509–17. https://doi.org/10.1038/s41366-019-0336-x.

    Article  Google Scholar 

  180. van Baar ACG, et al. Durable metabolic improvements 2 years after duodenal mucosal resurfacing (DMR) in patients with type 2 diabetes (REVITA-1 Study). Diabetes Res Clin Pract. 2022;184:109194. https://doi.org/10.1016/j.diabres.2022.109194.

    Article  CAS  PubMed  Google Scholar 

  181. Meiring S, et al. A changed gut microbiota diversity is associated with metabolic improvements after duodenal mucosal resurfacing with glucagon-like-peptide-1 receptor agonist in type 2 diabetes in a pilot study. Front Clin Diabetes Healthc. 2022;3:856661. https://doi.org/10.3389/fcdhc.2022.856661.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Shokryazdan P, Faseleh Jahromi M, Navidshad B, Liang JB. Effects of prebiotics on immune system and cytokine expression. Med Microbiol Immunol. 2017;206:1–9. https://doi.org/10.1007/s00430-016-0481-y.

    Article  CAS  PubMed  Google Scholar 

  183. Yoo JY, Kim SS. Probiotics and prebiotics: present status and future perspectives on metabolic disorders. Nutrients. 2016;8:173. https://doi.org/10.3390/nu8030173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Wilkins T, Sequoia J. Probiotics for gastrointestinal conditions: a summary of the evidence. Am Fam Physician. 2017;96:170–8.

    PubMed  Google Scholar 

  185. de Oliveira GLV, Leite AZ, Higuchi BS, Gonzaga MI, Mariano VS. Intestinal dysbiosis and probiotic applications in autoimmune diseases. Immunology. 2017;152:1–12. https://doi.org/10.1111/imm.12765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Marino E, et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat Immunol. 2017;18:552–62. https://doi.org/10.1038/ni.3713.

    Article  CAS  PubMed  Google Scholar 

  187. Nagpal R, et al. Human-origin probiotic cocktail increases short-chain fatty acid production via modulation of mice and human gut microbiome. Sci Rep. 2018;8:12649. https://doi.org/10.1038/s41598-018-30114-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Zhang L, et al. Akkermansia muciniphila can reduce the damage of gluco/lipotoxicity, oxidative stress and inflammation, and normalize intestine microbiota in streptozotocin-induced diabetic rats. Pathog Dis. 2018;76:4. https://doi.org/10.1093/femspd/fty028.

    Article  CAS  Google Scholar 

  189. Albuquerque R, et al. Saccharomyces boulardii Tht 500101 changes gut microbiota and ameliorates hyperglycaemia, dyslipidaemia, and liver inflammation in streptozotocin-diabetic mice. Benef Microbes. 2019;10:901–12. https://doi.org/10.3920/BM2019.0056.

    Article  CAS  PubMed  Google Scholar 

  190. Wang Y, et al. Composite probiotics alleviate type 2 diabetes by regulating intestinal microbiota and inducing GLP-1 secretion in db/db mice. Biomed Pharmacother. 2020;125:109914. https://doi.org/10.1016/j.biopha.2020.109914.

    Article  CAS  PubMed  Google Scholar 

  191. Gu Y, et al. Lactobacillus paracasei IMC 502 ameliorates type 2 diabetes by mediating gut microbiota-SCFA-hormone/inflammation pathway in mice. J Sci Food Agric. 2023;103:2949–59. https://doi.org/10.1002/jsfa.12267.

    Article  CAS  PubMed  Google Scholar 

  192. Koopen A, et al. Duodenal Anaerobutyricum soehngenii infusion stimulates GLP-1 production, ameliorates glycaemic control and beneficially shapes the duodenal transcriptome in metabolic syndrome subjects: a randomised double-blind placebo-controlled cross-over study. Gut. 2022;71:1577–87. https://doi.org/10.1136/gutjnl-2020-323297.

    Article  CAS  PubMed  Google Scholar 

  193. Liu X, et al. Cordyceps militaris extracts and cordycepin ameliorate type 2 diabetes mellitus by modulating the gut microbiota and metabolites. Front Pharmacol. 2023;14:1134429. https://doi.org/10.3389/fphar.2023.1134429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Kim BH, Yim SV, Hwang SD, Kim YS, Kim JH. A clinical trial on anti-diabetic efficacy of submerged culture medium of Ceriporia lacerata mycelium. BMC Complement Med Ther. 2023;23:83. https://doi.org/10.1186/s12906-023-03895-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Weese JS, Martin H. Assessment of commercial probiotic bacterial contents and label accuracy. Can Vet J. 2011;52:43–6.

