Skip to main content

Coordination Number of Grains

  • Chapter
  • First Online:
Statistical Rock Physics

Chapter Highlights

This chapter reviews the combinatorial geometry of granular packings in 2- and 3-D, and the average value of the coordination number, \(\langle Z\rangle \), for different cases. The mechanical stability of random packs requires the satisfaction of a set of linear equations, and the consistency of these equations determines the possible values of \(\langle Z\rangle \). The coordination number is also determined in the presence of friction and adhesive forces. Recent attempts to find an Equation of State (EOS) between packing fraction and mean coordination number are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander S (1998) Amorphous solids: their structure, lattice dynamics and elasticity. Phys Rep 296:65–236

    Article  CAS  Google Scholar 

  • Aste T (2005) Variations around disordered close packings. J Phys: Condens Matter 17:2361–2390

    Google Scholar 

  • Aste T, Saadatfar M, Senden TJ (2005) Geometrical structure of disordered sphere packings. Phys Rev E 71:061302

    Article  CAS  Google Scholar 

  • Atkinson S, Stillinger FH, Torquato S (2014) Existence of isostatic, maximally random jammed monodisperse hard-disk packings. Proc Natl Acad Sci 111:18436–18441

    Google Scholar 

  • Barton M (1993) Cohesive sands; the natural transition from sands to sandstones. In: Anagnostopoulos A, Scholosser F, Kalteziotis N, Frank R (eds) Geotechnical engineering of hard soils—soft rocks, vol 1: geological features, investigation and classification; mechanical properties and behaviour. A.A. Balkema, Rotterdam, pp 367–374

    Google Scholar 

  • Baule A, Mari R, Lin B, Portal L, Makse HA (2013) Mean-field theory of random close packings of axisymmetric particles. Nat Commun 4:2194

    Google Scholar 

  • Bennett CH (1972) Serially deposited amorphous aggregates of hard spheres. J Appl Phys 43(6):2727–2734

    Article  CAS  Google Scholar 

  • Bernal DJ, Mason J (1960) Coordination of randomly packed spheres. Nature 188:910–911

    Article  Google Scholar 

  • Berryman JG (1983) Random close packing of hard spheres and disks. Phys Rev A 27:1053–1061

    Article  CAS  Google Scholar 

  • Bezrukov A, Stoyan D, BargieÅ‚ M (2001) Spatial statistics for simulated packings of spheres. Image Anal Stereol 20:203–206

    Google Scholar 

  • Blétry M, Russier V, Barbé E, Blétry J (2018) Structure of sticky-hard-sphere random aggregates: the viewpoint of contact coordination and tetrahedral. Phys Rev E 98(1–1):012101

    Article  Google Scholar 

  • Blouwolff J, Fraden S (2006) The coordination number of granular cylinders. Europhys Lett 76(6):1095–1101

    Article  CAS  Google Scholar 

  • Brouwers HJH (2013) Random packing fraction of bimodal spheres: an analytical expression. Phys Rev E Stat Nonlinear Soft Matter Phys 87(3):032202-1/8

    Google Scholar 

  • Brunner GO (1979) The properties of coordination sequence and conclusions regarding the lowest possible density of zeolites. J Solid State Chem 29:41–45

    Article  Google Scholar 

  • Brunner GO, Laves F (1971) Zum Problem der Koordinationszahl. Wiss z Tech Univ Dresden 20:387–390

    CAS  Google Scholar 

  • Burtseva L, Salas BV, Romero R, Werner F (2015) Multi-sized sphere packings: models and recent approaches. Otto-von-Guericke-Universität, Fakultät für Mathematik

    Google Scholar 

  • Cundall PA, Strack ODL (1979) Discrete numerical model for granular assemblies. Geotechnique 29:47

    Article  Google Scholar 

  • Darling TW, TenCate JA, Brown DW, Clausen B, Vogel SC (2004) Neutron diffraction study of the contribution of grain contacts to nonlinear stress-strain behavior. Geophys Res Lett 31(16):L16604

    Article  Google Scholar 

  • Drury MR, Urai JL (1990) Deformation-related recrystallization processes. Tectonophysics 172(3–4):235–253

    Article  Google Scholar 

  • Fejes Tóth L (1972) Lagerungen in der Ebene, auf der Kugel und im Raum, 2nd edn. Springer-Verlag, Berlin-Heidelberg-New York

    Book  Google Scholar 

  • Flinn D (1969) Grain contacts in crystalline rocks. Lithos 2(4):361–370

    Google Scholar 

  • Fonseca J, O'Sullivan C, Coop MR (2010) Quantitative description of grain contacts in a locked sand. In: Reed AH (ed) Advances in computed tomography for geomaterials: GeoX 2010. Wiley, Hoboken NJ, pp 17–25

    Google Scholar 

  • Gaither A (1953) A study of porosity and grain relationships in experimental sands. J Sediment Petrol 23(3):180–195

    CAS  Google Scholar 

  • German RM (1989) Particle packing characteristics. Metal Powder Industries Federations, Princeton, NJ

    Google Scholar 

  • Groemer H (1986) Some basic properties of packing and covering constants. Discret Comput Geom 1(2):183–193

    Article  Google Scholar 

  • Hanifpour M, Francois N, Allaei MV, Saadatfar M (2013) DEM simulation of experimental dense granular packing. AIP Conf Proc 1542:337–340

    Google Scholar 

  • Hao YJ, Tanaka T (1990) A new experimental method to specify the diffusing component in a reacting particulate packing. Can J Chem Eng 68:81

    Article  CAS  Google Scholar 

  • Hoffman P (1998) The man who loved only numbers: the story of paul erdÅ‘s and the search for mathematical truth. Hyperion, New York

    Google Scholar 

  • Isola R (2008) Packing of granular materials. Ph.D. Thesis, University of Nottingham

    Google Scholar 

  • Jodrey WS, Tory EM (1979) Simulation of random packing of spheres. J Simul 32:1–12

    Article  Google Scholar 

  • Johnson NL, Kotz S, Balakrishnan N (1970) Continuous univariate distributions, 2nd edn, vol 1. Wiley, New York

    Google Scholar 

  • Johnson KL, Kendall K, Roberts AD (1971) Surface energy and contact of elastic solids. Proc R Soc London Ser A: Math Phys Sci 324:301

    Google Scholar 

  • Liu W, Jin Y, Chen S, Makse HA, Li S (2017) Equation of state for random sphere packings with arbitrary adhesion and friction. Soft Matter 13:421–427

    Google Scholar 

  • Madadi M, Christy AG (2012) A modified coherent potential approximation: Grain-contact moduli and coordination-number effect. Geophysics 77(3):WA141–WA148

    Google Scholar 

  • Maxwell JC (1864) On the calculation of the equilibrium and stiffness of frames. Lond Edinburgh Dublin Philos Mag J Sci 27:182, 294–299

    Google Scholar 

  • Meyer S, Song C, Jin Y, Wang K, Makse HA (2010) Jamming in two-dimensional packings. Physica A: Stat Mech Appl 389(22):5137–5144

    Google Scholar 

  • Migal LV, Bondarev VG, Chekanov NA, Bondareva TP (2020) Simulation of the coordination number of random sphere packing. J Phys: Conf Ser 1479:012097

    Google Scholar 

  • Migal LV, Bondarev VG, Bondareva TP, Belyaeva IN (2019) Mathematical model of coordination number of spherical packing. Compusoft Int J Adv Comput Technol 8(6):3187–3191

    Google Scholar 

  • MoÅ›ciÅ„ski J, BargieÅ‚ M (1991) C-language program for the irregular close packing of hard spheres. Comput Phys Comm 64:183–192

    Article  Google Scholar 

  • MoÅ›ciÅ„ski J, BargieÅ‚ M, Rycerz ZA, Jacobs PWM (1989) The force-biased algorithm for the irregular close packing of equal hard spheres. Mol Simul 3(4):201–212

    Article  Google Scholar 

  • Mukhopadhyay S, Peixinho J (2011) Packings of deformable spheres. Phys Rev E: Stat Nonlinear Soft Matter Phys 84:011302

    Google Scholar 

  • Nguyen TT, Tran TN, Willemsz TA, Frijlink HW (2011) A density based segmentation method to determine the coordination number of a particulate system. Chem Eng Sci 66:6385–6392

    Article  CAS  Google Scholar 

  • Nolan GT, Kavanagh PE (1992) Computer simulation of random packing of hard spheres. Powder Technol 72:149

    Article  CAS  Google Scholar 

  • O’Keeffe M (1991a) N-dimensional diamond, sodalite and rare sphere packings. Acta Cryst A 47:748–753

    Article  Google Scholar 

  • O’Keeffe M (1995) Coordination sequences for lattices. Zeit F Krist 210:905–908

    Google Scholar 

  • Oda M (1977) Co-ordination number and its relation to shear strength of granular material. Soils Found 17(2):29–42

    Article  Google Scholar 

  • Oger L, Ippolito I, Vidales AM (2007) How disorder can diminish avalanche risks: effect of size distribution. Granular Matter 9:267–278

    Article  Google Scholar 

  • O’Keeffe M (1991b) Dense and rare four-connected nets. Z Kristallogr 196:21–37

    Article  Google Scholar 

  • Papiya R, Vashishtha M, Khanna R, Subbarao D (2009) Variation of granule mass fraction with coordination number in wet granulation process. Particuology 7:408–413

    Article  Google Scholar 

  • Pettijohn FJ, Potter PE, Siever R (1972) Sand and sandstone. Springer-Verlag, New York

    Google Scholar 

  • Picka J (2012) Statistical inference for disordered sphere packings. Stat Surv 6:74–112

    Article  Google Scholar 

  • Pinson D, Yu AB, Zulli P, McCarthy MJ (1997) Powder entrapment in a multi-phase flow packed bed. In: Battle TP, Henein H (eds) Processing and handling of powders and dusts powder. TMS Publications, Warrendale, PA

    Google Scholar 

  • Retgers JW (1889) Das spezifische Gewicht isomorpher Mischungen. Zeitschrift Für Physikalische Chemi 3(1):497–561

