Skip to main content

Drug-Target Interaction Prediction Based on Drug Subgraph Fingerprint Extraction Strategy and Subgraph Attention Mechanism

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14178))

Included in the following conference series:

  • 298 Accesses

Abstract

Drug discovery is a major focus of modern research, and predicting drug-target interactions is one of the strategies to facilitate this research process. Traditional laboratory methods have long time cycles and are relatively costly, so the use of high-precision virtual screening is essential. Previous virtual screens have only considered the sequence structure of the drug or the graph structure of the drug, without considering the role of the drug subgraph structure. Therefore, this paper adopts a method for extracting drug subgraphs and designs a strategy for extracting drug subgraph fingerprints. Then, the fingerprint vector data of the drugs are trained by the graph neural network to produce drug information vectors containing the spatial structure of the drug subgraph. Finally, the subgraph attention mechanism is used to update the information on protein targets, facilitating the model to extract more information about the target site. The experimental results show that the model can predict drug-target interactions well, outperforming the state-of-the-art model in all metrics. And it is also effective in both classification prediction and affinity regression prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, S., Shan, P., Zhao, Y., et al.: GanDTI: a multi-task neural network for drug-target interaction prediction. Comput. Biol. Chem. 92, 107476 (2021)

    Article  Google Scholar 

  2. Feinberg, E.N., Sur, D., Wu, Z., et al.: PotentialNet for molecular property prediction. ACS Cent. Sci. 4(11), 1520–1530 (2018)

    Article  Google Scholar 

  3. Chen, H., Engkvist, O., Wang, Y., et al.: The rise of deep learning in drug discovery. Drug Discov. Today 23(6), 1241–1250 (2018)

    Article  Google Scholar 

  4. Öztürk, H., Özgür, A., Ozkirimli, E.: DeepDTA: deep drug–target binding affinity prediction. Bioinformatics 34(17), i821–i829 (2018)

    Article  Google Scholar 

  5. Lang, P.T., Brozell, S.R., Mukherjee, S., et al.: DOCK 6: combining techniques to model RNA–small molecule complexes. Rna1 5(6), 1219–1230 (2009)

    Google Scholar 

  6. Morris, G.M., Huey, R., Lindstrom, W., et al.: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30(16), 2785–2791 (2009)

    Article  Google Scholar 

  7. Zhang, X., Lin, X., Zhao, J., et al.: Efficiently predicting hot spots in PPIs by combining random forest and synthetic minority over-sampling technique. IEEE/ACM Trans. Comput. Biol. Bioinf. 16(3), 774–781 (2018)

    Article  Google Scholar 

  8. Liu, H., Sun, J., Guan, J., et al.: Improving compound–protein interaction prediction by building up highly credible negative samples. Bioinformatics 31(12), i221–i229 (2015)

    Article  Google Scholar 

  9. Yamanishi, Y., Araki, M., Gutteridge, A., et al.: Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24(13), i232–i240 (2008)

    Article  Google Scholar 

  10. Fokoue, A., Sadoghi, M., Hassanzadeh, O., Zhang, P.: Predicting drug-drug interactions through large-scale similarity-based link prediction. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 774–789. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34129-3_47

  11. Ye, Q., Zhang, X., Lin, X.: Drug-target interaction prediction via graph auto-encoder and multi-subspace deep neural networks. IEEE/ACM Trans. Comput. Biol. Bioinform. (2022)

    Google Scholar 

  12. Li, S., Wan, F., Shu, H., et al.: MONN: a multi-objective neural network for predicting compound-protein interactions and affinities. Cell Syst. 10(4), 308–322 (2020)

    Article  Google Scholar 

  13. Tsubaki, M., Tomii, K., Sese, J.: Compound–protein interaction prediction with end-to-end learning of neural networks for graphs and sequences. Bioinformatics 35(2), 309–318 (2019)

    Article  Google Scholar 

  14. Öztürk, H., Ozkirimli, E., Özgür, A.: WideDTA: prediction of drug-target binding affinity. arXiv preprint arXiv:1902.04166 (2019)