    PubMed  PubMed Central  Google Scholar 

  196. Morovic W, Hibberd AA, Zabel B, Barrangou R, Stahl B. Genotyping by PCR and high-throughput sequencing of commercial probiotic products reveals composition biases. Front Microbiol. 2016;7:1747. https://doi.org/10.3389/fmicb.2016.01747.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Tian Y, et al. Fecal microbiota transplantation for ulcerative colitis: a prospective clinical study. BMC Gastroenterol. 2019;19:116. https://doi.org/10.1186/s12876-019-1010-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Khan MT, Nieuwdorp M, Backhed F. Microbial modulation of insulin sensitivity. Cell Metab. 2014;20:753–60. https://doi.org/10.1016/j.cmet.2014.07.006.

    Article  CAS  PubMed  Google Scholar 

  199. Allegretti JR, et al. Effects of fecal microbiota transplantation with oral capsules in obese patients. Clin Gastroenterol Hepatol. 2020;18:855–863.e852. https://doi.org/10.1016/j.cgh.2019.07.006.

    Article  CAS  PubMed  Google Scholar 

  200. Yu EW, et al. 622—Double-blind randomized placebo-controlled trial of weekly fecal microbiota transplantation (FMT) capsules in obese adults: evaluating microbiota engraftment and improvements in insulin sensitivity. Gastroenterology. 2019;156:S-129–30.

    Article  Google Scholar 

  201. Leser TD, Molbak L. Better living through microbial action: the benefits of the mammalian gastrointestinal microbiota on the host. Environ Microbiol. 2009;11:2194–206. https://doi.org/10.1111/j.1462-2920.2009.01941.x.

    Article  CAS  PubMed  Google Scholar 

  202. Costello EK, et al. Bacterial community variation in human body habitats across space and time. Science. 2009;326:1694–7. https://doi.org/10.1126/science.1177486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Hillman ET, Lu H, Yao T, Nakatsu CH. Microbial ecology along the gastrointestinal tract. Microbes Environ. 2017;32:300–13. https://doi.org/10.1264/jsme2.ME17017.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Leite GGS, et al. Mapping the segmental microbiomes in the human small bowel in comparison with stool: a REIMAGINE study. Dig Dis Sci. 2020;65:2595–604. https://doi.org/10.1007/s10620-020-06173-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Aydin O, Nieuwdorp M, Gerdes V. The gut microbiome as a target for the treatment of type 2 diabetes. Curr Diab Rep. 2018;18:55. https://doi.org/10.1007/s11892-018-1020-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Wang Y, et al. The intestinal microbiota regulates body composition through NFIL3 and the circadian clock. Science. 2017;357:912–6. https://doi.org/10.1126/science.aan0677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Kubo M. Diurnal rhythmicity programs of microbiota and transcriptional oscillation of circadian regulator, NFIL3. Front Immunol. 2020;11:552188. https://doi.org/10.3389/fimmu.2020.552188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. de Assis LVM, Oster H. The circadian clock and metabolic homeostasis: entangled networks. Cell Mol Life Sci. 2021;78:4563–87. https://doi.org/10.1007/s00018-021-03800-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Gutierrez Lopez DE, Lashinger LM, Weinstock GM, Bray MS. Circadian rhythms and the gut microbiome synchronize the host’s metabolic response to diet. Cell Metab. 2021;33:873–87. https://doi.org/10.1016/j.cmet.2021.03.015.

    Article  CAS  PubMed  Google Scholar 

  210. Beccuti G, Pannain S. Sleep and obesity. Curr Opin Clin Nutr Metab Care. 2011;14:402–12. https://doi.org/10.1097/MCO.0b013e3283479109.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Allaband C, et al. Intermittent hypoxia and hypercapnia alter diurnal rhythms of luminal gut microbiome and metabolome. mSystems. 2021;6:e0011621. https://doi.org/10.1128/mSystems.00116-21.

    Article  PubMed  Google Scholar 

  212. Thaiss CA, et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 2014;159:514–29. https://doi.org/10.1016/j.cell.2014.09.048.

    Article  CAS  PubMed  Google Scholar 

  213. Booijink CC, et al. High temporal and inter-individual variation detected in the human ileal microbiota. Environ Microbiol. 2010;12:3213–27. https://doi.org/10.1111/j.1462-2920.2010.02294.x.

    Article  CAS  PubMed  Google Scholar 

  214. Stokes K, et al. The circadian clock gene BMAL1 coordinates intestinal regeneration. Cell Mol Gastroenterol Hepatol. 2017;4:95–114. https://doi.org/10.1016/j.jcmgh.2017.03.011.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Harris C, Czaja K. Can circadian eating pattern adjustments reduce risk or prevent development of T2D? Nutrients. 2023;15:1762. https://doi.org/10.3390/nu15071762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruchi Mathur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barlow, G.M., Celly, S., Mathur, R. (2023). Changes in the Gut Microbiome as Seen in Diabetes and Obesity. In: Pimentel, M., Mathur, R., Barlow, G.M. (eds) Clinical Understanding of the Human Gut Microbiome. Springer, Cham. https://doi.org/10.1007/978-3-031-46712-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46712-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46711-0

  • Online ISBN: 978-3-031-46712-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics