Skip to main content

Visual Knowledge Discovery and Criminal Justice. Insights from a Computational Crime Analysis Research

  • Chapter
  • First Online:
Artificial Intelligence and Visualization: Advancing Visual Knowledge Discovery

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1126))

  • 32 Accesses

Abstract

Extracting actionable knowledge from heterogeneous information enclosed in criminal proceedings is one of the main challenges in the fast-growing field of computational crime analysis. Public prosecutors, on the other hand, can usually rely only on databases (containing complaints, criminal records, or police reports) accessible via traditional textual interfaces that lack advanced and visually-intuitive information extraction functionalities. This work presents the results of an ongoing research project that turns to visual knowledge discovery to help public prosecutors analyze structural and functional features of criminal networks under investigation. In this vein, the paper dwells on an experimental platform for computational crime analysis where visualization has three different goals: (a) highlighting the structural and qualitative features of both criminal organizations and their components; (b) depicting the progress and transformation of criminal networks over time; (c) enhancing the interaction between the legal scholar/expert and computational heuristics in the knowledge formation process. The outline of the solutions devised within the project—which has seen the involvement of domain experts and the use of real data—becomes an occasion to sketch a few insights about the potential role of visualization in criminal justice and, more in general, in the analysis of social phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://bit.ly/2QbZEKE.

  2. 2.

    The platform handles data about social relations that are represented as a graph \(G = (V,E)\), where \(V =\) persons included in the case files, and \(E =\) relation, such as telephone or environmental tappings.

  3. 3.

    https://www.highcharts.com.

  4. 4.

    https://doc.linkurio.us/ogma/latest/.

  5. 5.

    https://d3js.org.

  6. 6.

    The expression refers to immediately executive measures of coercion resulting in limitations of personal freedom or the availability of goods. Such measures against the accused aim: (a) to prevent inappropriate behaviors during the course of the criminal proceeding (e.g., attempts to conceal evidence or to commit other crimes); (b) to ensure the enforcement of the judgment.

  7. 7.

    It can only be assessed with the contribution of specific categories of domain experts like psychiatrists or psychologists.

  8. 8.

    https://www.selenium.dev/documentation/webdriver/.

References

  1. Kaufman KA, Michalski RS (2005) From data mining to knowledge mining. Handb Statist 24:47–75

    Article  Google Scholar 

  2. Kovalerchuk B (2018) Visual knowledge discovery and machine learning, vol 144. Springer

    Google Scholar 

  3. Lettieri N (2020) Law in the turing’s cathedral: notes on the algorithmic turn of the legal universe. In: Barfield W (ed) The Cambridge handbook of the law of algorithms. Cambridge University Press, pp 691–721

    Google Scholar 

  4. Chan JB (2001) The technological game: how information technology is transforming police practice. Crim Justice 1(2):139–159

    Article  Google Scholar 

  5. Nissan E (2009) Legal evidence, police intelligence, crime analysis or detection, forensic testing, and argumentation: an overview of computer tools or techniques. Int J Law Inf Technol 17(1):1–82

    Google Scholar 

  6. Hvistendahl M (2016) Crime forecasters. Science 353(6307):1484–1487

    Article  Google Scholar 

  7. Tashea J (2017) Calculating crime. ABAJ 103:54

    Google Scholar 

  8. Wang T, Rudin C, Wagner D, Sevieri R (2013) Learning to detect patterns of crime. In: Joint European conference on machine learning and knowledge discovery in databases. Springer, pp 515–530

    Google Scholar 

  9. Kim S, Joshi P, Kalsi PS, Taheri P (2018) Crime analysis through machine learning. In: 2018 IEEE 9th annual information technology, electronics and mobile communication conference (IEMCON). IEEE, pp 415–420

    Google Scholar 

  10. Lin YL, Chen TY, Yu LC (2017) Using machine learning to assist crime prevention. In: 2017 6th IIAI international congress on advanced applied informatics (IIAI-AAI). IEEE, pp 1029–1030

    Google Scholar 

  11. Rummens A, Hardyns W, Pauwels L (2017) The use of predictive analysis in spatiotemporal crime forecasting: building and testing a model in an urban context. Appl Geogr 86:255–261

    Article  Google Scholar 

  12. Wheeler AP, Steenbeek W (2020) Mapping the risk terrain for crime using machine learning. J Quant Criminol:1–36

    Google Scholar 

  13. Mohler G, Porter MD (2018) Rotational grid, PAI-maximizing crime forecasts. Stat Anal Data Min ASA Data Sci J 11(5):227–236

    Article  MathSciNet  Google Scholar 

  14. Esquivel N, Nicolis O, Peralta B, Mateu J (2020) Spatio-temporal prediction of Baltimore crime events using CLSTM neural networks. IEEE Access 8:209101–209112

    Article  Google Scholar 

  15. Bogomolov A, Lepri B, Staiano J, Oliver N, Pianesi F, Pentland A (2014) Once upon a crime: towards crime prediction from demographics and mobile data. In: Proceedings of the 16th international conference on multimodal interaction, pp 427–434

    Google Scholar 

  16. Alves LG, Ribeiro HV, Rodrigues FA (2018) Crime prediction through urban metrics and statistical learning. Phys A 505:435–443

    Article  Google Scholar 

  17. Ordoñez-Eraso HA, Pardo-Calvache CJ, Cobos-Lozada CA (2020) Detección de tendencias de homicidios en colombia usando machine learning. Revista Facultad de Ingeniería 29(54):e11740–e11740

    Article  Google Scholar 

  18. Delahoz-Dominguez EJ, Fontalvo-Herrera TJ, Mendoza-Mendoza AA (2020) Definición de perfiles geográficos de hurto de automóviles. caso aplicado en cartagena. Justicia 25(37):99–108

    Article  Google Scholar 

  19. Meneses-Escobar CA, Castillo-Rodríguez CM, Rodas-Vásquez A (2019) Análisis espacial y temporal del hurto de celulares, pereira, risaralda, año 2018. Revista Logos Ciencia Tecnología 11(2):167–175

    Google Scholar 

  20. Larkin JH, Simon HA (1987) Why a diagram is (sometimes) worth ten thousand words. Cogn Sci 11(1):65–100

    Article  Google Scholar 

  21. Keim D, Kohlhammer J, Ellis G, Mansmann F (2010) Mastering the information age: solving problems with visual analytics

    Google Scholar 

  22. Hepler AB, Dawid AP, Leucari V (2007) Object-oriented graphical representations of complex patterns of evidence. Law Probab Risk

    Google Scholar 

  23. Taroni F, Biedermann A, Bozza S, Garbolino P, Aitken C (2014) Bayesian networks for probabilistic inference and decision analysis in forensic science. John Wiley & Sons

    Google Scholar 

  24. Tillers P (2005) Picturing factual inference in legal settings

    Google Scholar 

  25. Gordon TF (2007) Visualizing carneades argument graphs. Law Probab Risk

    Google Scholar 

  26. Verheij B (2007) Argumentation support software: boxes-and-arrows and beyond. Law Probab Risk

    Google Scholar 

  27. Lettieri N, Altamura A, Malandrino D (2017) The legal macroscope: experimenting with visual legal analytics. Inf Vis 16(4):332–345

    Article  Google Scholar 

  28. Lettieri N, Guarino A, Malandrino D, Zaccagnino R (2020) The affordance of law sliding treemaps browsing hierarchically structured data on touch devices. In: 2020 24th International conference information visualisation (IV). IEEE, pp 16–21

    Google Scholar 

  29. André O, Peter F, Nellen S (2016) A visual approach to the history of swiss federal law. In: DHd 2016: modelling-networking-visualization

    Google Scholar 

  30. Lettieri N, Altamura A, Faggiano A, Malandrino D (2016) A computational approach for the experimental study of EU case law: analysis and implementation. Soc Netw Anal Min 6(1):56

    Article  Google Scholar 

  31. Kuppevelt D, Dijck G (2017) Answering legal research questions about dutch case law with network analysis and visualization. In: Legal knowledge and information systems: JURIX 2017: the thirtieth annual conference, vol 302. IOS Press, p 95

    Google Scholar 

  32. du Toit N (2019) Network visualisation as a citator user interface. J Open Access L 7:1

    Google Scholar 

  33. Guarino A, Lettieri N, Malandrino D, Russo P, Zaccagnino R (2019) Visual analytics to make sense of large-scale administrative and normative data. In: 2019 23rd International conference information visualisation (IV). IEEE, pp 133–138

    Google Scholar 

  34. Cioffi-Revilla C (2014) Introduction to computational social science. Springer, London

    Book  Google Scholar 

  35. Lettieri N, Altamura A, Giugno R, Guarino A, Malandrino D, Pulvirenti A, Vicidomini F, Zaccagnino R (2018) Ex machina: analytical platforms, law and the challenges of computational legal science. Future Internet 10(5):37

    Article  Google Scholar 

  36. Lettieri N, Malandrino D, Vicidomini L (2017) By investigation, I mean computation. Trends Organ Crime 20(1–2):31–54

    Article  Google Scholar 

  37. Lettieri N, Guarino A, Malandrino D (2018) E-science and the law three experimental platforms for legal analytics. In: Legal knowledge and information systems—JURIX 2018: The thirty-first annual conference, Groningen, The Netherlands, , pp 71–80, 12–14 Dec 2018

    Google Scholar 

  38. Lettieri N, Altamura A, Malandrino D, Punzo V (2017) Agents shaping networks shaping agents: integrating social network analysis and agent-based modeling in computational crime research. In: EPIA conference on artificial intelligence. Springer, pp 15–27

    Google Scholar 

  39. Koschützki D, Lehmann KA, Peeters L, Richter S, Tenfelde-Podehl D, Zlotowski O (2005) Centrality indices. In: Network analysis. Springer, pp 16–61

    Google Scholar 

  40. Jeh G, Widom J (2002) Simrank: a measure of structural-context similarity. In: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pp 538–543

    Google Scholar 

  41. Floud J (1982) Dangerousness and criminal justice. Br J Criminol 22(3):213–228

    Article  Google Scholar 

  42. Cleary JG, Trigg LE (1995) K*: an instance-based learner using an entropic distance measure. In: Machine learning proceedings 1995. Elsevier, pp 108–114

    Google Scholar 

  43. McHugh ML (2012) Interrater reliability: the kappa statistic. Biochemia Medica 22(3):276–282

    Article  MathSciNet  Google Scholar 

  44. Zaccagnino R, Capo C, Guarino A, Lettieri N, Malandrino D (2021) Techno-regulation and intelligent safeguards. In: Multimedia tools and applications, pp 1–22

    Google Scholar 

  45. Guarino A, Malandrino D, Zaccagnino R (2022) An automatic mechanism to provide privacy awareness and control over unwittingly dissemination of online private information. Comput Netw 202:108614

    Article  Google Scholar 

  46. Guarino A, Malandrino D, Marzullo F, Torre A, Zaccagnino R (2022) Adaptive talent journey: optimization of talents growth path within a company via deep q-learning. Expert Syst Appl 209:118302

    Article  Google Scholar 

  47. Virzi RA (1992) Refining the test phase of usability evaluation: how many subjects is enough? Hum Factors 34(4):457–468

    Article  Google Scholar 

  48. Malandrino D, Guarino A, Lettieri N, Zaccagnino R (2019) On the visualization of logic: a diagrammatic language based on spatial, graphical and symbolic notations. In: 2019 23rd international conference information visualisation (IV). IEEE, pp 7–12

    Google Scholar 

  49. Chin JP, Diehl VA, Norman KL (1988) Development of an instrument measuring user satisfaction of the human-computer interface. In: Proceedings of the SIGCHI conference on Human factors in computing systems, pp 213–218

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Guarino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lettieri, N., Guarino, A., Malandrino, D., Zaccagnino, R. (2024). Visual Knowledge Discovery and Criminal Justice. Insights from a Computational Crime Analysis Research. In: Kovalerchuk, B., Nazemi, K., Andonie, R., Datia, N., Bannissi, E. (eds) Artificial Intelligence and Visualization: Advancing Visual Knowledge Discovery. Studies in Computational Intelligence, vol 1126. Springer, Cham. https://doi.org/10.1007/978-3-031-46549-9_13

Download citation

Publish with us

Policies and ethics