    Google Scholar 

  15. Wan, F., Zhu, Y., Hu, H., et al.: DeepCPI: a deep learning-based framework for large-scale in silico drug screening. Genomics Proteomics Bioinform. 17(5), 478–495 (2019)

    Article  Google Scholar 

  16. Chen, W., Chen, G., Zhao, L., et al.: Predicting drug–target interactions with deep-embedding learning of graphs and sequences. J. Phys. Chem. A 125(25), 5633–5642 (2021)

    Article  Google Scholar 

  17. Zheng, S., Li, Y., Chen, S., et al.: Predicting drug–protein interaction using quasi-visual question answering system. Nat. Mach. Intell. 2(2), 134–140 (2020)

    Article  Google Scholar 

  18. Gao, K.Y., Fokoue, A., Luo, H., et al.: Interpretable drug target prediction using deep neural representation. IJCAI 2018, 3371–3377 (2018)

    Google Scholar 

  19. Karlov, D.S., Sosnin, S., Fedorov, M.V., et al.: GraphDelta: MPNN scoring function for the affinity prediction of protein–ligand complexes. ACS Omega 5(10), 5150–5159 (2020)

    Article  Google Scholar 

  20. Lim, J., Ryu, S., Park, K., et al.: Predicting drug–target interaction using a novel graph neural network with 3D structure-embedded graph representation. J. Chem. Inf. Model. 59(9), 3981–3988 (2019)

    Article  Google Scholar 

  21. Nguyen, T., Le, H., Quinn, T.P., et al.: GraphDTA: predicting drug–target binding affinity with graph neural networks. Bioinformatics 37(8), 1140–1147 (2021)

    Article  Google Scholar 

  22. Jiang, M., Wang, S., Zhang, S., et al.: Sequence-based drug-target affinity prediction using weighted graph neural networks. BMC Genomics 23(1), 1–17 (2022)

    Article  Google Scholar 

  23. Lin, X., Zhang, X., Xu, X.: Efficient classification of hot spots and hub protein interfaces by recursive feature elimination and gradient boosting. IEEE/ACM Trans. Comput. Biol. Bioinf. 17(5), 1525–1534 (2019)

    Article  Google Scholar 

  24. Jin, Y., Lu, J., Shi, R., et al.: EmbedDTI: enhancing the molecular representations via sequence embedding and graph convolutional network for the prediction of drug-target interaction. Biomolecules 11(12), 1783 (2021)

    Article  Google Scholar 

  25. Dong, Q.W., Wang, X., Lin, L.: Application of latent semantic analysis to protein remote homology detection. Bioinformatics 22(3), 285–290 (2006)

    Article  Google Scholar 

  26. Trott, O., Olson, A.J.: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(2), 455–461 (2010)

    Article  Google Scholar 

  27. Ragoza, M., Hochuli, J., Idrobo, E., et al.: Protein–ligand scoring with convolutional neural networks. J. Chem. Inf. Model. 57(4), 942–957 (2017)

    Article  Google Scholar 

  28. Torng, W., Altman, R.B.: Graph convolutional neural networks for predicting drug-target interactions. J. Chem. Inf. Model. 59(10), 4131–4149 (2019)

    Article  Google Scholar 

  29. Karimi, M., Wu, D., Wang, Z., et al.: DeepAffinity: interpretable deep learning of compound–protein affinity through unified recurrent and convolutional neural networks. Bioinformatics 35(18), 3329–3338 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the members of Machine Learning and Artificial Intelligence Laboratory, School of Computer Science and Technology, Wuhan University of Science and Technology, for their helpful discussion within seminars. This work was supported by National Natural Science Foundation of China (No. 61972299, 61502356).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, L., Zhang, X., Lin, X., Hu, J. (2023). Drug-Target Interaction Prediction Based on Drug Subgraph Fingerprint Extraction Strategy and Subgraph Attention Mechanism. In: Yang, X., et al. Advanced Data Mining and Applications. ADMA 2023. Lecture Notes in Computer Science(), vol 14178. Springer, Cham. https://doi.org/10.1007/978-3-031-46671-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46671-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46670-0

  • Online ISBN: 978-3-031-46671-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics