Skip to main content

The Mechanisms and Mechanics Analyses of Fretting Wear and Fretting Fatigue

  • Chapter
  • First Online:
Fretting Wear, Fretting Fatigue and Damping of Structures

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 276))

  • 176 Accesses

Abstract

Fretting wear is a phenomenon when the sliding amplitude is particularly small and is regarded as a phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Archard IF, Hirst W (1956) Proc Roy Soc A236:397

    Google Scholar 

  2. Mindlin RD (1949) Trans ASME. J Appl Mech 16:259

    Article  MathSciNet  Google Scholar 

  3. Johnson KL (1985) Contact mechanics. Cambridge University Press, 219

    Google Scholar 

  4. Johnson KL (1995) Proc Roy Soc A 230:531

    Google Scholar 

  5. Hironori N, Soshin Y, Hiroshi T (2012) Yukoyama National College of technology research bulletin No. 45:73–76

    Google Scholar 

  6. Kayaba T, Iwabuchi A (1978) Proc Jpn Soc Mech Eng 44(378):692

    Google Scholar 

  7. Waterhouse RB (1985) Wear 106:1–3

    Google Scholar 

  8. Vingsbo O, Soderberg S (1987) Wear of materials-1987. ASME 885

    Google Scholar 

  9. Wear F, Handbook F (1998) Fretting wear and fatigue handbook editorial committee. Industrial Data Center, p 25

    Google Scholar 

  10. Kayaba T, Iwabuchi A (1979) Technology Report. Tohoku Univ 44(2):603

    Google Scholar 

  11. Bryggman U, Soderberg S (1988) Wear 125(1–3):39

    Google Scholar 

  12. Iwabuchi A, Kato K, Kayaba T (1986) Wear 110

    Google Scholar 

  13. Kato K, Suzuki T, Iwabuchi A, Horikirikawa K (1986) Proc Jpn Soc Mech Eng C, 52(482):2732

    Google Scholar 

  14. Iwabuchi A, Kato K, Horikirikawa K (1987) Takashi suzuki. JSME Proc C 53(487):901

    Article  Google Scholar 

  15. Yoshimoto I (2002) Key points of screw fastener design. Jpn Stand Assoc

    Google Scholar 

  16. Yamamoto A (2004) Principle and design of screw fastening. Yokendo

    Google Scholar 

  17. Children (1980) The sliding wear mechanisms of materials. Tribol Int 13:285–293

    Google Scholar 

  18. Sakai S (2012) Loosening of bolts (2nd report, in the case of bolts subject to rotational load). In: Proceedings of the Japan society of mechanical engineers (Part 3) 44–377 (Showa 53–1), pp 288–292

    Google Scholar 

  19. Hattori T, Naruse T (2021) Screw fastening technology system learned from accident cases. NTS

    Google Scholar 

  20. Sakai S, Study on loosening characteristics of connecting rod cap bolts. In: Proceedings of the Japan society of mechanical engineers (Part 3) 43–368 (Showa 52–4), pp 1454–1461

    Google Scholar 

  21. Hattori T, Yamashita M, Nishimura N (2005) Fretting fatigue strength and life estimation considering the fretting wear process. In: Proceeding The 2nd JSME/ASME international conference on materials and processing, pp (ICS-01) ) 1–6

    Google Scholar 

  22. Hattori T, Yamashita M, Nishimura N (2005) Fretting fatigue strength and life estimation in ultra high cycle region considering the fretting wear process. JSME Int J 48(4):246–250

    Google Scholar 

  23. Hattori T, Watanabe T (2006) Fretting fatigue strength estimation considering the fretting wear process. Tribol Int 39:1100–1105

    Article  Google Scholar 

  24. Hattori T, Nishimura N, Yamashita M (2006) Fretting fatigue strength and life estimation considering the fretting wear process. In: Proceeding of the 9th international fatigue congress, pp FT531

    Google Scholar 

  25. Sato J (1998) Fretting wear and material dependence, fretting wear and fatigue handbook, fretting wear and fatigue handbook editing committee. Industrial Materials Center, pp 54, in Japanese

    Google Scholar 

  26. Sato Y, Mochizuki K (1984) Fretting wear of wear resistant materials. Lubrication 29(10):775–778, in Japanese

    Google Scholar 

  27. Sato J et al (1980) Fretting of glass. Wear 65(1):55–65

    Article  MathSciNet  Google Scholar 

  28. Goto H (1998) Environmental dependence of fretting wear, handbook of fretting wear and fatigue, editing committee of handbook of fretting wear and fatigue. Industrial Materials Center, p 57, in Japanese

    Google Scholar 

  29. Sakamann BW, Rightmire BG (1948) NACA TN 1492

    Google Scholar 

  30. Iwabuchi A, Kayaba T, Kato K (1983) Wear 91-3:289

    Google Scholar 

  31. Iwabuchi A (1985) Wear 106:163

    Article  Google Scholar 

  32. Iwabuchi A, Kato K, Kayaba T (1986) Wear 110:205

    Article  Google Scholar 

  33. Iwabuchi A et al (1987) Trans JSME (C edition) 53–487:901 in Japanese

    Article  Google Scholar 

  34. Godfrey D, Bailey JM (1953) NACA TN 3011

    Google Scholar 

  35. Goto H, Ashida M (1988) Tribol Int 21–4:183

    Article  Google Scholar 

  36. Goto H, Buckley DH (1985) Tribol Int 18–4:237

    Article  Google Scholar 

  37. Sato J (1977) Lubrication 22(10):622, in Japanese

    Google Scholar 

  38. Wright KHR (1952) Proc IME 167:556, (1952–53)

    Google Scholar 

  39. Feng I-M, Uhlig HH (1954) J Appl Mech 21–4:395

    Google Scholar 

  40. Bill RC (1978) NASA TM-78972

    Google Scholar 

  41. Godfrey D (1956) Lubr Eng 12–1:37

    Google Scholar 

  42. Soda N, Aoki A (1959) Trans JSME 25–158:995 in Japanese

    Article  Google Scholar 

  43. Goto H, Buckley DH (1991) Wear 143–1:15

    Article  Google Scholar 

  44. Endo Y, Goto H (1979) Lubrication 24–4:251 in Japanese

    Google Scholar 

  45. Buckley DH (1981) Surface effects in adhesion, wear, and Lubrication. Elsevier, Amsterdam, p 506

    Google Scholar 

  46. Bill RC (1982) ASTM STP No.780:165

    Google Scholar 

  47. Buckley DH (1986) NASA TN D-4775

    Google Scholar 

  48. Endo Y, Goto H (1978) Trans JSME No.780–7:235, in Japanese

    Google Scholar 

  49. Kayaba T, Iwabuchi A (1978) Trans JSME 44–377:692 in Japanese

    Article  Google Scholar 

  50. Waterhouse RB (1955) Proc IME 169:1157

    Article  Google Scholar 

  51. Uhlig HH (1954) J Appl Mech 21–4:401

    Article  Google Scholar 

  52. Fenner AJ, Wright KHR, Mann JY (1956) Proc Int Conf Fatigue Met IME 386

    Google Scholar 

  53. Bill RC (1981) International conference on wear of materials. ASME, JSME, San Francisco 238

    Google Scholar 

  54. Feng I-M, Rightmire BG (1956) Proc IME 170:1055

    Google Scholar 

  55. Endo Y, Goto H, Nakamura T (1969) Trans JSME 35–271:498 in Japanese

    Article  Google Scholar 

  56. Sorderberg S, Bryman U, McCullough T (1986) Wear 110:19

    Article  Google Scholar 

  57. Waterhouse RB (1984) Wear 100:107

    Article  Google Scholar 

  58. Komoda R, Kubota S, Kondo Y, Furtado J (2013–5) Trans JSME 79–801:536–545, in Japanese

    Google Scholar 

  59. Kubota S, Tanaka Y, Kondo Y (2007) Effect of hydrogen gas environment on fretting fatigue characteristics of SCM435H and SUH660. Trans Jpn Soc Mech Eng Ser A 73(736):1382–1387 in Japanese

    Article  Google Scholar 

  60. Kubota M, Noyama N, Sakae C, Kondo Y (2006) Fretting fatigue in hydrogen gas. Tribol Int 39(10):1241–1247

    Article  Google Scholar 

  61. Kubota M, Tanaka Y, Kondo Y (2009) The effect of hydrogen gas environment on fretting fatigue strength of materials used for hydrogen utilization machines. Tribol Int 42(9):1352–1359

    Article  Google Scholar 

  62. Kubota S, Noyama N, Fueda M, Sakae T, Kondo Y (2005) Effect of hydrogen gas environment on Fretting Fatigue. Mater Trans 54(12):1231–1236 in Japanese

    Google Scholar 

  63. Kubota S, Tanaka Y, Kuwata K, Kondo Y (2010) Fatigue limit lowering mechanism in Fretting Fatigue of SUS304 in hydrogen gas. Mater Trans 59(6):439–446 in Japanese

    Google Scholar 

  64. Mizobe K, Shiraishi Y, Kubota M, Kondo Y (2011) Effect of hydrogen on fretting fatigue strength of SUS304 and SUS316L austenitic stainless steels. In: Proceedings of JSME/ASME 2011 international conference on materials and processing