    Article  Google Scholar 

  • Rogers CA (1964) Packing and covering. Cambridge University Press, Cambridge

    Google Scholar 

  • Scott GD (1960) Packing of spheres: packing of equal spheres. Nature 188(4754):908–909

    Article  Google Scholar 

  • Silbert LE, ErtaÅŸ D, Grest GS, Halsey TC, Levine D (2002) Geometry of frictionless and frictional sphere packings. Phys Rev E 65(031304):1–6

    Google Scholar 

  • Song C, Wang P, Makse HA (2008) A phase diagram for jammed matter. Nature 453(7195):629–632

    Article  CAS  Google Scholar 

  • Song C, Wang P, Makse HA (2016) Theory of random packings. arXiv: 1001.5468v2[cond-mat.soft]

    Google Scholar 

  • Stroeven P, He H (2013) Packing of non-spherical aggregate particles by DEM. In: Proceedings of the ACCTA 2013: international conference on advances in cement and concrete technology in Africa. Johannesburg, South Africa, pp 809–816

    Google Scholar 

  • Stroeven P, Stroeven M (2000) Assessment of particle packing characteristics at interfaces by SPACE system. Image Anal Stereol 19:85–90

    Article  Google Scholar 

  • Suzuki M, Oshima T (1989) Relationship between average coordination number and void fraction in randomly packed systems of uniform-sized spheres developed by four kinds of computer simulation. KONA 7:22–28

    Google Scholar 

  • Taiebat M, Mutabaruka P, Pellenq R, Radjai F (2017) Effect of particle size distribution on 3D packings of spherical particles. EPJ Web Conf 140:02030

    Article  Google Scholar 

  • Taylor JM (1950) Pore-space reduction in sandstones. AAPG Bull 34(4):701–716

    Google Scholar 

  • Taylor JM (1949) Pore space reduction in sandstones. Masters Thesis, University of Cincinnati

    Google Scholar 

  • Tory E, Cochrane N, Waddell S (1968) Anisotropy in simulated random packing of equal spheres. Nature 220:1023–1024

    Article  Google Scholar 

  • Ueda T, Matsushima T, Yamada Y (2012) Micro structures of granular materials with various grain size distributions. Powder Technol 217:533–539

    Article  CAS  Google Scholar 

  • Vasilyev L, Raoof A, Nordbotten JM (2012) Effect of mean network coordination number on dispersivity characteristics. Transp Porous Media 95(2):447–463

    Article  CAS  Google Scholar 

  • von Seckendorff J, Hinrichsen O (2021) Review on the structure of random packed beds. Can J Chem Eng 99:S703–S733

    Google Scholar 

  • Wakao N, Kaguei S (1982) Heat and mass transfer in packed beds. Gordon and Breach Science Publishers, New York

    Google Scholar 

  • Wang P, Song C, Briscoe C, Wang K, Makse HA (2008) From force distribution to average coordination number in frictional granular matter. Physica A-Stat Mech Appl 389:3972–3977

    Google Scholar 

  • Wang, Song C, Jin Y, Makse HA (2011) Jamming II: Edwards’ statistical mechanics of random packings of hard spheres. Physica A: Stat Mech Appl 390(3):427–455

    Google Scholar 

  • WiÄ…cek J (2016) Geometrical parameters of binary granular mixtures with size ratio and volume fraction: experiments and DEM simulations. Granul Matter 18:1–10

    Article  Google Scholar 

  • WiÄ…cek J, Stasiak M, Kafashan J (2020) Structural and micromechanical properties of ternary granular packings: effect of particle size ratio and number fraction of particle size classes. Materials 13:339

    Google Scholar 

  • Wilson JC, McBride EF (1988) Compaction and porosity evolution of Pliocene sandstones, Ventura Basin, California. AAPG Bull 72(6):664–681

    Google Scholar 

  • Wouterse A, Luding S, Philipse AP (2009) On contact numbers in random rod packings. Granular Matter 11(3):169–177

    Article  Google Scholar 

  • Ye Y, Van der Werf K, Shattuck MD, O’Hern CS (2019) Jammed packings of 3D superellipsoids with tunable packing fraction, coordination number, and ordering. Soft Matter 15(47):9751–9761

    Article  Google Scholar 

  • Yi LY, Dong KJ, Zou RP, Yu AB (2011) Coordination number of the packing of ternary mixtures of spheres: DEM simulations versus measurements. Ind Eng Chem Res 50:8773–8785

    Article  CAS  Google Scholar 

  • Yu AB, Johnson SB (1994) Distribution function as applied in the mathematical representation of particle-size distributions. Part 1: theoretical background and numerical simulation. Part Part Syst Char 11:291–367; Part 2: Application of numerical results. Part Part Syst Char 11:367

    Google Scholar 

  • Zhou ZY, Yu AB, Zulli P (2009) Particle scale study of heat transfer in packed and bubbling fluidized beds. AIChE J 55:868

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabor Korvin .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korvin, G. (2024). Coordination Number of Grains. In: Statistical Rock Physics. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-46700-4_6

Download citation

Publish with us

Policies and ethics