    Google Scholar 

  65. Waterhouse RB, Sato J (1984) Fretting damage and its prevention method (1984), pp 123–126, Yokendo, in Japanese

    Google Scholar 

  66. Cai ZB, Zhu MH, Zheng JF, Jin XS, Zhou ZR (2009) Torsional fretting behaviors of LZ50 steel in air and nitrogen. Tribol Int 42(11–12):1676–1683

    Article  Google Scholar 

  67. Ramalho A, Merstallinger A, Cavaleiro A (2006) Fretting behavior of W-Si coated steel in vacuum environments. Wear 261(1):79–85

    Article  Google Scholar 

  68. Nishioka K, Hirakawa K (1968) Study on Fretting Fatigue (5th report, effect of relative slip amount). Trans Jpn Soc Mech Eng 37(268):2068–2073 in Japanese

    Article  Google Scholar 

  69. MSC Software (2010) Marc 2010 Volume A: theory and user information, pp 558–560

    Google Scholar 

  70. Khadem R, O’Connor JJ (1969) Adhesive or frictionless compression of an elastic rectangle between two identical elastic half-spaces. Int J Eng Sci 7(2):153–168

    Article  Google Scholar 

  71. Kubota M, Kataoka S, Kondo Y (2009) Effect of stress relief groove on fretting fatigue strength and index for the selection of optimal groove shape. Int J Fatigue 31(3):439–446

    Article  Google Scholar 

  72. Hattori T, Watanabe T (2006) Fretting fatigue strength estimation considering the fretting wear process. Tribol Int 39(10):1100–1105

    Article  Google Scholar 

  73. Hattori T, Nakamura M, Watanabe T (2003) Simulation of fretting-fatigue life by using stress-singularity parameters and fracture mechanics. Tribol Int 36(2):87–97

    Article  Google Scholar 

  74. Kondo Y, Sakae N, Kubota S, Nagasue T (2003) Significance of local stress at contact Edge in Fretting Fatigue. Trans Jpn Soc Mech Eng Ser A 69(678):158–165 in Japanese

    Article  Google Scholar 

  75. Iino Y, Miyashita H (2009) Low cycle Fatigue damage accumulation and crack initiation of SUS304 steel in hydrogen gas environment. JSME Ann Meet Proc 1:71–72 in Japanese

    Article  Google Scholar 

  76. Kubota S, Sakuma T, Yamaguchi J, Kondo Y (2011) Effect of excessive stress and hydrogen on high cycle fatigue strength of notched austenitic stainless steel. Trans Jpn Soc Mech Eng Ser A 77(782):1747–1759 in Japanese

    Article  Google Scholar 

  77. Sakamoto Y, Katayama H (1982) Diffusion and dissolution of hydrogen in SUS304 steel around room temperature. J Jpn Inst Met 46(8):805–814 in Japanese

    Article  Google Scholar 

  78. Legrand E, Bouhattate J, Feaugas X, Garmestani H (2012) Computational analysis of geometrical factors affecting experimental data extracted from hydrogen permeation tests: II—Consequences of trapping and an oxide later. Int J Hydrogen Energy 37(18):13574–13582

    Google Scholar 

  79. Nagao A, Kuramoto S, Kanno M, Shirakami T (2000) Visualization of hydrogen diffusion behavior in steel promoted by stress gradient and plastic deformation. Tetsu-to-Hagané 86(1):24–31 in Japanese

    Article  Google Scholar 

  80. Horikawa K, Ando N, Kobayashi H, Urushihara W (2012) Visualization of hydrogen gas evolution during deformation and fracture in SCM440 steel with different tempering conditions. Mater Sci Eng A 534:495–503

    Google Scholar 

  81. Kubota M, Shiraishi Y, Komoda R, Kondo Y, Furtado J (2012) Consideration on the mechanisms causing reduction in fretting fatigue strength by hydrogen. Eur Conf fract (ECF19)), CD-ROM

    Google Scholar 

  82. Goto H et al (1983) Lubrication 26–12:847 in Japanese

    Google Scholar 

  83. Nishida Y, Mutoh Y, Kimura T, Morino K, Fukada K (2001) Fretting Fatigue strength of dies steel with radical nitriding. JSME Annu Meet I(01-1):323–324

    Google Scholar 

  84. Kondo Y, Sakae C, Kubota M, Yanagihara K (2004) Non-propagating crack at Giga-cycle Fretting Fatigue limit. Trans Jpn Soc Mech Eng Ser A 70(696):1066–1071

    Article  Google Scholar 

  85. Nishioka K, Hirakawa K (1969) Fundamental investigation of fretting Fatigue (Part3, some phenomena and mechanisms of surfacec racks). Bull JSME 12(51):397–407

    Google Scholar 

  86. Hattori T (1994) Fretting fatigue problems in structural design. In: Waterhouse RB, Lindley TC (eds) Fretting Fatigue, Mechanical Engineering Publications, pp 437–451

    Google Scholar 

  87. Hattori T et al (2012) Strength design handbook for failure prevention of products. NTS (Japanese)

    Google Scholar 

  88. Hattori et al (1987) Fracture mechanics analysis of fretting fatigue. Trans Jpn Soc Mech Eng A 53–492:1500–1507, (Japanese)

    Google Scholar 

  89. Comninou M (1976) Stress singularity at a Sharp Edge in contact problems with friction. J Appl Math Phys (ZAMP) 27:493–499

    Article  Google Scholar 

  90. Jinquan X, Mutoh M (2002) Stress singularity at edge of frictional contact interface with micro slip. J Mater Sci 51(11):1253–1258, (Japanese)

    Google Scholar 

  91. Kihara and Yoshii, Trans Jpn Soc Mech Eng 56–524, A:903–910, (Japanese)

    Google Scholar 

  92. Hattori T, Ab Wahad BMA (2011) Fretting Fatigue life estimations based on the critical distance stress theory. Eng Procedia 10:3134–3139

    Google Scholar 

  93. The Society of Materials Science (1982) Japan, data on fatigue strength of metallic materials 1:263, (Japanese)

    Google Scholar 

  94. Hattori T, Kawai S, Okamoto N, Sonobe T (1981) Trans Jpn Soc Mech Eng A, 47(415):264, (Japanese)

    Google Scholar 

  95. Hattori T, Kawai S, Okamoto N, Sonobe T (1981) Bull JSME 24(197):1893

    Article  Google Scholar 

  96. Hein VL, Erdogan F (1971) Int J Fract Mech 7(3):317

    Article  Google Scholar 

  97. Okamoto (1977) Trans Jpn Soc Mech Eng 43–374:3716, (Japanese)

    Google Scholar 

  98. Rooke DP, Jones DAJ (1979) Strain analysis, 14-1:1

    Google Scholar 

  99. Edwards PR, Cook R (1978) 11th Congr Int Council Aeronaut Sci Lisbon 505

    Google Scholar 

  100. Sonobe et al, Hitachi Rev 62–10:57, (Japanese)

    Google Scholar 

  101. Hattori T et al (1984) Proc 1983 Tokyo Int Gas Turbine Congr 945

    Google Scholar 

  102. Tada H et al (1979) The stress analysis of cracks handbook 2.7, Del Research Corporation

    Google Scholar 

  103. Usami S (1982) Fatigue Thresholds. Eng Advisory Serv 205

    Google Scholar 

  104. Ouchida H et al (1975) Trans Jpn Soc Mech Eng 41–343:703. (Japanese)

    Google Scholar 

  105. EL Haddad MH et al (1979) Trans ASME J Eng Mater Technol 101:42

    Google Scholar 

  106. Sato K et al (1986) Trans Jpn Soc Mech Eng 52–474:417

    Google Scholar 

  107. Taylor D (1999) Geometrical effects in fatigue: a unifying theoretical model. Int J Fatigue 21:413–420

    Article  Google Scholar 

  108. Hattori T, Nakamura M, Sakata H, Watanabe T (1987) Fracture mechanics analysis of fretting fatigue. Trans Jpn Soc Mech Eng (A), 53–492:1500–1507. (Japanese)

    Google Scholar 

  109. King RN, Lindley TC (1980) Proc ICF 5:631

    Google Scholar 

  110. Hattori T, Nakamura M, Watanabe T (2003) Simulation of fretting fatigue life by using stress singularity parameters and fracture mechanics. Tribol Int 36:87

    Article  Google Scholar 

  111. Hattori T, Nishimura N, Yamashita M (2007) Fretting Fatigue strength and life estimation considering the fretting wear process. In: Progress in fracture and strength of materials and structures, key engineering materials, 353–358 pp 882–885

    Google Scholar 

  112. Hattori T et al (1988) Fretting fatigue analysis using fracture mechanics. JSME Int J Ser l(31):100

    Google Scholar 

  113. Hattori T (2017) Simple estimation method of Fretting Fatigue limit considering wear process. Tribol Int 108:69–74

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Hattori .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hattori, T. (2024). The Mechanisms and Mechanics Analyses of Fretting Wear and Fretting Fatigue. In: Fretting Wear, Fretting Fatigue and Damping of Structures. Solid Mechanics and Its Applications, vol 276. Springer, Cham. https://doi.org/10.1007/978-3-031-46498-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46498-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46497-3

  • Online ISBN: 978-3-031-46498-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics